The Hellinger square-integrability of matrix-valued measures with respect to a non-negative hermitian measure

By Habib Salehi

Introduction

Let \mathcal{B} be a σ-algebra of subsets of a given space Ω, and let \mathbf{F} be a fixed nonnegative hermitian measure on \mathcal{B}. For matrix-valued measures \mathbf{M} and \mathbf{N} the Hellinger integral $\int_{\Omega}\left(d \mathbf{M} d \mathbf{N}^{*} / d \mathbf{F}\right)\left({ }^{*}=\right.$ conjugate $)$ is defined in such a way that the space of all matrix-valued measures \mathbf{M} for which $\int_{\Omega}\left(d \mathbf{M} d \mathbf{M}^{*} / d \mathbf{F}\right)$ exist becomes a Hilbert space under the inner product $\tau \int_{\Omega}\left(d \mathbf{M} d \mathbf{N}^{*} / d \mathbf{F}\right)$ ($\tau=$ trace). It will follow that $\int_{\Omega}\left(d \mathbf{M} d \mathbf{M}^{*} / d \mathbf{F}\right)$ exists iff there exists a \mathcal{B}-measurable matrixvalued function Ψ on Ω such that $\Psi \in \mathbf{L}_{2, \mathbf{F}}[9$, p. 295], and for each $B \in \mathcal{B}, \mathbf{M}(B)=$ $\int_{B} \Psi d \mathbf{F}$. These generalize the corresponding results [3, pp. 258-61] \& [8, pp. 1414-18] concerning the Hellinger integrals $\int_{\Omega}(d \nu d \bar{\gamma} / d \mu)$, where v and γ are com-plex-valued measures and μ is a non-vegative real-valued measure on \mathcal{B}.

For any matrix G we write \mathbf{G}^{-}for the generalized inverse of $\mathbf{G}[7, p .407]$. If μ is a σ-finite non-negative real-valued measure on \vec{B} with respect to (w.r.t.) which \mathbf{F} is absolutely continuous (a.c.), then it is easy to show that ($d \mathbf{F} / d \mu)^{-}$ is a \mathcal{B}-measurable matrix-valued function on Ω.

Lemma 1. Let (i) \mathbf{M} and \mathbf{N} be matrix-valued measures on \mathcal{B}.
(ii) μ and v be σ-finite non-negative real-valued measures on \mathcal{B} w.r.t. which \mathbf{M}, \mathbf{N} and \mathbf{F} are a.c. ${ }^{1}$ Then
(a)

$$
\begin{aligned}
& \int_{\Omega}(d \mathbf{M} / d \mu)(d \mathbf{F} / d \mu)^{-}(d \mathbf{N} / d \mu)^{*} d \mu \\
& \text { exists iff } \\
& \int_{\Omega}(d \mathbf{M} / d v)(d \mathbf{F} / d v)^{-}(d \mathbf{N} / d v)^{*} d v \quad \text { exists. }
\end{aligned}
$$

(b) If these integrals exist, they are equal.

Proof. (a) Let $\gamma=\mu+\nu$. If $\int_{\Omega}(d \mathbf{M} / d \mu)(d \mathbf{F} / d \mu)^{-}(d \mathbf{N} / d \mu)^{*} d \mu$ exists, then from the relations

[^0]H. Salehi, Hellinger square-integrability of matrix-valued measures
\[

$$
\begin{align*}
\int_{\Omega}(d \mathbf{M} / d \mu)(d \mathbf{F} / d \mu)^{-}(d \mathbf{N} / d \mu)^{*} d \mu & =\int_{\Omega}(d \mathbf{M} / d \mu)(d \mathbf{F} / d \mu)^{-}(d \mathbf{N} / d \mu)^{*}(d \mu / d \gamma) d \gamma \\
& =\int_{\Omega}(d \mathbf{M} / d \gamma)(d \mathbf{F} / d \gamma)^{-}(d \mathbf{N} / d \gamma)^{*} d \gamma \tag{1}
\end{align*}
$$
\]

follows that

$$
\int_{\Omega}(d \mathbf{M} / d \gamma)(d \mathbf{F} / d \gamma)^{-}(d \mathbf{N} / d \gamma)^{*} d \gamma \quad \text { exists. }
$$

Conversely if $\quad \int_{\Omega}(d \mathbf{M} / d \gamma)(d \mathbf{F} / d \gamma)^{-}(d \mathbf{N} / d \gamma)^{*} d \gamma \quad$ exists,
again from (l) we infer that

$$
\int_{\Omega}(d \mathbf{M} / d \mu)(d \mathbf{F} / d \mu)^{--}(d \mathbf{N} / d \mu)^{*} d \mu \quad \text { exists. }
$$

Similar argument can be used to show that

$$
\begin{aligned}
& \int_{\Omega}(d \mathbf{M} / d \nu)(d \mathbf{F} / d \nu)^{-}(d \mathbf{N} / d \nu)^{*} d v \quad \text { exists iff } \\
& \int_{\Omega}(d \mathbf{M} / d \gamma)(d \mathbf{F} / d \gamma)^{-}(d \mathbf{N} / d \gamma)^{*} d \gamma \quad \text { exists. }
\end{aligned}
$$

Hence (a) is proved.
(b) From the argument used in the proof of (a) we infer (b). (Q.E.D.)

Thus the following definition makes sense.
Definition 1. Let $\mathbf{M}, \mathbf{N}, \mathbf{F}$ and μ be as in the previous lemma. Then (a) we say that (\mathbf{M}, \mathbf{N}) is Hellinger integrable w.r.t. \mathbf{F} if $\int_{\Omega}(d \mathbf{M} / d \mu)(d \mathbf{F} / d \mu)^{-}(d \mathbf{N} / d \mu)^{*} d \mu$ exists. We write

$$
\int_{\Omega} \frac{d \mathbf{M} d \mathbf{N}^{*}}{d \mathbf{F}}=\int_{\Omega}(d \mathbf{M} / d \mu)(d \mathbf{F} / d \mu)^{-}(d \mathbf{N} / d \mu)^{*} d \mu
$$

(b) $\mathbf{H}_{2, \mathbf{F}}$ is the class of all matrix-valued measures \mathbf{M} on \mathbf{B} for which $\int_{\Omega}\left(d \mathbf{M} d \mathbf{M}^{*} / d \mathbf{F}\right)$ exist.

It is easy to see that

$$
\begin{align*}
& \mathbf{M}, \mathbf{N} \in \mathbf{H}_{2, \mathbf{F}} \Rightarrow(\mathbf{M}, \mathbf{N}) \text { is Hellinger integrable w.r.t. } \mathbf{F}, \tag{1}\\
& \mathbf{M} \in \mathbf{H}_{2, \mathbf{F}} \text { and } \mathbf{A} \text { is a matrix } \Rightarrow \mathbf{A} \mathbf{M} \in \mathbf{H}_{2, \mathbf{F}} \\
& \mathbf{M}, \mathbf{N} \in \mathbf{H}_{2, \mathbf{F}} \Rightarrow \mathbf{M}+\mathbf{N} \in \mathbf{H}_{2, \mathbf{F}}
\end{align*}
$$

By (1) $\int_{\Omega}\left(d \mathbf{M} d \mathbf{N}^{*} / d \mathbf{F}\right)$ exists for $\mathbf{M}, \mathbf{N} \in \mathbf{H}_{2 . \mathbf{F}}$. This matrix-valued integral behaves like an inner product. It is therefore convenient to write

$$
(\mathbf{M}, \mathbf{N})_{\mathbf{F}}=\int_{\Omega} \frac{d \mathbf{M} d \mathbf{N}^{*}}{d \mathbf{F}}
$$

We define the ordinary inner product for $\mathbf{H}_{\mathbf{2}, \mathbf{F}}$ by

$$
((\mathbf{M}, \mathbf{N}))_{\mathbf{F}}=\tau(\mathbf{M}, \mathbf{N})_{\mathbf{F}}
$$

Thus from (1) we immediately get:
Lemma 2. $\mathbf{H}_{2, \mathbf{F}}$ is an inner product space under $((., .))_{\mathbf{F}}$, where for \mathbf{M} and $\mathbf{N} \in \mathbf{H}_{2, \mathbf{F}}$

$$
((\mathbf{M}, \mathbf{N}))_{\mathbf{F}}=\tau(\mathbf{M}, \mathbf{N})_{\mathbf{F}} .
$$

Let $\mathbf{L}_{2, \mathbf{F}}$ be the class of all matrix-valued functions $\boldsymbol{\Phi}$ on Ω for which $\int_{\Omega} \boldsymbol{\Phi} d \mathbf{F} \boldsymbol{\Phi}^{*}$ exist (A detailed discussion of integrals $\int_{\Omega} \boldsymbol{\Phi} d \mathbf{F} \Psi^{*}$ and $\int_{\Omega} \boldsymbol{\Phi} d \mathbf{F}$ are given in [6] and [9]). It is known [9, p. 295] that $\mathbf{L}_{2, F}$ is a Hilbert space under the inner product.

$$
((\boldsymbol{\Phi}, \boldsymbol{\Psi}))_{\mathbf{F}}=\tau(\boldsymbol{\Phi}, \boldsymbol{\Psi})_{\mathbf{F}}=\tau \int_{\Omega} \boldsymbol{\Phi} d \mathbf{F} \mathbf{\Psi}^{*}
$$

The following lemma is needed to establish an isomorphism between $\mathbf{L}_{2, \mathbf{F}}$ and $\mathbf{H}_{\mathbf{2}, \mathrm{F}}$.

Lemma 3. Let (i) $\boldsymbol{\Phi}$ and $\Psi \in \mathbf{L}_{L_{2, ~}}$.
(ii) For each $B \in \mathcal{B}$

$$
\mathbf{M}(B)=\int_{B} \boldsymbol{\Phi} d \mathbf{F} \quad \text { and } \quad \mathbf{N}(B)=\int_{B} \boldsymbol{\Psi} d \mathbf{F}
$$

Then (\mathbf{M}, \mathbf{N}) is Hellinger-integrable w.r.t. \mathbf{F} and

$$
(\mathbf{M}, \mathbf{N})_{\mathbf{F}}=(\boldsymbol{\Phi}, \Psi)_{\mathbf{F}}
$$

Proof. Let μ be any σ-finite non-negative measure w.r.t. which \mathbf{F} is a.c. Then for each $B \in \mathcal{B}, \mathbf{M}(B)=\int_{B} \boldsymbol{\Phi}(d \mathbf{F} / d \mu) d \mu$ and $\mathbf{N}(B)=\int_{B} \Psi(d \mathbf{F} / d \mu) d \mu$. Hence

$$
(d \mathbf{M} / d \mu)=\mathbf{\Phi}(d \mathbf{F} / d \mu),(d \mathbf{N} / d \mu)=\mathbf{\Psi}(d \mathbf{F} / d \mu)
$$

Therefore

$$
\begin{align*}
\int_{\Omega} \frac{d \mathbf{M} d \mathbf{N}^{*}}{d \mathbf{F}} & =\int_{\Omega}(d \mathbf{M} / d \mu)(d \mathbf{F} / d \mu)^{-}(d \mathbf{N} / d \mu)^{*} d \mu \\
& =\int_{\Omega} \boldsymbol{\Phi}(d \mathbf{F} / d \mu)(d \mathbf{F} / d \mu)^{-}(d \mathbf{F} / d \mu) \mathbf{\Psi}^{*} d \mu \\
& =\int_{\Omega} \boldsymbol{\Phi}(d \mathbf{F} / d \mu) \Psi^{*} d \mu=(\boldsymbol{\Phi}, \mathbf{\Psi}\rangle_{\mathbf{F}} \tag{1}
\end{align*}
$$

Since for $\boldsymbol{\Phi}$ and $\Psi \in \mathbf{L}_{2, \mathbf{F}},(\boldsymbol{\Phi}, \Psi)_{\mathbf{F}}$ exists, from (1) it follows that $(\mathbf{M}, \mathbf{N})_{\mathbf{F}}$ is Hellinger integrable w.r.t. \mathbf{F}. Moreover ($\mathbf{M}, \mathbf{N})_{\mathbf{F}}=(\boldsymbol{\Phi}, \Psi)_{\mathbf{F}}$. (Q.E.D.)

h. saleht, Hellinger square-integrability of matrix-valued measures

If $\Psi \in \mathbf{L}_{2, \mathrm{~F}}$, Then \mathbf{M}_{Ψ} will denote the matrix-valued measure in $\mathbf{H}_{2 . \mathbf{F}}$ such that for each $B \in \mathcal{B}, \mathbf{M}_{\Psi}(B)=\int_{B} \Psi d \mathbf{F}$. Hence the following definition makes sense.

Definition 2. Let the transformation \mathbf{T} be defined on $\mathbf{L}_{2, \mathbf{F}}$ into $\mathbf{H}_{2, \mathbf{F}}$ as follows:

$$
\mathbf{T} \Psi=\mathbf{M}_{\boldsymbol{\Psi}}
$$

The important properties of \mathbf{T} are given in the following theorem:
Theorem 1. (a) \mathbf{T} is a linear operator on $\mathbf{L}_{2, \mathbf{F}}$ into $\mathbf{H}_{2, \mathbf{F}}$, i.e., if \mathbf{A} and \mathbf{B} are matrices and $\boldsymbol{\Phi}$ and $\Psi \in \mathbf{L}_{2, \mathbf{F}}$, then

$$
\mathbf{T}(\mathbf{A} \boldsymbol{\Phi}+\mathbf{B} \Psi)=\mathbf{A T} \boldsymbol{\Phi}+\mathbf{B} \mathbf{T} \Psi
$$

(b) \mathbf{T} is an isometry on $\mathbf{L}_{\mathbf{2}, \mathbf{F}}$ into $\mathbf{H}_{\mathbf{2}, \mathbf{F}}$. In fact
$(\mathbf{T} \boldsymbol{\Phi}, \mathbf{T} \Psi)_{\mathbf{F}}=(\boldsymbol{\Phi}, \boldsymbol{\Psi})_{\mathbf{F}}$.
(c) \mathbf{T} is onto $\mathbf{H}_{2, \mathbf{F}}$, i.e., for each $\mathbf{M} \in \mathbf{H}_{2, \mathbf{F}}$, there exists a $\Psi \in \mathbf{L}_{2, \mathbf{F}}$ such that $\mathbf{M}=\mathbf{T} \Psi$. In fact we can take Ψ to be $(d \mathbf{M} / d \mu)(d \mathbf{F} / d \mu)^{-}$, where μ is any $\sigma-$ finite non-negative real-valued measure w.r.t. \mathbf{M} and \mathbf{F} are a.c.

Proof. (a) and (b) follow from Lemma 3 and Definition 2.
(c) Let $\mathbf{M} \in \mathbf{H}_{2, \mathbf{F}}$. If μ is any σ-finite non-negative real-valued measure on \boldsymbol{B} w.r.t. which \mathbf{M} and \mathbf{F} are a.c., then

$$
\begin{aligned}
(\mathbf{M}, \mathbf{N})_{\mathbf{F}} & =\int_{\Omega}(d \mathbf{M} / d \mu)(d \mathbf{F} / d \mu)^{-}(d \mathbf{M} / d \mu)^{*} d \mu \\
& =\int_{\Omega}\left[(d \mathbf{M} / d \mu)(d \mathbf{F} / d \mu)^{-}\right](d \mathbf{F} / d \mu)\left[(d \mathbf{M} / d \mu)(d \mathbf{F} / d \mu)^{-}\right]^{*} d \mu
\end{aligned}
$$

where the first equality follows from the definition of $(\mathbf{M}, \mathbf{N})_{\mathbf{F}}$ and the second one is a consequence of $(d \mathbf{F} / d \mu)^{-}(d \mathbf{F} / d \mu)(d \mathbf{F} / d \mu)^{-}=(d \mathbf{F} / d \mu)^{-}$. Hence $(d \mathbf{M} / d \mu)(d \mathbf{F} / d \mu)^{-}$ is in $\mathbf{L}_{2, \mathbf{F}}$. Let $\mathbf{N}(B)=\int_{B}(d \mathbf{M} / d \mu)(d \mathbf{F} / d \mu)^{-} d \mathbf{F}$. Then $(\mathbf{M}, \mathbf{M})_{\mathbf{F}}=(\mathbf{N}, \mathbf{N})_{\mathbf{F}}$ and $(\mathbf{M}, \mathbf{N})_{\mathbf{F}}=$ $(\mathbf{N}, \mathbf{M})_{\mathbf{F}}$. Hence $(\mathbf{N}-\mathbf{M}, \mathbf{N}-\mathbf{M})_{\mathbf{F}}=0$, i.e., \mathbf{N} and \mathbf{M} as elements of $\mathbf{H}_{2, \mathbf{F}}$ are equal. By Definition 2, $\mathbf{T}(d \mathbf{M} / d \mu)(d \mathbf{F} / d \mu)^{-}=\mathbf{N}$. Therefore $\mathbf{T}(d \mathbf{M} / d \mu)(d \mathbf{F} / d \mu)^{-}=\mathbf{M}$. (Q.E.D.)

We immediately obtain the following result.
Theorem 2. (a) $\mathbf{H}_{2, \mathbf{F}}$ is a Hilbert space under the inner-product $((\cdot, \cdot))_{\mathbf{F}}$.
(b) $\mathbf{M} \in \mathbf{H}_{2, \mathbf{F}}$ iff there exists a B-measurable matrix-valued function Ψ on Ω such that $\Psi \in \mathbf{L}_{2, \mathrm{~F}}$ and for each $B \in \mathcal{B}$,

$$
\mathbf{M}(B)=\int_{B} \Psi d \mathbf{F}
$$

Moreover if μ is a σ-finite non-negative real-valued measure w.r.t. which \mathbf{M} and \mathbf{F}^{-} are a.c., then $(d \mathbf{M} / d \mu)(d \mathbf{F} / d \mu)^{-}(d \mathbf{F} / d \mu)=(d \mathbf{M} / d \mu)$ a.e. μ.

Proof. (a) (b). (a) and the first part of (b) are immediate consequences of Theorem 1. For the second part of (b) we have

$$
\begin{aligned}
(d \mathbf{M} / d \mu)(d \mathbf{F} / d \mu)^{-}(d F / d \mu) & =\mathbf{\Psi}(d \mathbf{F} / d \mu)(d \mathbf{F} / d \mu)^{-}(d \mathbf{F} / d \mu) \\
& =\Psi(d \mathbf{F} / d \mu)=(d \mathbf{M} / d \mu) \text { a.e. } \mu
\end{aligned}
$$

where the first and the third equalities are consequences of $\mathbf{M}(B)=\int_{B} \Psi d \mathbf{F}$ and the second one is a consequence of $(d \mathbf{F} / d \mu)=(d \mathbf{F} / d \mu)(d \mathbf{F} / d \mu)^{-}(d \mathbf{F} / d \mu)$ a.e. μ. (Q.E.D.)

Remark. The significance of the Hellinger integrals $\int_{\Omega}\left(d \nu d \gamma^{-} / d \mu\right)$, where ν and γ are complex-valued measures and μ is a non-negative real-valued measure, in univariate stochastic processes has bee pointed out by H. Cramér [1, p. 487] and U. Grenander [2, p. 207]. Our Hellinger integrals play an important role in q-variate stochastic processes. In particular, they give rise to an extension of P. Masani's work on q-variate full-rank minimal processes [5, pp. 145-150] which in turn is a generalization of a well-known result of A. N. Kolmogorov on univariate minimal sequences [4, Thm. 24]. These and other results will be published separately.

AGKNOWLEDGEMENT

This research was partially supported by National Science Foundation GP-7535.
Michigan State University, East Lansing, Michigan (U.S.A.)

REFERENGES

1. Cramér, H., Mathematical Methods of Statistics, Princeton University Press, New Jersy, 1961.
2. Grenander, U., and Szegö, G., Toeplitz Forms and Their Applications, University of California Press, California, 1958.
3. Hobson, E. W., On Hellinger's integrals, Proc. London Math. Soc. 2, No. 18, 249-265 (1919).
4. Kolmogorov, A. N., Stationary sequences in Hilbert space, Bull. Math. Univ. Moscow 2, No. 6, 1941.
5. Masani, P., The prediction theory of multivariate stochastic processes, III, Acta Math. 104, 142-162 (1960).
6. Masani, P., Recent Trends in Multivariate Prediction Theory, MRC Technical Summary Report No. 637, Jan. 1966, Math. Res. Center, Univ. of Wisc.
7. Penrose, R. A., A generalized inverse for matrices, Proc. Camb. Phil. Soc. 51, 406-413 (1955).
8. Radon, J., Theorie und anwendungen der absolut additiven mengenfunktionen, Sitzsber. Akad. Wiss. Wien. 122, 1295-1438 (1913).
9. Rosenberg, M., The square-integrability of matrix-valued functions with respect to a nonnegative hermitian measure, Duke Math. J. 31, 291-298 (1946).

[^0]: ${ }^{1}$ Each matrix-valued measure is a.c. w.r.t. the sum of the total variation measures of its components. Hence such a μ exists.

