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The Hellinger square-integrability o f  matrix-valued 
measures with respect to a non-negative hermitian measure 

B y  H A R m  SALES~ 

Introduction 

Let  B be a a-algebra of subsets of a given space ~ ,  and let F be a fixed non- 
negative hermit ian measure on B. For  matr ix-valued measures M and N t h e  
Hellinger integral .~a(dMdN*/dF) (* =conjuga te )  is defined in such a way  tha t  
the  space of all matr ix-valued measures M for which ~a(dMdM*/dF) exist be- 
comes a Hilbert  space under  the inner product  v.~a (dMdN*/dF) ('c =trace) .  I t  
will follow tha t  ~a(dMdM*/dF) exists iff there exists a B-measurable matr ix-  
valued funct ion W on ~ such tha t  W E L2.r [9, p. 295], and for each BE B, M ( B ) =  
~BtlSdF. These generalize the corresponding results [3, pp. 258-61] & [8, pp. 
1414-18] concerning the Hellinger integrals ~a (dvd~/dtt), where r and 7 are com- 
plex-valued measures and # is a non-vegat ive real-valued measure on B. 

For  any  matr ix  6[ we write G- for the generalized inverse of G [7, p. 407]. 
If  tt is a a-finite non-negat ive real-valued measure on B with respect to (w.r.t.) 
which F is absolutely continuous (a.c.), then it is easy to show tha t  (dF/dlt)- 
is a B-measurable matr ix-valued function on g2. 

Lemma 1. Let (i) M and N be matrix-valued measures on B. 

(ii) # and v be q-/inite non-negative real-valued measures on B w.r.t, which M, N 
and F are a.c. 1 Then 

(a) f ~  (dM/d#) (dF /d#) -  (dN/d#)* d~ exists i// 

f (dM/dv) (dF/dv)- (dN/dv)* dv exists. 

(b) I/  these integrals exist, they are equal. 

Proo/. (a) Let  V = # + v .  If  ~ a ( d M / d # ) ( d F / d # ) - ( d N / d # ) *  d/~ exists, then from 
the relations 

1 Each matrix-valued measure is a.c.w.r.t, the sum of the total variation measures of its 
components. Hence such a # exists. 
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f (dM/dp) (dF/d#)- (dN/d#)* d# f~ (dM/d#) (dF /d~) (dN/d#)*  (d/~/dy) d~ I 

f (dM/d~) (dF/dT)- (dN/dT)* d T (1) 

f~ (dM/dT) (dF/dT)- (dN/dT)* d 7 follows that  exists. 

Conversely if fa (dM/dT) (dF/dT)- (dN/dT)* d7 exists, 

again from (1) we infer that  

f (dM/d#) (dF/d#)- (dN/d/x)* d# exists. 

Similar argument can be used to show that  

f~ (dM/dv) (dF/dv)- (dN/dv)* dv exists iff 

fa(dM/d~) (dF/dT)- (dN/dT)* d 7 exists. 

Hence (a) is proved. 

(b) From the argument used in the proof of (a) we infer (b). (Q.E.D.) 

Thus the following definition makes sense. 

Definition 1. Let M, N, F and # be as in the previous lemma. Then (a) we say 
that (M, ~) is Hellinger integrable w.r.t. F i/ S~ (dM/d/~) (dF/d/~)- (dN/d#)* d/~ exists. 
We write 

f dM dN* ; 
dF j~ (dM/d/x) (dF/d#) (dN/d#)* d/x. 

(b) H2. F is the class o/all matrix-valued measures M on B/or which Sa (dMdM*/dF) 
exist. 

I t  is easy to see that  

(1) M, N E H2.v* (M, N) is Hellinger integrable w.r.t. F, 

MEH2, F and A is a ma t r i x~AMEH2,v ,  

M,N E H 2 , F ~ M + N E  H2, r. 

By (1) Sa(dMdN*/dF) exists for M, N E H2. F. This matrix-valued integral be- 
haves like an inner product. I t  i~ therefore convenient to write 
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(M, N)r = f ] d M  dN* 
dF J~ 

We define the ordinary inner product for H2. r by 

((M, N))F = T(M, N)F. 

Thus from (1) we immediately get: 

Lemma 2. H2,F is an inner product space under ((., .))r, where/or M and NE He,r 

((M, N))r = ~(M, N)r. 

Let Le.F be the class of all matrix-valued functions r on ~ for which ~ n ~ d F ~ *  
exist (A detailed discussion of integrals ~nCdFW* and j ' ~ r  are given in [6] 
and [9]). It is known [9, p. 295] that L~,F is a Hilbert space under the inner 
product. 

((q~ W))F = ~(r W)r = ~ | ~  dFW*. 
J~ 

The following lemma is needed to establish an isomorphism between L2, F and 
1:[2 ,  F �9 

Lemma 3. Let (i) ~ and W EL2, r 

(ii) _For each BE B 

M ( B ) = ~ * d F  and N(B)=fBWdF. 

Then (M, N) is Hellinger-integrable w.r.t. F and 

(M, N)F = ( ~ ,  W)~. 

Proo/. Let # be any a-finite non-negative measure w.r.t, which F is a.c. Then 
for each B e B, M(B) = ~Br d/x and N(B) = fB W(dF/d#) d#. Hence 

(dM/d/z) = r  (dN/d/x) = W(dF/d#). 

Therefore f dM dN* dF - f a  (dM/d#) (dF/d#) (dN/d~)* d# 

= f c~(dF/d#) (dF/dlu) (dF/d#) ~r~* d~ 

= f O(dF/d~) ~* d# = (~, ~)~. (1) 

:Since for r and t~'tEL2,F, (CI~,~)F exists, from (1) it follows that (M,N)r is 
Hellinger integrable w.r . t .F .  Moreover (M, N)r= (~, W)F. (Q.E.D.) 
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If  W E L2. F, Then M~, will denote the matrix-valued measure in H2. y such tha t  
for each B E B, M~ (B )=  S, WdF. Hence the following definition makes sense. 

Definition 2. Let the trans/ormation T be de/ined o n  L2,y into H2,y a s  /oUows: 

TW = M~. 

The important  properties of T are given in the following theorem: 

Theorem 1. (a) T is a linear operator on L2. r into H2,F, i.e., i/ A and B are 
matrices and r and t~ E L2.F, then 

T(A~ + BW) = AT~ + BTW. 

(b) T is an isometry o n  L2, F into H2.y. In  /act 

(T~, TW)F = (~ ,  W)F. 

(c) T is onto H2.F, i.e., /or each MEH2,F, there exists a tIYEL2.F such that 
M = TW. In  /act we can take tit to be (dM/d/~) (dF/d[~)-, where # is any a-/inite 
non-negative real-valued measure w.r.t. M and F' are a.c. 

Proo/. (a) and (b) follow from Lemma 3 and Definition 2. 

(c) Let  ME H2. ~. I f  # is any (~-finite non-negative real-valued measure on B 
w.r.t, which M and F are a.c., then 

(M, N)F = f ~  (dM/d#) (dF/d/~)- (dM/d/~)* d# 

= f a  [(dM/d/~)(dF/d/~)-] (dF/d/~)[(dM/d#)(dF/d/~)-]* d/~, 

where the first equality follows from the definition of (M, N)F and the second one is 
a consequence of (dF/d[~)-(dF/dl~ ) (dF/dl~) = (dF/d/~)-. Hence (dM/d/~)(dF/dp)- 
is in L2. r. Let N(B) = ~B(dM/dl~) (dF/d/~)- dF. Then (M, M)F = (N, N)F and (M, N)F = 
(N,M)F. Hence ( N - M , N - M ) F - 0 ,  i.e., N and M as elements of H2.F are equal. 
By Definition 2, T(dM/d#) (dF/d/~)- = ST. Therefore T(dM/d/~) (dF/d/~)- = M. 
(Q.E.D.) 

We immediately obtain the following result. 

Theorem 2. (a) H2. r is a Hilbert space under the inner-product ( ( ' , ' ) )F .  
(b) M E H2,F ill there exists a B-measurable matrix-valued/unction W on ~ such 

that • E Le.F and /or each B E B, 

= I ~  dF. M(B) JB 

Moreover i/ # is a (y-/inite non-negative real-valued measure w.r.t, which M and F 
are a.c., then (dM/d /~) (dF/d#) - (dF /d#)=  (dM/d/~) a.e. /~. 
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Proo/. (a) (b). (a) and the first part  of (b) are immediate consequences of 
Theorem 1. For the second part  of (b) we have 

(dM/d#) (dF/d/~)- (dF/d#)= tY(dF/d#) (dF/d#)- (dF/d/~) 

= W(gF/diu ) = (dM/d/~) a.e. /~, 

where the first and the third equalities are consequences of M(B)=SBtFdF  and 
the second one is a consequence of (dF/d/~)= (dF/d#)(dF/d/~)-(gF/d/~) a.e. /~. 
(Q.E.D.) 

Remark. The significance of the Hellinger integrals S~ (drdT-/d#), where r and 7 
are complex-valued measures and/~ is a non-negative real-valued measure, in uni- 
variate utochastic processes has bee pointed out by  H. Cram~r [1, p. 487] and 
U. Grenander [2, p. 207]. Our Hellinger integrals play an important  role in 
q-variate stochastic processes. In  particular, they give rise to an extension of 
P. Masani's work on q-variate full-rank minimal processes [5, pp. 145-150] which 
in turn is a generalization of a well-known result of A. N. Kolmogorov on uni- 
variate minimal sequences [4, Thm. 24]. These and other results will be published 
separately. 
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