ARKIV FÖR MATEMATIK Band 7 nr 21

1.67 05 1 Communicated 8 March 1967 by H. CRAMÉR

The Hellinger square-integrability of matrix-valued measures with respect to a non-negative hermitian measure

By HABIB SALEHI

Introduction

Let \mathcal{B} be a σ -algebra of subsets of a given space Ω , and let \mathbf{F} be a fixed nonnegative hermitian measure on \mathcal{B} . For matrix-valued measures \mathbf{M} and \mathbf{N} the Hellinger integral $\int_{\Omega} (d\mathbf{M} d\mathbf{N}^*/d\mathbf{F})$ (* = conjugate) is defined in such a way that the space of all matrix-valued measures \mathbf{M} for which $\int_{\Omega} (d\mathbf{M} d\mathbf{M}^*/d\mathbf{F})$ exist becomes a Hilbert space under the inner product $\tau \int_{\Omega} (d\mathbf{M} d\mathbf{N}^*/d\mathbf{F})$ (τ =trace). It will follow that $\int_{\Omega} (d\mathbf{M} d\mathbf{M}^*/d\mathbf{F})$ exists iff there exists a \mathcal{B} -measurable matrixvalued function Ψ on Ω such that $\Psi \in \mathbf{L}_{2,\mathbf{F}}$ [9, p. 295], and for each $B \in \mathcal{B}$, $\mathbf{M}(B) =$ $\int_{B} \Psi d\mathbf{F}$. These generalize the corresponding results [3, pp. 258-61] & [8, pp. 1414-18] concerning the Hellinger integrals $\int_{\Omega} (d\nu d\bar{\gamma}/d\mu)$, where ν and γ are complex-valued measures and μ is a non-vegative real-valued measure on \mathcal{B} .

For any matrix **G** we write \mathbf{G}^- for the generalized inverse of **G** [7, p. 407]. If μ is a σ -finite non-negative real-valued measure on **B** with respect to (w.r.t.) which **F** is absolutely continuous (a.e.), then it is easy to show that $(d\mathbf{F}/d\mu)^-$ is a **B**-measurable matrix-valued function on Ω .

Lemma 1. Let (i) M and N be matrix-valued measures on B.

(ii) μ and ν be σ -finite non-negative real-valued measures on \mathcal{B} w.r.t. which \mathbf{M}, \mathbf{N} and \mathbf{F} are a.c.¹ Then

(a)
$$\int_{\Omega} (d\mathbf{M}/d\mu) (d\mathbf{F}/d\mu)^{-} (d\mathbf{N}/d\mu)^{*} d\mu \quad exists \ iff$$
$$\int_{\Omega} (d\mathbf{M}/d\nu) (d\mathbf{F}/d\nu)^{-} (d\mathbf{N}/d\nu)^{*} d\nu \quad exists.$$

(b) If these integrals exist, they are equal.

Proof. (a) Let $\gamma = \mu + \nu$. If $\int_{\Omega} (d\mathbf{M}/d\mu) (d\mathbf{F}/d\mu)^{-} (d\mathbf{N}/d\mu)^{*} d\mu$ exists, then from the relations

¹ Each matrix-valued measure is a.c. w.r.t. the sum of the total variation measures of its components. Hence such a μ exists.

H. SALEHI, Hellinger square-integrability of matrix-valued measures

$$\begin{split} \int_{\Omega} (d\mathbf{M}/d\mu) \ (d\mathbf{F}/d\mu)^{-} \ (d\mathbf{N}/d\mu)^{*} \ d\mu &= \int_{\Omega} (d\mathbf{M}/d\mu) \ (d\mathbf{F}/d\mu)^{-} \ (d\mathbf{N}/d\mu)^{*} \ (d\mu/d\gamma) \ d\gamma \\ &= \int_{\Omega} (d\mathbf{M}/d\gamma) \ (d\mathbf{F}/d\gamma)^{-} \ (d\mathbf{N}/d\gamma)^{*} \ d\gamma \end{split}$$
(1)

follows that $\int_{\Omega} (d{f M}/d\gamma) \, (d{f F}/d\gamma)^- \, (d{f N}/d\gamma)^* \, d\gamma \quad {
m exists}.$

 $\text{Conversely if} \qquad \quad \int_{\Omega} (d\mathbf{M}/d\gamma) \, (d\mathbf{F}/d\gamma)^{-} \, (d\mathbf{N}/d\gamma)^{*} \, d\gamma \quad \text{exists},$

again from (1) we infer that

$$\int_{\Omega} (d\mathbf{M}/d\mu) \, (d\mathbf{F}/d\mu)^- \, (d\mathbf{N}/d\mu)^* \, d\mu \quad ext{exists}.$$

Similar argument can be used to show that

$$\int_{\Omega} (d\mathbf{M}/d
u) (d\mathbf{F}/d
u)^{-} (d\mathbf{N}/d
u)^{*} d
u$$
 exists iff $\int_{\Omega} (d\mathbf{M}/d\gamma) (d\mathbf{F}/d\gamma)^{-} (d\mathbf{N}/d\gamma)^{*} d\gamma$ exists.

Hence (a) is proved.

(b) From the argument used in the proof of (a) we infer (b). (Q.E.D.)

Thus the following definition makes sense.

Definition 1. Let M, N, F and μ be as in the previous lemma. Then (a) we say that (M, N) is Hellinger integrable w.r.t. F if $\int_{\Omega} (dM/d\mu) (dF/d\mu)^- (dN/d\mu)^* d\mu$ exists. We write

$$\int_{\Omega} \frac{d\mathbf{M} \, d\mathbf{N}^*}{d\mathbf{F}} = \int_{\Omega} (d\mathbf{M}/d\mu) \, (d\mathbf{F}/d\mu)^- \, (d\mathbf{N}/d\mu)^* \, d\mu.$$

(b) $\mathbf{H}_{2,\mathbf{F}}$ is the class of all matrix-valued measures **M** on **B** for which $\int_{\Omega} (d\mathbf{M} d\mathbf{M}^*/d\mathbf{F})$ exist.

It is easy to see that

(1) $\mathbf{M}, \mathbf{N} \in \mathbf{H}_{2, \mathbf{F}} \Rightarrow (\mathbf{M}, \mathbf{N})$ is Hellinger integrable w.r.t. \mathbf{F} , $\mathbf{M} \in \mathbf{H}_{2, \mathbf{F}}$ and \mathbf{A} is a matrix $\Rightarrow \mathbf{A}\mathbf{M} \in \mathbf{H}_{2, \mathbf{F}}$, $\mathbf{M}, \mathbf{N} \in \mathbf{H}_{2, \mathbf{F}} \Rightarrow \mathbf{M} + \mathbf{N} \in \mathbf{H}_{2, \mathbf{F}}$.

By (1) $\int_{\Omega} (d\mathbf{M} d\mathbf{N}^*/d\mathbf{F})$ exists for $\mathbf{M}, \mathbf{N} \in \mathbf{H}_{2,\mathbf{F}}$. This matrix-valued integral behaves like an inner product. It is therefore convenient to write

300

$$(\mathbf{M}, \mathbf{N})_{\mathbf{F}} = \int_{\Omega} \frac{d\mathbf{M} d\mathbf{N}^*}{d\mathbf{F}}.$$

We define the ordinary inner product for $H_{2,F}$ by

$$((\mathbf{M}, \mathbf{N}))_{\mathbf{F}} = \tau(\mathbf{M}, \mathbf{N})_{\mathbf{F}}.$$

Thus from (1) we immediately get:

Lemma 2. $H_{2,F}$ is an inner product space under $((.,.))_F$, where for M and $N \in H_{2,F}$

$$((\mathbf{M}, \mathbf{N}))_{\mathbf{F}} = \tau(\mathbf{M}, \mathbf{N})_{\mathbf{F}}.$$

Let $\mathbf{L}_{2,\mathbf{F}}$ be the class of all matrix-valued functions $\boldsymbol{\Phi}$ on Ω for which $\int_{\Omega} \boldsymbol{\Phi} d\mathbf{F} \boldsymbol{\Phi}^*$ exist (A detailed discussion of integrals $\int_{\Omega} \boldsymbol{\Phi} d\mathbf{F} \boldsymbol{\Psi}^*$ and $\int_{\Omega} \boldsymbol{\Phi} d\mathbf{F}$ are given in [6] and [9]). It is known [9, p. 295] that $\mathbf{L}_{2,\mathbf{F}}$ is a Hilbert space under the inner product.

$$((\mathbf{\Phi},\mathbf{\Psi}))_{\mathbf{F}} = \tau(\mathbf{\Phi},\mathbf{\Psi})_{\mathbf{F}} = \tau \int_{\Omega} \mathbf{\Phi} \, d\mathbf{F} \, \mathbf{\Psi}^*.$$

The following lemma is needed to establish an isomorphism between $L_{2,F}$ and $H_{2,F}$.

Lemma 3. Let (i) Φ and $\Psi \in L_{2,F}$.

(ii) For each $B \in \mathcal{B}$

$$\mathbf{M}(B) = \int_{B} \mathbf{\Phi} \, d\mathbf{F} \quad and \quad \mathbf{N}(B) = \int_{B} \mathbf{\Psi} \, d\mathbf{F}.$$

Then (M, N) is Hellinger-integrable w.r.t. F and

$$(\mathbf{M}, \mathbf{N})_{\mathbf{F}} = (\mathbf{\Phi}, \mathbf{\Psi})_{\mathbf{F}}$$

Proof. Let μ be any σ -finite non-negative measure w.r.t. which **F** is a.c. Then for each $B \in \mathcal{B}$, $\mathbf{M}(B) = \int_{B} \mathbf{\Phi}(d\mathbf{F}/d\mu) d\mu$ and $\mathbf{N}(B) = \int_{B} \mathbf{\Psi}(d\mathbf{F}/d\mu) d\mu$. Hence

$$(d\mathbf{M}/d\mu) = \mathbf{\Phi}(d\mathbf{F}/d\mu), \ (d\mathbf{N}/d\mu) = \mathbf{\Psi}(d\mathbf{F}/d\mu).$$

Therefore
$$\int_{\Omega} \frac{d\mathbf{M} \, d\mathbf{N}^*}{d\mathbf{F}} = \int_{\Omega} (d\mathbf{M}/d\mu) \, (d\mathbf{F}/d\mu)^- \, (d\mathbf{N}/d\mu)^* \, d\mu$$
$$= \int_{\Omega} \mathbf{\Phi} (d\mathbf{F}/d\mu) \, (d\mathbf{F}/d\mu)^- \, (d\mathbf{F}/d\mu) \, \mathbf{\Psi}^* \, d\mu$$
$$= \int_{\Omega} \mathbf{\Phi} (d\mathbf{F}/d\mu) \, \mathbf{\Psi}^* \, d\mu = (\mathbf{\Phi}, \mathbf{\Psi})_{\mathbf{F}}. \tag{1}$$

Since for Φ and $\Psi \in L_{2,F}$, $(\Phi, \Psi)_F$ exists, from (1) it follows that $(M, N)_F$ is Hellinger integrable w.r.t. F. Moreover $(M, N)_F = (\Phi, \Psi)_F$. (Q.E.D.)

301

H. SALEHI, Hellinger square-integrability of matrix-valued measures

If $\Psi \in L_{2,F}$, Then M_{Ψ} will denote the matrix-valued measure in $H_{2,F}$ such that for each $B \in \mathcal{B}$, $M_{\Psi}(B) = \int_{B} \Psi dF$. Hence the following definition makes sense.

Definition 2. Let the transformation T be defined on $L_{2,F}$ into $H_{2,F}$ as follows:

 $T\Psi = M_{\Psi}$.

The important properties of T are given in the following theorem:

Theorem 1. (a) T is a linear operator on $L_{2,F}$ into $H_{2,F}$, i.e., if A and B are matrices and Φ and $\Psi \in L_{2,F}$, then

$$\mathbf{T}(\mathbf{A}\boldsymbol{\Phi} + \mathbf{B}\boldsymbol{\Psi}) = \mathbf{A}\mathbf{T}\boldsymbol{\Phi} + \mathbf{B}\mathbf{T}\boldsymbol{\Psi}.$$

(b) **T** is an isometry on $L_{2,F}$ into $H_{2,F}$. In fact

$$(\mathbf{T}\mathbf{\Phi},\mathbf{T}\mathbf{\Psi})_{\mathbf{F}}=(\mathbf{\Phi},\mathbf{\Psi})_{\mathbf{F}}.$$

(c) T is onto $\mathbf{H}_{2,\mathbf{F}}$, i.e., for each $\mathbf{M} \in \mathbf{H}_{2,\mathbf{F}}$, there exists a $\Psi \in \mathbf{L}_{2,\mathbf{F}}$ such that $\mathbf{M} = \mathbf{T}\Psi$. In fact we can take Ψ to be $(d\mathbf{M}/d\mu)(d\mathbf{F}/d\mu)^{-}$, where μ is any σ -finite non-negative real-valued measure w.r.t. \mathbf{M} and \mathbf{F} are a.c.

Proof. (a) and (b) follow from Lemma 3 and Definition 2.

(c) Let $\mathbf{M} \in \mathbf{H}_{2,\mathbf{F}}$. If μ is any σ -finite non-negative real-valued measure on \mathbf{B} w.r.t. which \mathbf{M} and \mathbf{F} are a.c., then

$$(\mathbf{M}, \mathbf{N})_{\mathbf{F}} = \int_{\Omega} (d\mathbf{M}/d\mu) (d\mathbf{F}/d\mu)^{-} (d\mathbf{M}/d\mu)^{*} d\mu$$

=
$$\int_{\Omega} [(d\mathbf{M}/d\mu) (d\mathbf{F}/d\mu)^{-}] (d\mathbf{F}/d\mu) [(d\mathbf{M}/d\mu) (d\mathbf{F}/d\mu)^{-}]^{*} d\mu,$$

where the first equality follows from the definition of $(\mathbf{M}, \mathbf{N})_{\mathbf{F}}$ and the second one is a consequence of $(d\mathbf{F}/d\mu)^- (d\mathbf{F}/d\mu) (d\mathbf{F}/d\mu)^- = (d\mathbf{F}/d\mu)^-$. Hence $(d\mathbf{M}/d\mu) (d\mathbf{F}/d\mu)^$ is in $\mathbf{L}_{2,\mathbf{F}}$. Let $\mathbf{N}(B) = \int_B (d\mathbf{M}/d\mu) (d\mathbf{F}/d\mu)^- d\mathbf{F}$. Then $(\mathbf{M}, \mathbf{M})_{\mathbf{F}} = (\mathbf{N}, \mathbf{N})_{\mathbf{F}}$ and $(\mathbf{M}, \mathbf{N})_{\mathbf{F}} = (\mathbf{N}, \mathbf{M})_{\mathbf{F}}$. Hence $(\mathbf{N} - \mathbf{M}, \mathbf{N} - \mathbf{M})_{\mathbf{F}} = 0$, i.e., N and M as elements of $\mathbf{H}_{2,\mathbf{F}}$ are equal. By Definition 2, $\mathbf{T}(d\mathbf{M}/d\mu) (d\mathbf{F}/d\mu)^- = \mathbf{N}$. Therefore $\mathbf{T}(d\mathbf{M}/d\mu) (d\mathbf{F}/d\mu)^- = \mathbf{M}$. (Q.E.D.)

We immediately obtain the following result.

Theorem 2. (a) $\mathbf{H}_{2,\mathbf{F}}$ is a Hilbert space under the inner-product $((\cdot, \cdot))_{\mathbf{F}}$. (b) $\mathbf{M} \in \mathbf{H}_{2,\mathbf{F}}$ iff there exists a \mathcal{B} -measurable matrix-valued function Ψ on Ω such that $\Psi \in \mathbf{L}_{2,\mathbf{F}}$ and for each $B \in \mathcal{B}$,

$$\mathbf{M}(B) = \int_{B} \mathbf{\Psi} \, d\mathbf{F}.$$

Moreover if μ is a σ -finite non-negative real-valued measure w.r.t. which **M** and **F** are a.c., then $(d\mathbf{M}/d\mu) (d\mathbf{F}/d\mu)^- (d\mathbf{F}/d\mu) = (d\mathbf{M}/d\mu)$ a.e. μ .

302

Proof. (a) (b). (a) and the first part of (b) are immediate consequences of Theorem 1. For the second part of (b) we have

$$(d\mathbf{M}/d\mu) (d\mathbf{F}/d\mu)^{-} (dF/d\mu) = \mathbf{\Psi}(d\mathbf{F}/d\mu) (d\mathbf{F}/d\mu)^{-} (d\mathbf{F}/d\mu)$$

= $\mathbf{\Psi}(d\mathbf{F}/d\mu) = (d\mathbf{M}/d\mu)$ a.e. μ ,

where the first and the third equalities are consequences of $\mathbf{M}(B) = \int_{B} \boldsymbol{\Psi} d\mathbf{F}$ and the second one is a consequence of $(d\mathbf{F}/d\mu) = (d\mathbf{F}/d\mu) (d\mathbf{F}/d\mu)^{-} (d\mathbf{F}/d\mu)$ a.e. μ . (Q.E.D.)

Remark. The significance of the Hellinger integrals $\int_{\Omega} (dv d\gamma^{-}/d\mu)$, where v and γ are complex-valued measures and μ is a non-negative real-valued measure, in univariate stochastic processes has bee pointed out by H. Cramér [1, p. 487] and U. Grenander [2, p. 207]. Our Hellinger integrals play an important role in q-variate stochastic processes. In particular, they give rise to an extension of P. Masani's work on q-variate full-rank minimal processes [5, pp. 145–150] which in turn is a generalization of a well-known result of A. N. Kolmogorov on univariate minimal sequences [4, Thm. 24]. These and other results will be published separately.

ACKNOWLEDGEMENT

This research was partially supported by National Science Foundation GP-7535.

Michigan State University, East Lansing, Michigan (U.S.A.)

REFERENCES

- CRAMÉR, H., Mathematical Methods of Statistics, Princeton University Press, New Jersy, 1961.
- GRENANDER, U., and SZEGÖ, G., Toeplitz Forms and Their Applications, University of California Press, California, 1958.
- 3. HOBSON, E. W., On Hellinger's integrals, Proc. London Math. Soc. 2, No. 18, 249-265 (1919).
- 4. KOLMOGOROV, A. N., Stationary sequences in Hilbert space, Bull. Math. Univ. Moscow 2, No. 6, 1941.
- MASANI, P., The prediction theory of multivariate stochastic processes, III, Acta Math. 104, 142-162 (1960).
- MASANI, P., Recent Trends in Multivariate Prediction Theory, MRC Technical Summary Report No. 637, Jan. 1966, Math. Res. Center, Univ. of Wisc.
- 7. PENROSE, R. A., A generalized inverse for matrices, Proc. Camb. Phil. Soc. 51, 406-413 (1955).
- RADON, J., Theorie und anwendungen der absolut additiven mengenfunktionen, Sitzsber. Akad. Wiss. Wien. 122, 1295-1438 (1913).
- 9. ROSENBERG, M., The square-integrability of matrix-valued functions with respect to a nonnegative hermitian measure, Duke Math. J. 31, 291-298 (1946).

Tryckt den 29 december 1967

Uppsala 1967. Almqvist & Wiksells Boktryckeri AB