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Application of the Hellinger integrals to q-variate stationary 
stochastic processes 

By HABIB SALEttI 

Introduction 

Let (xk)~  be a q-variate discrete parameter weakly stationary stochastic process 
(SP) with the spectral distribution measure F defined on B the Borel family of 
subsets of ( - T  e, xe]. I t  is known (8, Thin. 2] that  for matrix-valued measures M 
and N the Hellinger integral (M, N)F = S~-~ (dMdN*)/dF (* = conjugate) may be de- 
fined in such a way that  H 2 r  the space o f  all matrix-valued measures M for 
which (M,M)F=S%~(dMdM*)/dF exist becomes a t t i lbert  space under the inner 
product ~(M, 51)r (T =trace).  The significance of these integrals when M and 51 
are complex-value d measures and F is a non-negative real-valued measure has 
been pointed out by H. Cramdr [1, p. 487] and U. Grenander [2, p. 207] in rela- 
tion to univariate SP's. In this paper we will indicate the importance of our 
I-Iellinger integrals with regard to q-variate SP's. In particular, we will obtain a 
natural extension of a certain result due to A. N. Kolmogorov [3, Thm. 24] which 
under a certain assumption was generalized by P. Masani [4, pp. 145-150]. 

Let K be any bounded subset of integers. K'  will denote the complement of 
K in the set of integers. ~ :  and ~/K', will denote the subspaees spanned by 
xk, k e K  and x~, k e K '  respectively, i.e., ~ r  =~{xk, k e K )  and ~?7~. = ~{xk, k e K ' } .  
~oo will denote ~{xk, k an integer) and finally ~/K will denote ~r N ~ , ,  where 
~ : .  denotes the orthogonal complement of ~ r  in a fixed Hilbert space :Ha con- 
taining the SP (xk)%~. 

Definition 1. We say that (a) K is interpolable with respect to (w.r.t.) (xk):r i/ 

(b) (xk)~  is interpolable i] each bounded subset K of integers is interpolable w.r.t. 
( x ~ ) ~ .  

(c) (xk)~:r is minimal i] /or each k, (k) is not interpolate w.r.t. (xk)~.  

I t  is easy to see that  for any x E T/K, (x, xk) = 0 for all k E K'. Thus the following 
definition makes sense. 

Definition 2. (a) For each x E ~lK, we let 

l'~ (e ~~ = ~ (x, x~) e -~~ 

305 



H,  SALEHI, Hellinger integrals and q-variate stationary stochastic processes 

(b) We define the operator T on ~l~: into H2,F as /ollows: /or each xE~lx. 

1 
Tx = -~z  MPx' 

where /or any trig-polynomial P with matrix coe//icients the measure Mp on B is 
given by Mr (B) = ~BP(e ~~ dO. 

The important properties of T are given in the following theorem. 

Theorem 1. (a) Let XE74K and ~ be in L2.F such t~at VW=x,  where V is the 
isomzrphism ~n L2.v onto ~ r  [7, p. 297]. Then /or each BE B, MPx(B) = ~BWdF. 

(b) T is an isometry cn ~K into H2.F. In  /act /or all x and y in ~K 

(x, y) = (Tx, Ty)F. 

(c) The range o/ T is a clcsed subspace o/ the Hilbert space H~,~. 

Proo/. (a) Let WeL2.F and x=VW.  Then by [7, p. 297] 

(x, xk) = (W, e-~~ = ~  WdF etk~ (1) 

Also by the definition of Mpx, 

1 1 e ~ko dO 2~ffe'~~176 '~ 

1 f [  e_~Jo} etkOdO - { ~ (x, x~) 
27g rt i e K  

1 f[ xj)ei(~_J)OdO= = Z ~ (x, ( x ,x~ ) .  (2) 
j E K  n 

By (t) and (2), the measures ~BWdF and ]~Px(e~~ have the same Fourier- 
coefficients and hence for each B e  B, 

= fBW dF- MPx(B) 

(b) Let x and y be in TIK, and let @ and W be in L~,F such that Y r  
and VW=y.  Then by [8, Thin. 1] 

2~(Tx, Ty)F - (~,  W)F. (3) 

Also by [7, p. 297] 2zt(x, y) = ( r  tY)r. (4) 

From (3) and (4) (b) follows. (Q.E.D.) 
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(c) Since ~/K is a closed subspace and since by (b) T is an isometry on ~ 
into H~.r, therefore the range of T is a ch)sed subspace of H2,r. (Q.E.D.) 

In the following theorem a characterization is given for the interpolability 
of a SP. 

Theorem 2. (xk)_~ is interpolable if/ ]6r any trig-polynomial P with matrix 
coefficients /or which, Mp is not a null-point in lt2.F, (Me, Me) is not Hellinger 
i tttegrable w.r.t.F. 

Proo/. (~ )  If K is any bounded subset of integers, it is a consequence of 
Theorem 1 (b) that T/~ = (0}; hence by definition 1 (a), K is interpolable w.r.t. 
(x~)~162 Since K is arbitrary it follows by definition 1 (b) that  (x~)Yor is inter- 
polable. 

( ~ ) Suppose there exists a trig-polynomial P with matrix coefficients for which 
Mr is not a null point in H~.r, and (Me, MF) is Hellinger integrable w . r . t . F .  
Hence by [8, Thm. 1 (c)], ~ = (dMp/d#) (dF/dt~) ~ L2 ~, where # is any a-finite 
non-negative real-valued measure w.r.t, which Mp and F are s.c. If xET/r such 
that VO = x, where V is as in Theorem 1, then by [7, p. 297] and (8, Thin. 2 (b)] 

gn 
l e~:~ (dF/d/x)- dF 

27~ j_  

F = 1 e ~k~ (dMr/d#) dr 
27~ 

1 f[eikOdM r 1 f ]  - 2~r . = 2 ~  ~ e *k~ P ( e  ~~ dO. 

Let P(ei~ ~,j~K A je " ~j~ Then 

1 f [  e, kOp(e,O)dO = !. "yA_je.~ ,)Odo={Ao -k' kEK 
2~ ~ 2~ jVK k ~ K" 

(2) 

By (1) and (2) we have that  (x, xk)=0 if kqK,  and hence xfi ~ - , .  But  x E 7Y/oo, 
therefore by definition of T/z, XE~/K. Now by Definition 2, (1) and (2), 

P,,~ >5 (x,x~)e -'~~ >SA-~,e -'~~ 
k e K  k e K  

Fence Mp=Mj, x. i t  then follows by  Theorem 1 (b) that  (x,x)=~ (Tx, Tx)r = 
(Mp, Me) r #: 0. Fence ?IK is not interpolable w.r.t. (xk)_~176 Consequently by Defini- 
tion 1 (b), (xk)Y~ is not interpolable. (Q.E.D.) 

The following theorem which is a consequence of Theorem 1 is a generalisa- 
tion of results given by Masani [5, pp. 147 & 149~. 
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Theorem 3. Let zk be the orthogonal projection o/xk onto the subspace ~" {x~, n # k}, 
and let Yk = (Zo, Zo)- zk, where (z o, zo)- is the generalized inverse o/ (Zo, zo) [6, p. 407]. 
Then 

1 ~'~ dMjdMj [1  [" dMjdMj]-  
(a) (Zo, Zo)-=(Yo, Y o ) = 2 ~ .  dF ' (z~ z~ 2~rJ_~ dF J ' 

where J is the projection matrix on the space C q o/ q-tuples o] complex numbers 
onto the range o/ (%, %) in the privileged basis o/ C q. 

(b) (xk)_~r162 is minimal i// 

f ~ dM~dM~ 0 
_= ~ # "  

(c) (y~)~ is a weakly stationary SP with the spectral distribution 

1 [0 dMjdMj 

(d) (yk)~r and (xk)~ are biorthogonal, i.e., 

(Ym, xn) = DmnJ- 

Proo/. (a) By Theorem 1, (zo, z0) =(1/2~) (Mz~ where for each BCB, 
M~ o (B) = Ss (zo, Zo) dO. 

Hence 
1 (~ dMjdMj 

(Zo, Zo) = (Zo. zo)- (z o, Zo) (Zo, Zo)- = ~ (Zo, Zo)- (Mz.. Mz~ (Zo, Zo)- = ~ j_~  ~ �9 

Consequently 
1 (~ dMjdM 4 [1  ~" dMjdMj]-  

(Zo, Zo) =(Yo, Y o ) = ~ . /  , dF and (z o,zo)= ~ ~ j . 

[ 1  (~ dMjdMj]-  
(b) By (a), (z~176 2~J_= ~ J " 

From this and Definition 1 (c), (b) follows. 
(c) Obviously (Yk)~ is weakly stationary. Hence by (a) 

(Yo, Yo) = (Zo, Zo)- = 2~ (M j, Mj)r. 

It follows that the spectral distribution of 

1 ~o dMjdMj 
(y~)_~ is ~ j _ ~  dr  " 

(d) (Yo, Yo) = ((Zo, Zo)- Zo, Xo) = (Zo, Zo)- (Zo, Xo) = (Zo, Zo)- (Zo' Zo) = J" 

For n # 0 ,  z,• k # n ) ,  therefore (y,,Xo)=0. Hence (yz, x,)=Sa~J. (Q.E.D.) 
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Remark. Let  S?~ (dMidMi)/dF exists (I denotes the identity matrix of order q). 
Then by [8, Thin. 1 (c)], ~ = (dM~/d#) (dF/d#)- is in L2.r, where # is any a-finite 
non-negative reM-vMued measure w.r.t, which MI and F are a.e. Let  x E ~o~ be 
such that  x = V~,  where Y is as in Theorem 1. Then by repeating the same 
argument used in the proof (1) in Theorem 2, 

1 f [  {0 if k # 0  
( x ' x k ) = ~  Idk~ I if k=0"  

1 1 (Mt, MI)r" Therefore xE ~{o~ and (x, x) = ~ (~,  ~ ) F =  

Since x E H(o), x = Az o. Consequently 

1 
A(zo, Zo) A* = ~ (MI, Mi)r). 

Hence 

By Theorem 3 (a), 

rank (MI, MI)F < rank (Zo, Zo). 

1 
(z~ z~ : 2ze (z~ z~ (MI' MI)F (z0' z0)" 

Hence rank (Zo, Zo) < rank (MI, MI)F. 

By (1) and (2) we get rank (zo, Zo)=rank (MI, MI)r. Consequently 

1 1 1 
(MI, Mi)r = ~ J(MI, M~)F J = 2~  (~Ij, Mj)F. 

(1) 

(2) 

(3) 

The following result due to Masani [4, p. 149] is a consequence of this remark 
and Theorem 1. 

Corollary. (a) (xk)~  is minimal and rank (Zo, z0)=q i// /or almsst all O, F'(e ~~ 
has an inverse and S~_~(F')-l(ei~ exists. 

(b) I/  (xk)~176162162 is minimal and rank (zo, z0) -q ,  then 

(Zo, Zo) = {2z~ ; ~ dO} 1. 1 (F,)_I (eiO) 

Proo/. Let F~ and Fs be the absolutely continuous and singular components 
of F w.r.t. Lebesgue measure on (-7c,  ~r] [5, p. 18]. Then 

(I) MIEH2.F iff MIEHu,Fa , 

M I E H2, r ~ (MI, MI)F = (MI, MI)ra. 

We proceed to prove (I). Let # be a a-finite non-negative real-valued measure 
w.r.t, which F and M1 are a.e. Let MIEH2.r~. Then 

F = F a + F s ~ F ~> F a ~ (dF/d/~) >/(dFa/d/x) a.e. #. 
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Hence (dF/d#) < (dFa/d#)- (1) 

Since MIEH2.Fa by (1) it follows that  MIEH2.F. Moreover 

(MI, MI)F < (MI, MI)Fa. (2) 

Since MIEH2.F then by [8, Thm. 1 (c)] there exists a WEL2.F such that for 
each BE B 

M,(B)=fWdF=fWdFa+fWgF. (3) 

Since MI(B)=L(B)I ,  L(B)=Lebesgue measure of B, from (3) it follows that 
for each B E B, SB ~F dF~ = 0. Hence 

MI(B)=:BWdF=fBWdF a. (4) 

By (4) and [8, Lemma 3] we get 

(MI, MI)F = (iF, tF)l~, (MI, MI)Fa -- (W, W)Fa. (5) 

We note that  since F a ~<F, 

(~', ~')F~ < (~, W)F. (6) 

Therefore by (2), (5) and (6) we obtain that  if MIEHu.F a then MIEH~.F and 
(MI, MI)F~= (MI, MI)F. Conversely if MIEH2.F, then repeating the argument fol- 
lowing (2), we conclude that  MIEH2.Fa, and (MI,]~II)F=(MI, MI)Fa. Hence (I) is 
proved. 

(a) ( ~ )  Since rank (z0, z0)=q, J = I .  Hence by Theorem 3 (a) and (I), 

(Z0' Z0)-I  : (MI' MI)F : ~ (MI' MI)Fa : 2~ :~ (F') (e i~ dO. (7) 

Since rank (Zo, Zo)=q, (xk)~r is of full-rank. Hence rankF '=q  a.e., and (F') -1 
exists a.e. [4, p. 147]. From (7) it follows that  f~_. (F') 1 (e~O)dO exists. 

1 1 1 ( "  
( * ) By (I), ~ (MI' MI)F: 2~ (MI' MI)Fa : ~ J_  (F')-I (d~ dO. 

Hence from Theorem 3 (c) and previous remark (3) it follows that  the spectral density 
of the SP (Yk)Y~ is (F') -1 (ei~ (yk)_~or is of full-rank, because ~_, logdetF '  1 (e~O)dO 
exists [4, p. 14S]. Therefore rank (z0, z0)=rank (Y0, Yo)=q, and hence by Defini- 
tion 1 (c) (xk)~r is minimal. 

(b) This is a special case of Theorem 3 (a). (Q.E.D.) 
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