Application of the Hellinger integrals to q-variate stationary stochastic processes

By Habib Salehi

Introduction

Let $\left(\mathbf{x}_{k}\right)_{-\infty}^{\infty}$ be a q-variate discrete parameter weakly stationary stochastic process $(\mathbf{S P})$ with the spectral distribution measure \mathbf{F} defined on \vec{B} the Borel family of subsets of $(-\pi, \pi]$. It is known (8 , Thm. 2] that for matrix-valued measures \mathbf{M} and \mathbf{N} the Hellinger integral $(\mathbf{M}, \mathbf{N})_{\mathbf{F}}=\int_{-\pi}^{\pi}\left(d \mathbf{M} d \mathbf{N}^{*}\right) / d \mathbf{F}$ (*=conjugate) may be defined in such a way that $\mathbf{H}_{2, \mathbf{F}}$ the space of all matrix-valued measures \mathbf{M} for which $(\mathbf{M}, \mathbf{M})_{\mathbf{F}}=\int_{-\pi}^{\pi}\left(d \mathbf{M} d \mathbf{M}^{*}\right) / d \mathbf{F}$ exist becomes a Hilbert space under the inner product $\tau(\mathbf{M}, \mathbf{N})_{\mathbf{F}}$ ($\tau=$ trace). The significance of these integrals when \mathbf{M} and \mathbf{N} are complex-valued measures and \mathbf{F} is a non-negative real-valued measure has been pointed out by H. Cramér [1, p. 487] and U. Grenander [2, p. 207] in relation to univariate SP's. In this paper we will indicate the importance of our Hellinger integrals with regard to q-variate SP's. In particular, we will obtain a natural extension of a certain result due to A. N. Kolmogorov [3, Thm. 24] which under a certain assumption was generalized by P. Masani [4, pp. 145-150].

Let K be any bounded subset of integers. K^{\prime} will denote the complement of K in the set of integers. \prod_{K} and $T_{K^{\prime}}$, will denote the subspaces spanned by $\mathbf{x}_{k}, k \in K$ and $\mathbf{x}_{k}, k \in K^{\prime}$ respectively, i.e., $m_{K}=\mathfrak{S}\left\{\mathbf{x}_{k}, k \in K\right\}$ and $\mathscr{m}_{R^{\prime}}=\mathfrak{S}\left\{\mathbf{x}_{k}, k \in K^{\prime}\right\}$. m_{∞} will denote $\mathfrak{S}\left\{\mathbf{x}_{k}, k\right.$ an integer $\}$ and finally η_{K} will denote $\mathscr{m}_{\infty} \cap W_{K^{\prime}}^{\perp}$, where $\mathcal{T}_{K^{\prime}}^{\frac{1}{\prime}}$ denotes the orthogonal complement of \mathscr{M}_{K} in a fixed Hilbert space \mathcal{H}^{q} containing the SP $\left(\mathbf{x}_{k}\right)_{-\infty}^{\infty}$.

Definition 1. We say that (a) K is interpolable with respect to (w.r.t.) $\left(\mathbf{x}_{k}\right)_{-\infty}^{\infty}$ if $n_{K}=\{0\}$.
(b) $\left(\mathbf{x}_{k}\right)_{-\infty}^{\infty}$ is interpolable if each bounded subset K of integers is interpolable w.r.t. $\left(\mathbf{x}_{k}\right)_{-\infty}^{\infty}$.
(c) $\left(\mathbf{x}_{k}\right)_{-\infty}^{\infty}$ is minimal if for each k, $\{k\}$ is not interpolate w.r.t. $\left(\mathbf{x}_{k}\right)_{-\infty}^{\infty}$.

It is easy to see that for any $\mathbf{x} \in \boldsymbol{n}_{R},\left(\mathbf{x}, \mathbf{x}_{k}\right)=\mathbf{0}$ for all $k \in R^{\prime}$. Thus the following definition makes sense.

Definition 2. (a) For eash $\mathrm{x} \in \boldsymbol{\eta}_{\mathbf{K}}$, we let

$$
\mathbf{P}_{\mathbf{x}}\left(e^{i \theta}\right)=\sum\left(\mathbf{x}, \mathbf{x}_{k}\right) e^{-i k \theta}
$$

H, salehi, Hellinger integrals and q-variate stationary stochastic processes

(b) We define the operator \mathbf{T} on $\boldsymbol{n}_{\boldsymbol{K}}$ into $\mathbf{H}_{2, \mathbf{F}}$ as follows: for each $\mathbf{x} \in \boldsymbol{n}_{K}$

$$
\mathbf{T x}=\frac{1}{\sqrt{2 \pi}} \mathbf{M}_{\mathbf{P}_{\mathbf{x}}}
$$

where for any trig-polynomial P with matrix coefficients the measure $\mathbf{M}_{\mathbf{P}}$ on \mathcal{B} is given by $\mathbf{M}_{\mathbf{P}}(B)=\int_{B} \mathbf{P}\left(e^{i \theta}\right) d \theta$.

The important properties of \mathbf{T} are given in the following theorem.
Theorem 1. (a) Let $\mathbf{x} \in \mathcal{n}_{K}$ and Ψ be in $\mathbf{L}_{2, \mathbf{F}}$ such that $\mathbf{V} \Psi=\mathbf{x}$, where \mathbf{V} is the isomorphism on $\mathbf{L}_{L_{2, \mathbf{F}}}$ onto $\boldsymbol{m}_{\infty}[7, p .297]$. Then for eash $B \in \mathcal{B}, \mathbf{M}_{\mathbf{P}_{\mathbf{x}}}(B)=\int_{B} \Psi d \mathbf{F}$.
(b) \mathbf{T} is an isometry on η_{K} into $\mathbf{H}_{2, \mathbf{F}}$. In fact for all \mathbf{x} and \mathbf{y} in η_{K}

$$
(\mathbf{x}, \mathbf{y})=(\mathbf{T} \mathbf{x}, \mathbf{T} \mathbf{y})_{\mathbf{F}}
$$

(c) The range of \mathbf{T} is a closed subspace of the Hilbert space $\mathbf{H}_{2, \mathbf{F}}$.

Proof. (a) Let $\Psi \in \mathbf{L}_{\mathbf{2}, \mathbf{F}}$ and $\mathbf{x}=\mathbf{V} \Psi$. Then by [7, p. 297]

$$
\begin{equation*}
\left(\mathbf{x}, \mathbf{x}_{k}\right)=\left(\Psi, e^{-i k \theta}\right)_{\mathbf{F}}=\frac{\mathbf{1}}{2 \pi} \int_{-\pi}^{\pi} \Psi \mathbf{\Psi} d \mathbf{F} e^{i k \theta} d \theta \tag{1}
\end{equation*}
$$

Also by the definition of $\mathbf{M}_{\mathbf{P}_{\mathbf{x}}}$,

$$
\begin{align*}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i k \theta} d \mathbf{M}_{\mathbf{P}_{\mathbf{x}}}\left(e^{i \theta}\right) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathbf{P}_{\mathbf{x}}\left(e^{i \theta}\right) e^{i \pi \theta} d \theta \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left\{\sum_{j \in \mathbf{K}}\left(\mathbf{x}, \mathbf{x}_{j}\right) e^{-i j \theta}\right\} e^{i k \theta} d \theta \\
& =\sum_{j \in K} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\mathbf{x}, \mathbf{x}_{j}\right) e^{i(k-j) \theta} d \theta=\left(\mathbf{X}, \mathbf{X}_{k}\right) \tag{2}
\end{align*}
$$

By (1) and (2), the measures $\int_{B} \Psi d \mathbf{F}$ and $\int_{B} \mathbf{P}_{\mathbf{x}}\left(e^{s \theta}\right) d \theta$ have the same Fouriercoefficients and hence for each $B \in \mathcal{B}$,

$$
\mathbf{M}_{\mathbf{P}_{\mathbf{x}}}(B)=\int_{B} \mathbf{\Psi} d \mathbf{F}
$$

(b) Let \mathbf{x} and \mathbf{y} be in \boldsymbol{n}_{K}, and let $\boldsymbol{\Phi}$ and Ψ be in $\mathbf{L}_{2, \mathbf{F}}$ such that $\mathbf{V} \boldsymbol{\Phi}=\mathbf{x}$ and $\mathbf{V} \Psi=\mathbf{y}$. Then by [8, Thm. 1]

$$
\begin{gather*}
2 \pi(\mathbf{T x}, \mathbf{T y})_{\mathbf{F}}=(\boldsymbol{\Phi}, \Psi)_{\mathbf{F}} \tag{3}\\
2 \pi(\mathbf{x}, \mathbf{y})=(\boldsymbol{\Phi}, \mathbf{\Psi})_{\mathbf{F}} \tag{4}
\end{gather*}
$$

Also by [7, p. 297]
From (3) and (4) (b) follows. (Q.E.D.)
(c) Since n_{K} is a closed subspace and since by (b) T is an isometry on n_{K} into $\mathbf{H}_{2, \mathbf{F}}$, therefore the range of \mathbf{T} is a closed subspace of $\mathbf{H}_{2, \mathbf{F}}$ (Q.E.D.)

In the following theorem a characterization is given for the interpolability of a SP.

Theorem 2. $\left(\mathrm{x}_{k}\right)_{-\infty}^{\infty}$ is interpolable iff for any trig-polynomial \mathbf{P} with matrix coeffieients for which $\mathbf{M}_{\mathbf{P}}$ is not a null-point in $\mathbf{H}_{\mathbf{2}, \mathbf{F}},\left(\mathbf{M}_{\mathbf{P}}, \mathbf{M}_{\mathbf{P}}\right)$ is not Hellinger integrable w.r.t. \mathbf{F}.

Proof. (\Leftrightarrow) If K is any bounded subset of integers, it is a consequence of Theorem 1 (b) that $\boldsymbol{n}_{R}=\{0\}$; hence by definition $1(a), K$ is interpolable w.r.t. $\left(\mathbf{x}_{k}\right)_{\infty}^{\infty}$. Since K is arbitrary it follows by definition l (b) that $\left(x_{k}\right)_{-\infty}^{\infty}$ is interpolable.
(\Rightarrow) Suppose there exists a trig-polynomial \mathbf{P} with matrix coefficients for which $\mathbf{M}_{\mathbf{P}}$ is not a null point in $\mathbf{H}_{2, F}$ and $\left(\mathbf{M}_{\mathbf{P}}, \mathbf{M}_{\mathbf{P}}\right)$ is Hellinger integrable w.r.t. \mathbf{F}. Hence by [8, Thm. $\mathbf{l}(\mathrm{c})]$, $\boldsymbol{\Phi}=\left(d \mathbf{M}_{\mathbf{P}} / d \mu\right)(d \mathbf{F} / d \mu) \in \mathbf{L}_{2, \mathbf{F}}$, where μ is any σ-finite non-negative real-valued measure w.r.t. which M_{p} and F are a.c. If $x \in \mathbb{M}_{\infty}$ such that $\mathbf{V} \boldsymbol{\Phi}=\mathbf{x}$, where \mathbf{V} is as in Theorem 1, then by [7, p. 297] and (8, Thm. 2 (b)]

$$
\begin{aligned}
\left(\mathbf{x}, \mathbf{x}_{k}\right)=\frac{1}{2 \pi} \int_{\pi}^{\pi} \mathbf{\Phi} d \mathbf{F} e^{i k \theta} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i k \theta} \mathbf{\Phi} d \mathbf{F} \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i k \theta}\left(d \mathbf{M}_{\mathbf{P}} / d \mu\right)(d \mathbf{F} / d \mu)^{-} d \mathbf{F} \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i k \theta}\left(d \mathbf{M}_{\mathbf{P}} / d \mu\right)(d \mathbf{F} / d \mu)^{-}(d \mathbf{F} / d \mu) d \mu \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i k \theta}\left(d \mathbf{M}_{\mathbf{P}} / d \mu\right) d \mu \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i k \theta} d \mathbf{M}_{\mathbf{P}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i k \theta} \mathbf{P}\left(e^{i \theta}\right) d \theta .
\end{aligned}
$$

Let $\mathbf{P}\left(e^{i \theta}\right)=\sum_{i \in K} \mathbf{A}_{j} e^{-i j \theta}$. Then

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i k \theta} \mathbf{P}\left(e^{i \theta}\right) d \theta=\mathbf{1} 2 \pi \sum_{j \in K} \mathbf{A}_{-j} e^{i(k f) \theta} d \theta=\left\{\begin{array}{ll}
\mathbf{A}_{-k}, & k \in K \tag{2}\\
0 & k \notin K
\end{array} .\right.
$$

By (1) and (2) we have that ($\mathbf{x}, \mathrm{x}_{k}$) $=0$ if $k \notin K$, and hence $\mathrm{x} \in \boldsymbol{M}_{K}^{1}$. But $\mathrm{x} \in \mathbb{M}_{\infty}$, therefore by definition of $\boldsymbol{n}_{\boldsymbol{K}}, \mathbf{X} \in \boldsymbol{n}_{K}$. Now by Definition 2, (1) and (2),

$$
\mathbf{P}_{\mathbf{x}}=\sum_{k \in K}\left(\mathbf{x}, \mathbf{x}_{k}\right) e^{-i k \theta}=-\sum_{k \in K} \mathbf{A}_{-k} e^{-i k \theta}=\mathbf{P} .
$$

Hence $\mathbf{M}_{\mathbf{P}}=\mathbf{M}_{\mathbf{P}_{\mathbf{x}}}$. It then follows by Theorem 1 (b) that $(\mathbf{x}, \mathbf{x})=(\mathbf{T x}, \mathbf{T x})_{\mathbf{F}}==$ ($\left.\mathbf{M}_{\mathbf{P}}, \mathbf{M}_{\mathbf{P}}\right)_{\mathbf{F}} \neq \boldsymbol{0}$. Hence \boldsymbol{n}_{K} is not interpolable w.r.t. $\left(\mathrm{x}_{k}\right)_{-\infty}^{\infty}$. Consequently by Definition 1 (b), $\left(\mathbf{x}_{k}\right)_{-\infty}^{\infty}$ is not interpolable. (Q.E.D.)

The following theorem which is a consequence of Theorem 1 is a generalisation of results given by Masani [5, pp. $147 \& 149$].

Theorem 3. Let \mathbf{z}_{k} be the orthogonal projection of \mathbf{x}_{k} onto the subspace $\mathbb{§}^{\perp}\left\{\mathbf{x}_{n}, n \neq k\right\}$, and let $\mathbf{y}_{k}=\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)^{-} \mathbf{z}_{k}$, where $\left(\mathrm{z}_{0}, \mathbf{z}_{0}\right)^{-}$is the generalized inverse of $\left(\mathrm{z}_{0}, \mathbf{z}_{0}\right)[6, p .407]$. Then
(a) $\quad\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)^{-}=\left(\mathbf{y}_{0}, \mathbf{y}_{0}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{d \mathbf{M}_{\mathbf{J}} d \mathbf{M}_{\mathbf{J}}}{d \mathbf{F}},\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)=\left[\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{d \mathbf{M}_{\mathbf{J}} d \mathbf{M}_{\mathbf{J}}}{d \mathbf{F}}\right]^{-}$,
where \mathbf{J} is the projection matrix on the space \mathbb{C}^{q} of q-tuples of complex numbers onto the range of $\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)$ in the privileged basis of \mathcal{C}^{q}.
(b) $\left(\mathbf{x}_{k}\right)_{-\infty}^{\infty}$ is minimal iff

$$
\int_{-\pi}^{\pi} \frac{d \mathbf{M}_{\mathbf{J}} d \mathbf{M}_{\mathbf{J}}}{d \mathbf{F}} \neq \mathbf{0}
$$

(c) $\left(\mathbf{y}_{n}\right)_{-\infty}^{\infty}$ is a weakly stationary SP with the spectral distribution

$$
\frac{1}{2 \pi} \int_{-\pi}^{\theta} \frac{d \mathbf{M}_{\mathbf{J}} d \mathbf{M}_{\mathbf{J}}}{d \mathbf{F}}
$$

(d) $\left(\mathbf{y}_{k}\right)_{-\infty}^{\infty}$ and $\left(\mathbf{x}_{k}\right)_{-\infty}^{\infty}$ are biorthogonal, i.e.,

$$
\left(\mathbf{y}_{m}, \mathbf{x}_{n}\right)=\delta_{m n} \mathbf{J} .
$$

Proof. (a) By Theorem l, $\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)=(\mathbf{l} / 2 \pi)\left(\mathbf{M}_{\mathbf{z}_{0}}, \mathbf{M}_{\mathbf{z}_{0}}\right)_{\mathbf{F}}$, where for each $B \in \boldsymbol{B}$, $\mathbf{M}_{z_{0}}(B)=\int_{B}\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right) d \theta$.

Hence

$$
\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)^{-}=\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)^{-}\left(\mathbf{z}_{0}, \mathbf{z}_{\mathbf{0}}\right)\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)^{-}=\frac{\mathbf{l}}{2 \pi}\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)^{-}\left(\mathbf{M}_{\mathbf{z}_{0}}, \mathbf{M}_{\mathbf{z}_{0}}\right)_{\mathbf{F}}\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)^{-}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{d \mathbf{M}_{\mathbf{J}} d \mathbf{M}_{\mathbf{J}}}{d \mathbf{F}} .
$$

Consequently

$$
\left(\mathbf{z}_{0}, \mathrm{z}_{0}\right)^{-}=\left(\mathbf{y}_{0}, \mathbf{y}_{0}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{d \mathbf{M}_{\mathbf{J}} d \mathbf{M}_{\mathbf{J}}}{d \mathbf{F}} \quad \text { and } \quad\left(\mathrm{z}_{0}, \mathrm{z}_{0}\right)=\left[\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{d \mathbf{M}_{\mathbf{J}} d \mathbf{M}_{J}}{d \mathbf{F}}\right]^{-} .
$$

(b) By (a),

$$
\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)=\left[\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{d \mathbf{M}_{\mathbf{J}} d \mathbf{M}_{\mathbf{J}}}{d \mathbf{F}}\right]^{-} .
$$

From this and Definition 1 (c), (b) follows.
(c) Obviously $\left(\mathbf{y}_{k}\right)_{-\infty}^{\infty}$ is weakly stationary. Hence by (a)

$$
\left(\mathbf{y}_{0}, \mathbf{y}_{\mathbf{0}}\right)=\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)^{-}=\frac{1}{2 \pi}\left(\mathbf{M}_{\mathbf{J}}, \mathbf{M}_{\mathbf{J}}\right)_{\mathbf{F}} .
$$

It follows that the spectral distribution of

$$
\left(\mathbf{y}_{k}\right)_{-\infty}^{\infty} \quad \text { is } \frac{\mathbf{l}}{2 \pi} \int_{-\pi}^{\theta} \frac{d \mathbf{M}_{\mathbf{J}} d \mathbf{M}_{\mathbf{J}}}{d \mathbf{F}} .
$$

(d) $\quad\left(\mathbf{y}_{0}, \mathbf{y}_{0}\right)=\left(\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)^{-} \mathbf{z}_{0}, \mathbf{x}_{0}\right)=\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)^{-}\left(\mathbf{Z}_{0}, \mathbf{X}_{0}\right)=\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)^{-}\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)=\mathbf{J}$.

For $n \neq 0, \mathbf{z}_{n} \perp$ © $\left(\mathbf{x}_{k}, k \neq n\right)$, therefore $\left(\mathbf{y}_{n}, \mathbf{x}_{0}\right)=\mathbf{0}$. Hence $\left(\mathbf{y}_{m}, \mathbf{x}_{n}\right)=\delta_{m n}$ J. (Q.E.D.)

Remark. Let $\int_{-\pi}^{\pi}\left(d \mathbf{M}_{\mathbf{1}} d \mathbf{M}_{\mathbf{1}}\right) / d \mathbf{F}$ exists (\mathbf{I} denotes the identity matrix of order q). Then by [8, Thm. 1 (c)], $\boldsymbol{\Phi}=\left(d \mathbf{M}_{\mathbf{I}} / d \mu\right)(d \mathbf{F} / d \mu)^{-}$is in $\mathbf{L}_{2, \mathbf{F}}$, where μ is any σ-finite non-negative real-valued measure w.r.t. which $\mathbf{M}_{\mathbf{I}}$ and \mathbf{F} are a.c. Let $\mathbf{x} \in \boldsymbol{m}_{\infty}$ be such that $\mathbf{x}=\mathbf{V} \boldsymbol{\Phi}$, where \mathbf{V} is as in Theorem 1. Then by repeating the same argument used in the proof (1) in Theorem 2,

$$
\left(\mathbf{x}, \mathbf{x}_{k}\right)=\frac{\mathbf{1}}{2 \pi} \int_{-\pi}^{\pi} \mathbf{I} e^{i k \theta} d \theta=\left\{\begin{array}{lll}
\mathbf{0} & \text { if } & k \neq 0 \\
\mathbf{I} & \text { if } & k=0
\end{array} .\right.
$$

Therefore $\quad \mathbf{x} \in \boldsymbol{n}_{\{0\}} \quad$ and $\quad(\mathbf{x}, \mathbf{x})=\frac{\mathbf{1}}{2 \pi}(\boldsymbol{\Phi}, \boldsymbol{\Phi})_{\mathbf{F}}=\frac{1}{2 \pi}\left(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}}$.
Since $\mathbf{x} \in \boldsymbol{n}_{\{0}, \mathbf{x}=\mathbf{A z} \mathbf{z}_{\mathbf{0}}$. Consequently

$$
\left.A\left(z_{0}, z_{0}\right) A^{*}=\frac{1}{2 \pi}\left(M_{I}, M_{I}\right)_{F}\right)
$$

Hence

$$
\begin{equation*}
\operatorname{rank}\left(\mathbf{M}_{I}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}} \leqslant \operatorname{rank}\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right) . \tag{1}
\end{equation*}
$$

By Theorem 3 (a),

$$
\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)=\frac{1}{2 \pi}\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)\left(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}}\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right) .
$$

Hence

$$
\begin{equation*}
\operatorname{rank}\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right) \leqslant \operatorname{rank}\left(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}} \tag{2}
\end{equation*}
$$

By (1) and (2) we get $\operatorname{rank}\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)=\operatorname{rank}\left(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}}$. Consequently

$$
\begin{equation*}
\frac{1}{2 \pi}\left(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{I}\right)_{\mathbf{F}}=\frac{1}{2 \pi} \mathbf{J}\left(\mathbf{M}_{I}, \mathbf{M}_{I}\right)_{\mathbf{F}} \mathbf{J}=\frac{1}{2 \pi}\left(\mathbf{M}_{J}, \mathbf{M}_{\mathbf{J}}\right)_{\mathbf{F}} \tag{3}
\end{equation*}
$$

The following result due to Masani [4, p. 149] is a consequence of this remark and Theorem 1.

Corollary. (a) $\left(\mathrm{x}_{k}\right)_{-\infty}^{\infty}$ is minimal and rank $\left(\mathrm{z}_{0}, \mathrm{z}_{0}\right)=q$ iff for almost all $\theta, F^{\prime}\left(e^{i \theta}\right)$ has an inverse and $\int_{-\pi}^{\pi}\left(\mathbf{F}^{\prime}\right)^{-1}\left(e^{i \theta}\right) d \theta$ exists.
(b) If $\left(\mathrm{x}_{k}\right)_{-\infty}^{\infty}$ is minimal and $\operatorname{rank}\left(\mathrm{z}_{0}, \mathrm{z}_{0}\right)=q$, then

$$
\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\mathbf{F}^{\prime}\right)^{-1}\left(e^{i \theta}\right) d \theta\right\}^{-1} .
$$

Proof. Let \mathbf{F}_{a} and \mathbf{F}_{s} be the absolutely continuous and singular components of \mathbf{F} w.r.t. Lebesgue measure on $(-\pi, \pi][5, p .18]$. Then

$$
\begin{align*}
& \mathbf{M}_{\mathbf{I}} \in \mathbf{H}_{2, \mathbf{F}} \quad \text { iff } \quad \mathbf{M}_{\mathbf{I}} \in \mathbf{H}_{2, \mathbf{F}_{a}}, \tag{I}\\
& \mathbf{M}_{\mathbf{I}} \in \mathbf{H}_{2, \mathbf{F}} \Rightarrow\left(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}}=\left(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}_{a}} .
\end{align*}
$$

We proceed to prove (I). Let μ be a σ-finite non-negative real-valued measure w.r.t. which \mathbf{F} and $\mathbf{M}_{\mathbf{I}}$ are a.c. Let $\mathbf{M}_{\mathbf{I}} \in \mathbf{H}_{2, \mathbf{F}_{a}}$. Then

$$
\mathbf{F}=\mathbf{F}_{a}+\mathbf{F}_{s} \Rightarrow \mathbf{F} \geqslant \mathbf{F}_{a} \Rightarrow(d \mathbf{F} / d \mu) \geqslant\left(d \mathbf{F}_{a} / d \mu\right) \text { a.e. } \mu .
$$

Hence

$$
\begin{equation*}
(d \mathbf{F} / d \mu)^{-} \leqslant\left(d \mathbf{F}_{a} / d \mu\right)^{-} \tag{1}
\end{equation*}
$$

Since $\mathbf{M}_{\mathbf{I}} \in \mathbf{H}_{2, \mathbf{F}_{a}}$ by (1) it follows that $\mathbf{M}_{\mathbf{I}} \in \mathbf{H}_{2, \mathbf{F}}$. Moreover

$$
\begin{equation*}
\left(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}} \leqslant\left(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}_{a}} . \tag{2}
\end{equation*}
$$

Since $\mathbf{M}_{\mathbf{1}} \in \mathbf{H}_{2, \mathbf{F}}$ then by [8, Thm. \mathbf{l} (c)] there exists a $\Psi \in \mathbf{L}_{2, \mathbf{F}}$ such that for each $B \in \mathcal{B}$

$$
\begin{equation*}
\mathbf{M}_{\mathbf{I}}(B)=\int_{B} \boldsymbol{\Psi} d \mathbf{F}=\int_{B} \boldsymbol{\Psi} d \mathbf{F}_{a}+\int_{B} \boldsymbol{\Psi} d \mathbf{F}_{s} \tag{3}
\end{equation*}
$$

Since $\mathbf{M}_{\mathbf{I}}(B)=L(B) \mathbf{I}, L(B)=$ Lebesgue measure of B, from (3) it follows that for each $B \in \mathcal{B}, \int_{B} \Psi d \mathbf{F}_{s}=\mathbf{0}$. Hence

$$
\begin{equation*}
\mathbf{M}_{\mathbf{I}}(B)=\int_{B} \Psi d \mathbf{F}=\int_{B} \Psi d \mathbf{F}_{a} \tag{4}
\end{equation*}
$$

By (4) and [8, Lemma 3] we get

$$
\begin{equation*}
\left(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}}=\left(\Psi, \Psi \mathbf{\Psi}_{\mathbf{F}},\left(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}_{a}}=(\Psi, \Psi)_{\mathbf{F}_{a}}\right. \tag{5}
\end{equation*}
$$

We note that since $\mathbf{F}_{a} \leqslant \mathbf{F}$,

$$
\begin{equation*}
(\Psi, \Psi)_{\mathbf{F}_{a}} \leqslant(\Psi, \Psi)_{)_{\mathbf{F}}} \tag{6}
\end{equation*}
$$

Therefore by (2), (5) and (6) we obtain that if $\mathbf{M}_{\mathbf{I}} \in \mathbf{H}_{2, \mathrm{~F}_{a}}$ then $\mathbf{M}_{\mathbf{I}} \in \mathbf{H}_{2, \mathbf{F}}$ and $\left(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}_{\alpha}}=\left(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}}$. Conversely if $\mathbf{M}_{\mathbf{I}} \in \mathbf{H}_{2, \mathbf{F}}$, then repeating the argument following (2), we conclude that $\mathbf{M}_{\mathbf{I}} \in \mathbf{H}_{2, \mathbf{F}_{a}}$, and $\left(\mathbf{M}_{I}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}}=\left(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}_{a}}$. Hence (I) is proved.
(a) (\Rightarrow) Since $\operatorname{rank}\left(\mathbf{z}_{0}, \mathrm{z}_{0}\right)=q, \mathbf{J}=\mathbf{I}$. Hence by Theorem 3 (a) and (I),

$$
\begin{equation*}
\left(\mathbf{z}_{0}, \mathbf{z}_{\mathbf{0}}\right)^{-\mathbf{1}}=\frac{\mathbf{l}}{2 \pi}\left(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}}=\frac{\mathbf{l}}{2 \pi}\left(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}_{a}}=\frac{\mathbf{1}}{2 \pi} \int_{-\pi}^{\pi}\left(\mathbf{F}^{\prime}\right)^{-}\left(e^{i \theta}\right) d \theta \tag{7}
\end{equation*}
$$

Since rank $\left(\mathbf{z}_{0}, \mathbf{z}_{0}\right)=q,\left(\mathbf{x}_{k}\right)_{-\infty}^{\infty}$ is of full-rank. Hence $\operatorname{rank} \mathbf{F}^{\prime}=q$ a.e., and $\left(\mathbf{F}^{\prime}\right)^{-1}$ exists a.e. [4, p. 147]. From (7) it follows that $\int_{-\pi}^{\pi}\left(\mathbf{F}^{\prime}\right)^{-1}\left(e^{i \theta}\right) d \theta$ exists.

$$
\left(\Leftrightarrow \operatorname{By}(\mathbf{I}), \quad \frac{\mathbf{l}}{2 \pi}\left(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}}=\frac{\mathbf{1}}{2 \pi}\left(\mathbf{M}_{\mathbf{I}}, \mathbf{M}_{\mathbf{I}}\right)_{\mathbf{F}_{a}}=\frac{\mathbf{1}}{2 \pi} \int_{-\pi}^{\pi}\left(\mathbf{F}^{\prime}\right)^{-1}\left(e^{i \theta}\right) d \theta .\right.
$$

Hence from Theorem 3 (c) and previous remark (3) it follows that the spectral density of the SP $\left(\mathbf{y}_{k}\right)_{-\infty}^{\infty}$ is $\left(\mathbf{F}^{\prime}\right)^{-1}\left(e^{i \theta}\right) .\left(\mathbf{y}_{k}\right)_{-\infty}^{\infty}$ is of full-rank, because $\int_{-\pi}^{\pi} \log \operatorname{det} \mathbf{F}^{\prime-1}\left(e^{i \theta}\right) d \theta$ exists [4, p. 148]. Therefore $\operatorname{rank}\left(\mathrm{z}_{0}, \mathrm{z}_{0}\right)=\operatorname{rank}\left(\mathbf{y}_{0}, \mathbf{y}_{0}\right)=q$, and hence by Definition 1 (c) $\left(\mathbf{x}_{k}\right)_{-\infty}^{\infty}$ is minimal.
(b) This is a special case of Theorem 3 (a). (Q.E.D.)

ACKNOWLEDGEMENT

This research was partially supported by National Science Foundation GP-7535.
Michigan State University, East Lansing, Michigan (U.S.A.)

REFERENCES

1. Cramér, H., Mathematical Methods of Statistics, Princeton University Press, New Jersey, 1961.
2. Grenander, U., and Szegö, G., Toeplitz Forms and Their Applications, University of California Press, California, 1958.
3. Kolmogorov, A. N., Stationary sequences in Hilbert Space, Bull. Math. Univ. Moscow 2, No. 6, 1941.
4. Masani, P., The prediction theory of multivariate stochastic processes, III, Acta Math. 104, 142-162 (1960).
5. Masani, P., Recent Trends in Multivariate Prediction Theory, MRC Technical Summary Report No. 637, Jan. 1966, Math. Res. Center, Univ. of Wisc.
6. Penrose, R. A., A generalized inverse for matrices, Proc. Camb. Phil. Soc. 51, 406-413 (1955).
7. Rosenberg, M., The square-integrability of matrix-valued functions with respect to a nonnegative hermitian measure, Duke Math. J. 31, 291-298 (1964).
8. Salehi, H., The Hellinger square-integrability of matrix-valued measures with respect to a non-negative hermitian measure. To appear in Arkiv för Mat. 7, 299 (1968).
