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Estimates o f  the age o f  a heat distribution 

B y  J o H A ~  PHILIP 

A B S T R A C T  

The paper deals with the possibility to solve the heat equation backwards in time. More  

specifically, we treat the following problem. Given the temperature at a finite number of points 
of a homogeneous bar, how old can the heat distribution be? In  the case that  the temperature 
is given at equidistant points xi, the problem is completely solved. In  the ease of nonequidistant 
x~ we find an upper bound for the age. Such a bound is also obtained when the information about 
the heat distribution is given by the value of a finite number of linear funetionals. 

I. Introduction 

W e  cons ider  t h e  h e a t  d i s t r i b u t i o n  ( t e m p e r a t u r e  d i s t r ibu t ion )  in a h o m o g e n e o u s  
b a r  of in f in i t e  l e n g t h  ( coord ina te  x) as  a f u n c t i o n  of t i m e  (t). Our  h e a t  d i s t r i bu t ions  
wi l l  be  cons ide red  as pos i t i ve  measu re s  ut(x). 

The  f u n d a m e n t a l  so lu t ion  of t h e  h e a t  e q u a t i o n  (02u/~x 2= ~u/~t) is 

wdx) =(1/2V2t) exp (-xV4t) (t>0). (1) 

A n  " in i t i a l  h e a t  d i s t r i b u t i o n "  % a t  t - 0  g ives  t h e  fo l lowing  d i s t r i b u t i o n  a t  t h e  
t i m e  t: 

ua =Vt-~Uo. (2) 

W e  sha l l  be  c o n c e r n e d  w i t h  p r o b l e m s  c o n n e c t e d  w i t h  so lv ing  t h e  h e a t  e q u a t i o n  
b a c k w a r d s  in  t ime ,  viz .  w i t h  t h e  fo l lowing  p r o b l e m :  I f  v is a b o u n d e d  p o s i t i v e  
m e a s u r e ,  for  wh ich  t does  t h e r e  ex i s t  a b o u n d e d  pos i t i ve  m e a s u r e  u 0 sa t i s fy ing  

v = ~0~.u0? (3) 

W h e n  t ->0 ,  % a p p r o a c h e s  t h e  D i r ac  m e a s u r e  a t  t h e  origin,  so for  t=O, (3) has  t h e  
so lu t i on  uo=v. W h e n  t-+ co, V t -x -u0~0  for  e v e r y  x, so (3) has  no  so lu t ion  for  la rge  t 
i f  v 4 0 .  F u r t h e r m o r e ,  we  h a v e  

~t~ * ~0t~ = ~t,+t~, (4) 

so if (3) has  a solut ion % for t=~, i t  has  the  solut ion Uo~-y:~_. for a t ime  ~ Kr .  
Thus,  i t  is meaningful  to  ask f o r  the  larges t  in te rva l  (0, t) in which (3) has  a 

solut ion.  
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I n  our problems,  however ,  the  in format ion  abou t  v will be incomple te  and  g iven  
b y  n real  numbers  only.  I n  sect ions I I - I V  the  in format ion  is the  values  v(xt) a t  n 
po in ts  x~. I n  sect ion V, we assume the  values  of n l inear  funct ionals  of v to be known,  
which is a more  real is t ic  s i tua t ion  f rom a phys ica l  po in t  of view. 

II. Formulat ion of  Problem I 

Let  the  in format ion  abou t  v be given b y  the  values  a~ =v(xi)  a t  x 1 < x  2 < x  a < ... <x~, 
so t h a t  we have  the  equat ions  

a t -~vt~eUo(X,) (1 <~i<~n). (5) 

I f  u0- -0  we have  a , - 0  (1 <~i<~n). I f  u0~:0 and  t > 0  we have  at>O, (1 ~i<~n) ,  since 
~ft>0 for t > 0 .  Thus,  if a t - 0  for some i bu t  no t  for all we mus t  have  t = 0 .  F u r t h e r ,  
for n - 2 ,  (5) has  a solut ion for a n y  t~>0 consist ing of a single Dirac  measure  of 
su i tab le  size and  pos i t ion  (both depending  on t). We  pose 

Problem I. For given v(xi) - a~ > 0 (1 ~ i ~ n; n >~ 3 ) , / i n d  the s u p r e m u m  T o /a l l  t / o r  
which there exists a positive bounded u o sat is /ying (5). 

F o r  t f ixed, our p rob lem is a f ini te  momen t  problem.  We t ake  the  following condi- 
t ion for exis tence of a solut ion to  this  p rob lem from Rogosinski  (1958), Theorem 1 
and  Corol lary  1: 

Theorem R. There exists a posit ive u o sat is /ying (5) i /  and only i /  the point  a = 
(ai, a 2 . . . . .  an) E R ~ is in  the hull cone I P t  o / t h e  curve 

pt(x)  = (~)t(Xl x), ~) t (x2-x)  . . . . .  ~)t(Xn - x ) ) ,  - c~ < x  < -k oo. 

B y  this  theorem we have  

(6) 

T = sup {t : a E P t } .  

W e  shall  inves t iga te  the  proper t ies  of Pt.  

(7) 

L e m m a  1. Pt2~Pt~ i /  tl <~t 2. (8) 

P r o @  I f  yEP~ 2 there  exists  a posi t ive  measure  # such t h a t  Y = # * P t 2 .  Then we 
have  b y  (4) y = f l y ,  p t 2 - # - ~ ) 4 _ t l b 6 p t r  Since [A-)~t2--t, is a posi t ive  measure  t he  
l emma  is proved.  

Since yzt(x)>~0, P t  is a subset  of the  posi t ive  o r than t  in R ~. I f  x # 0 ,  y4(x)-+0 when 
t ~ 0 ,  imply ing  t h a t  the  r a y  f rom the  origin th rough  the  po in t  pt(xt)  approaches  
the  y~-axis of R n as t-*-O. Thus, P t  is monoton ica l ly  increasing to  the  whole posi t ive  
o r t han t  when t-+0. Since we have  assumed a ~ > 0  ( l ~ i ~ < n ) ,  there  exists  an  s > 0  
such t h a t  a EP~. 

W h e n  t-+ co, P t  decreases to a subcone,  s ay  Poo of the  posi t ive  or than t .  The cone 
Poo is the  set  of po in ts  a for which (5) has  a solut ion for all t. Poo is descr ibed b y  
theorem 1 in the  case of equ id i s tan t  x~. 

B y  L e m m a  1 we have  

1 The hull cone of a set A is defined as the smallest convex cone with vertex 0 that contains A. 

352 



ARKIV F6R MATEMATIK. Bd 7 nr  26 

sup {t :  a EPt} : inf {t :  a r 

if we in te rp re t  the  r igh t -hand  side of (9) as ~ when a EP~.  

(9) 

III. Equidistant data 

Assume t h a t  the  values  a~=v(x~) are ob ta ined  a t  equ id i s t an t  points ,  i.e. assume 
x ~ = b + i h  (l~<i~<n), where b and  h are  constants .  Since the  pos i t ion  of the  origin 
on the  x-axis  is immater ia l ,  we p u t  b =0 .  

Theorem 1. Assume a ~ > 0  (l~<i~<n) and define T = e x p  (h2/4t) /or t > 0  so that 
t = h2/4 log T. Consider the quadratic/orms 

QI(T) = E~E,,a~+mTa+m)'~m, 1 ~<i, m ~< [n/2], 

Q2(T) : ~i~mai+m_l T(~+m 1)z~i~m , 1 <~i, m <~[(n + l)/2]. 

Let T O be the smallest T >~ 1 such that the /orms  Q1 and Q2 are both positive semidefinite 
/or T o <~ T < ~ .  I /~o  > 1, we have T = h2/4 log T 0. I]  T o = 1, then T = c~, that is a EPoo 
and the e~uations (5) are solvable/or all t>~O. 

Pro@ A symmet r i c  m a t r i x  is pos i t ive  def ini te  if all  i ts  d iagonal  subde t e rmina n t s  
a re  posi t ive.  F o r  the  mat r ices  of the  forms Q1 and  Q2 these  de t e rminan t s  are  poly-  
nomials  in T and  i t  is easi ly  shown t h a t  thei r  leading coefficients are posi t ive.  B y  
the  def ini t ion of T 0 we then  know t h a t  there  exists  a T1 such t h a t  Qa(T) and  Q2(T) 
bo th  are  s t r i c t ly  posi t ive  for To <T <T~. 

Now, we wri te  out  the  equat ions  (5) wi th  x~ =ih  

at = (1/2  I /~ )  exp  ( - (ih - x)2/4t) %(dx). (5') 

Rea r r ang ing  (5'), we get  

a~ = exp ( -- i2h2/4t) exp (ihx/2t) (1/2  ~ t )  exp ( - xe/4t) uo(dx). 

Now, the  measure  w = (1/21/~) exp ( -x~/4t)Uo is pos i t ive  if and  only  if u 0 is posi t ive ,  
so we have  the  question: for which t does there  exis t  a posi t ive  w sat is fying 

a~ = exp ( - i2h2/4t) exp ( ihx/2t)w(dx) .  

W e  make  a change of var iab le  in the  in tegra l  b y  p u t t i n g  exp (hx/2t)= 7' Since ~] 
is a monotonic  funct ion  of x, the  posi t ive  measure  w(dx) changes to a posi t ive  measure ,  
s ay  ~u(d~), a n d  we get  

F at = exp ( - i2h2/4t) ~#(d~) ,  
0 

or at T ~' = ~ju(d~]) (1 ~ i ~ n). (10) 
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This sett ing of the problem is known as Stieltjes'  momen t  problem. A sufficient 
condit ion for the possibili ty of representing the quant i t ies  a~T ~ by  a positive measure 
as in (10) is the strict  posi t ivi ty  of the forms Q1 and  Qe. (See e.g. Krein,  1951.) Thus, 
if T0<T<T 1 we have a representa t ion (10), proving the solvabi l i ty  of (5) for T in  
the open interval  (To, T1). By  Lemma 1, however, (5) is then  solvable for every v >T o. 
Theorem 1% shows tha t  the solution u 0 can be taken  as a finite sum of Dirac measures. 
Conversely, if (5) has a solution fi for ~ > 1 we have 

Q~(~)= f :  (~m~m~f~)2/~(@)~O, 

and  Q2("~) = f :  (Ym ~m ~m)2 (1/r~) fi(d~l)~ O. 

implying f >~T o. I n  the case 3 o > 1 there is consequent ly  no solution for T in the open 
in terval  (1, To), proving tha t  T=h2/4 log T 0. I n  the case 30=1 the eqs. (5) are solv- 
able for every t >~ 0 implying T = ~ .  

Remark. The posi t iv i ty  of Q1 or Q2 is a condit ion on an  odd n u m b e r  of consecutive 
% For  n odd, QI~>0 is a condit ion on a2, a3, ..., an_ 1 and  Q2>~0 a condit ion on 
al, a z . . . . .  a n. For  n even, Q1 ~> 0 is a condit ion on a2, a s . . . . .  a~ and  Q2 >~ 0 a condit ion 
on al ,  a2, ..., an_ 1. 

Example 1. Let n - 3  so tha t  al, a 2 and  a s are given. The posi t iv i ty  of Q1 and  Q2 
then  gives the inequalit ies a2v4~O and  alaaTl~ If  a~>ala3, we get the 
est imate 3 o -a2/~hla a or T =h2/4 log (a2/~hla3). If  a~ •ala3, T = c<). 

Example 2. This example shows tha t  there does not  necessarily exist a solution 
of (5) for t = T. Let n - 4  so t ha t  al, ae, a a and  a 4 are given. The posi t iv i ty  of Q1 
and  Q2 gives 

ala3Tl~ and  a2aaT2~ 

Suppose aeo/aiaa>max (1, a~/a2aa) so tha t  2 2 To=a2/ala 3. Kre in  (1951) shows tha t  if 
there exists a representa t ion (10), there exists one of the form 

i~ ~+ i (11) a~T = ~ 1  ~ 2 ( 1 ~ < i ~ < 4 ) , ~ 1 > 0 , ~ 2 > 0 , ~ 1 ~ < ~ 2  �9 

The four eqs. (11) are actual ly  jus t  sufficient to determine the four quant i t ies  ~1, ~z, 
r h and  ~72. Combining the eqs. (11) for (1 ~<i<3) we get 

Ql~O2~]l~]2(r]l --~/l) 2 = Ts(ala3 T2 --a22). 

For  T =3o these expressions equal 0. Thus, either ~]1 = 0  or ?]1 =~2, so the representa- 
t ion  has only one pointmass  and  has the form Q2~. This representa t ion does no t  
satisfy the equat ion for i -  4. 

IV. Nonequidistant data 

W h e n  the points  x~ are no t  equidis tant ,  we only give an  est imate tha t  takes 
in to  account  three points  a s =v(xi). Of course, if more t h a n  three values are known,  
those three tha t  give the smallest  est imate T should be used. 
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Theorem 2. Let a~=v(x~)>O (1 ~<i~<3), be the values o] v at three points xl <x~ < x  z. 
Then, 

T -  (1/4) (x 3 - x i ) ( x  3 - x 2 )  (x 2 - x i )  

(x a - x l )  log a 2 - ( x  a -x2)  log a ~ -  (x~-x~) log a a 

i / th i s  expression is positive. I n  other cases T = ~ .  

Proo]. B y  (7) and (9) T can be characterized by  the fact  t ha t  if t > T, then there 
exists a plane in/~a separating a f rom Pt- Let  

or = ~lYl + ~2Y2 -{- ~3Y3 = 0 

be a plane in R 3. We normalize it by  put t ing  as = - 1 .  We shall t ry  to find a~ and 
~3 so tha t  

/(x) : aTpt(x) >~O for all x 

and o~ra ~ O. 

I f  this is possible, we obtain a plane tha t  separates (not strictly) a and Pt. Further ,  
we shall choose al and a3 so tha t  the plane supports the cone Pt  along the r ay  through 
pt(O) for some O, giving the equat ion 

/ (0 )  = aTpt(O ) = 0. (12) 

Since we require/(x)  >~ O, we must  also have 

/ ' (O) = arp~(O) = 0. (13) 

The equations (12) and  (13) determine al and a3 as functions of t and @: 

al(t, @) = [(x 3-x2)/(x ~ - x l )  ] exp ((x I - x 2 ) ( x  1 + x  2-2@)/4t) ,  

a3(t, | = [(x2 -X l ) / ( x  8 -x~)]  exp ((x z -x2 ) (x  3 +x2 -2 |  

To see if there exist t and  @ so tha t  

ara = al(t, O)a~-a2  +a3(t, O)a 3 ~ 0  

we seek min 0 ara  by  solving (~/~O)aTa=O. We find a unique solution 

O0 = �89 + �89 + (2t log a3/al)/(x 8 - x l )  

and  get 

mino ra X" X"a exp ((x2- (x3- ] 

(14) 

For  some al, a 2 and a3, this expression is not  negative even when t--> co, meaning 
t h a t  there does not  exist a ny  plane separating a and  P t  even for large t. F rom such 
a,, our theorem gives no estimate. For  other  a~, the expression is negative for large t. 
Then T is the value of t for which min o ara  = 0. 
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Remark. For  three equidistant  points, Theorem 2 gives the same estimate as 
Theorem 1. Cf. example 1. 

Remark.  For equidistant  xi, the method  of proof for theorem 2 can be generalized 
to handle 5, 7, etc. points by  introducing 2, 3, etc. points of contact  like @. Such a 
generalization gives exact ly the estimate of theorem 1. Also for nonequidis tant  x~, 
the generalization of the above method is usable, but  explicit expressions correspond- 
ing to (14) are not  obtained. 

V. Pract ica l  m e a s u r e m e n t s  

Since it is hard to construct  a thermometer  tha t  gives the temperature  v(x~) at a 
single point, we shall consider the situation tha t  the information about  v is given 
by  the values of n ( ~  3) linear functionals 

d~ =S  v ( x i - x ) v ( d x )  (1 <~i<~n), (15) 

where v is a positive measure with total  mass equal to 1. The measure v is thought  
to  describe the measuring ins t rument  and  the values d i are obtained when the in- 
s t rument  is "centered"  at the points  x~. Physicist  often assume 

v(dx) = ( 1 / 2 ~ a ) e x p  ( -  x2/2aZ)dx = ygo,12(x)dx (16) 

for some a > 0 .  The limit case when a -+0  corresponds to v-~(~ and d~->v(x~)=ai, 
t ha t  is the case in secs I I - I V .  We pose 

Problem II .  For given d i > 0  (1 ~ i  <~n, n>~3), ]ind an upper bound/or  the supre- 
m u m  T o /a l l  t / o r  which there exists a positive bounded u o satis/ying (15). 

Remark. This problem has not  always a solution since there m a y  not  exist any  t 
for which the d~ (1 ~<i ~<n) is a conceivable set of data.  Cf. the corollary of Lemma 3. 

The equations (15) can also be writ ten 

d~=v~(x~) ( l<i<n) (15') 

or by  (3) d~ =uo-)~t-)~(x~) (1 <~i<~n). (15") 

Let  ut = Y3t~v (17) 

so tha t  di = ut~eUo(X~) (1 ~<i~n). (18) 

By  l%ogosinski (1958), theorem 1 and corollary 1 we get 

Theorem R'.  There exists a positive bounded u o satis]ying (18) i /  and only i/ the 
point d = (dl, d 2 . . . . .  d~) C R ~ is in the hull cone K t o] the curve 

k~(x)=(~(xl x),z~(x2-x),...,z~(x~-x)), - ~ < x < + ~ .  

By this theorem we have 
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= s u p  {t : dEKt}.  

Most of the results of section I I  have their counterparts  here. 

Lemma 2. K t ~  Kt~ i/ t l <t  2. 

(19) 

(20) 

Pro@ If  y E Kt~ there exists a positive measure/~ such tha t  y = #  ~-kt, = #  %Pt~ %v = 
#-)~t2_t~-)~pt~%v--#~-~)t2_t~-~kt~. Since/~%yJt~_t~ is a positive measure the lemma 
is proved. 

By  this lemma we have, as in section I I ,  tha t  

= s u p  {t:  dEKt}  = i n f  {t:  d~Kt}  (21) 

if we interpret  the inf imum as c~ when d E K t for all t ~> O. 
Define 

0 = sup {t :v =~t~-~,  ~ positive measure}. 

The total  mass of ~ equals tha t  of v so it is equal to 1. We can think of Y~t, v and  )t 
as probabil i ty distributions corresponding to r andom variables Xv, X ,  and Xx. 
Taking variances, we get 

Var (X~) = 2v~+Var (Xx). 

Since yh-~8 when t -~0 and Var (Xx)>~0 we have 

0 < v~ < �89 Var (X,). 

Of course, v~ > 0  only when v is infinitely differentiable. For  the part icular  v in (16) 
we get ~ = �89 Var (X,) = �89 2. 

Lemma 3. K t c  Pt+ ~. 

Pro@ I f  y E K t  there exists a positive measure # such tha t  y=kt~e/~=pt~er~e#= 
p t ~ o o ~ t % / ~ - p t + o ~ # .  Since ~ #  is a positive measure, the lemma is proved. 

Corollary. In  general, K o = limt_~o K t is not the whole positive orthant. Since Problem 
11 has a solution i / and  only i / d  E Ko, the condition d~ > 0 (1 <~ i <~n) is not in general 
su//ieient ]or Problem I I  to have a solution. 

Theorem 3. Assume d E K  o and apply Theorem 1 or 2 with a = d  so that an estimate 
T is obtained. Then, 

~< T - v  ~. 

Pro@ For  every t < T  we have d E K t c P t +  ~ by  Lemma 3. Then, t + ~ < ~ T =  
sup {t :dEPt}  proving the theorem. 

The physical interpretat ion of the last formula is tha t  the dispersion of u 0 caused 
b y  heat  conduction during the t ime T and  the dispersion caused by  the measuring 
instrument,  which is larger than  if it had  been aged ~, together  form a dispersion 
corresponding to heat  conduction during a t ime T. 
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