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Estimates of the age of a heat distribution

By JonaAw PaiLip

ABSTRACT

The paper deals with the possibility to solve the heat equation backwards in time. More
specifically, we treat the following problem. Given the temperature at a finite number of points
of a homogeneous bar, how old can the heat distribution be? In the case that the temperature
is given at equidistant points x;, the problem is completely solved. In the case of nonequidistant
2; we find an upper bound for the age. Such a bound is also obtained when the information about
the heat distribution is given by the value of a finite number of linear functionals.

I. Introduction

We consider the heat distribution (temperature distribution) in a homogeneous
bar of infinite length (coordinate x) as a function of time (). Our heat distributions
will be considered as positive measures u,(x).

The fundamental solution of the heat equation (8%u/0x%=ou/at) is

(@) =(1/2Vat) exp (—a/41) (£>0). (1)

An “initial heat distribution” wu, at t=0 gives the following distribution at the
time ¢

Uy =P, % Uy (2)

We shall be concerned with problems connected with solving the heat equation
backwards in time, viz. with the following problem: If » is a bounded positive
measure, for which # does there exist a bounded positive measure u, satisfying

v =P % Ut 3)

When -0, p, approaches the Dirac measure at the origin, so for t=0, (3) has the
solution wu, =v. When ¢ — oo, y,% 4,0 for every z, so (3) has no solution for large ¢
if v 0. Furthermore, we have

Yi, K P, = YPe, 1t (4)

so if (3) has a solution u, for ¢ =7, it has the solution Uy ¥ P,_,, for a time » <.
Thus, it is meaningful to ask for the largest interval (0,¢) in which (3) has a
solution.
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In our problems, however, the information about v will be incomplete and given
by n real numbers only. In sections II-IV the information is the values v(x;) at »
points z;. In section V, we assume the values of » linear functionals of v to be known,
which is a more realistic situation from a physical point of view.

II. Formulation of Problem I

Let the information about » be given by the values a;,=v(z;) at x, <z, <xy < ... <ux,,
s0 that we have the equations

a, = xugw)  (1<i<n). (5)

If 4,=0 we have ;=0 (1<i<n). If 4,£0 and {>0 we have a,>0, (1<i<n), since
;>0 for t>0. Thus, if a,=0 for some ¢ but not for all we must have ¢{=0. Further,
for n=2, (5) has a solution for any ¢>0 consisting of a single Dirac measure of
suitable size and position (both depending on t). We pose

Problem 1. For given v(x;) =a;>0 (1 <i<n; n=3), find the supremum T of all t for
which there exists a positive bounded w, satisfying (5).

For ¢ fixed, our problem is a finite moment problem. We take the following condi-
tion for existence of a solution to this problem from Rogosinski (1958), Theorem 1
and Corollary 1:

Theorem R. There exists a positive u, satisfying (5) if and only if the point a~=
(ay, ay, ..., a,) ER™ is in the hull cone® P, of the curve

Pdx) = (Y@ —2), Y@ —2), ., Yol —)),  —o0 << oo (6)
By this theorem we have
T =sup {t : a€P}. (7)
We shall investigate the properties of P,.
Lemma 1. P, <P, if t <4, (8)

Proof. If y€P,, there exists a positive measure u such that y=pu*p,. Then we
have by (4) y=p%pi,=pu*pe,_ ¢, %pt,. Since p*y,_,, is a positive measure the
lemma is proved.

Since y,(x) 20, P, is a subset of the positive orthant in R™. If x40, y,(x) ~0 when
t—0, implying that the ray from the origin through the point p/x;) approaches
the y;-axis of R" as t—>0. Thus, P, is monotonically increasing to the whole positive
orthant when ¢{—0. Since we have assumed ;>0 (1 <i<n), there exists an £>0
such that ¢ €P,.

When t — co, P, decreases to a subcone, say P, of the positive orthant. The cone
P, is the set of points @ for which (5) has a solution for all ¢. P, is described by
theorem 1 in the case of equidistant ;.

By Lemma 1 we have

1 The hull cone of a set 4 is defined as the smallest convex cone with vertex 0 that contains A.
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sup {t : a€P,} =inf {t : a ¢ P} (9)

if we interpret the right-hand side of (9) as co when a€P,,.

HI. Equidistant data

Asgsume that the values a;=v(x,) are obtained at equidistant points, i.e. assume
2;=b+1ih (1<i<n), where b and % are constants. Since the position of the origin
on the z-axis is immaterial, we put 6=0.

Theorem 1. Assume a,>0 (1<¢<n) and define T=exp (h?/4t) for t>0 so that
t=h%/4 log 1. Consider the quadratic forms

QI(T) = Zizma‘i+m-’:(i+m)’gifm’ I<i,m< [n/2]’
Qy(7) = 2,201y tTEEL 1<, m<[(n+1)/2].
Let 1, be the smallest T=1 such that the forms Q, and Q, are both positive semidefinite

for o<t <oo. If 1y>1, we have T =h%/4log 1, If 1,=1, then T =co, that is A €EP,
and the equations (5) are solvable for all t=0.

Proof. A symmetric matrix is positive definite if all its diagonal subdeterminants
are positive. For the matrices of the forms @, and @, these determinants are poly-
nomials in 7 and it is easily shown that their leading coefficients are positive. By
the definition of 7, we then know that there exists a 7; such that @,(7) and @,(7)
both are strictly positive for 7, <t <7,.

Now, we write out the equations (5) with z, =ik

a;=(1/2Vnt) f m exp (— (ih — x)/48) ug(de). | (5)

Rearranging (5'), we get

+oo

a;=exp (— i2h2/4t)f exp (iha/2t) (1/2Vnt) exp (— a*/4t) uy(d).

Now, the measure w=(1/2)/nt) exp ( —a?/4t)u, is positive if and only if %, is positive,
$0 we have the question: for which ¢ does there exist a positive w satisfying

a; =exp (—i2h2/4t)f+w exp (thx/2t) w(dzx).

We make a change of variable in the integral by putting exp (hxz/2t)=%. Since #
is a monotonic function of z, the positive measure w(dz) changes to a positive measure,
say u(dn), and we get

+oo
wi—exp (~2/a0) | " otutan)

+ o
or ' aﬂf’=f pu(dy) (Q<i<n). (10)
0
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This setting of the problem is known as Stieltjes’ moment problem. A sufficient
condition for the possibility of representing the quantities ;7" by a positive measure
ag in (10) is the strict positivity of the forms @, and @,. (See e.g. Krein, 1951.) Thus,
if 7,<t<1, we have a representation (10), proving the solvability of (5) for 7 in
the open interval (7y, 7;). By Lemma 1, however, (5) is then solvable for every 7 >1,.
Theorem R shows that the solution %, can be taken as a finite sum of Dirac measures.
Conversely, if (5) has a solution j for 7>1 we have

Q,(7) = fo (ZmEmn™)? @(dn) =0,

and Qz(f):f: (Zm Em"’]m)z(l/"])/z(d’?)>0-

implying T >7,. In the case 7,>1 there is consequently no solution for v in the open
interval (1, 7,), proving that T =52%/4 log 7, In the case 1,=1 the eqgs. (5) are solv-
able for every ¢>0 implying 7' =oo.

Remark. The positivity of @, or @, is a condition on an odd number of consecutive
a;. For n odd, @, >0 is a condition on a,, ay, ..., a, ; and @,>0 a condition on
@y, Qg, ..., @,. For n even, @, >0 is a condition on a,, as, ..., @, and @, >0 a condition
On @y, Gy, ..oy Bpy_y.

Ezxample 1. Let n=3 so that a,, a, and a, are given. The positivity of ¢, and @,
then gives the inequalities @,7¢>0 and @,a,7%—a37®>0. If a5>a,a,;, we get the
estimate Ty =a,/)/a,a; or T =h?/4 log (a,/)/a,a,). If a5 <a,az, T =co.

Example 2. This example shows that there does not necessarily exist a solution
of (5) for t=T. Let n=4 so that a,, 4,, a3 and a, are given. The positivity of ¢,
and ), gives ‘

a, 0,70 —a378>0 and a,a,720 —a37'8>0.

Suppose a3/a,a,>max (1, a/a,a,) so that 15—a3/a,a,. Krein (1951) shows that if
there exists a representation (10), there exists one of the form

a7 = ok +0amh (1 <i<4), 0,0, 93>0, 7y <1, (11)

The four eqs. (11) are actually just sufficient to determine the four quantities p,, g,,
7, and 7,. Combining the eqs. (11) for (1 <¢<3) we get

01021 72(Ny —11)? = T8(a, ag T2 —a3).

For 7 =1, these expressions equal 0. Thus, either 7, =0 or 5, =17,, so the representa-
tion has only one pointmass and has the form p,#5. This representation does not
satisfy the equation for ¢ =4.

IV. Nonequidistant data

When the points xz; are not equidistant, we only give an estimate that takes
into account three points a,=wv(z;). Of course, if more than three values are known,
those three that give the smallest estimate 7' should be used.
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Theorem 2. Let a,=v(x,) >0 (1 <1 <3), be the values of v at three points x; <xy <x3.
Then,

- (1/4) (w5 — ) (w5 — @) (%5 — 24)
(w3 —,) log ay — (3 — ;) log a; — (v, —7;) log ay

of this expression is positive. In other cases T = oo.

Proof. By (7) and (9) T can be characterized by the fact that if > 7', then there
exists a plane in R® separating a from P,. Let

Ty = oYy +agYs +o3y; =0

be a plane in R3. We normalize it by putting «,= —1. We shall try to find «; and
o5 so that

f(@) = ap,(x) =0 for all x

and o’a <0,

If this is possible, we obtain a plane that separates (not strictly) @ and P,. Further,
we shall choose a, and «, so that the plane supports the cone P, along the ray through
p4(0) for some 0, giving the equation

1(©) = ap(®) =0. (12)
Since we require f(zx) >0, we must also have
1(0) = oa"pe(®) = 0. (13)
The equations (12) and (13) determine «; and o« as functions of ¢ and ©:
o (t, ®) = [(23 —x,)/ (x5 — 21)] €XPp (2, — 25) (%, + %, —20)/4E),
ot3(t, O) = [{wy— ;)] (23 — ;)] €XPp ({75 — 25) (5 + X, —20))/4).
To see if there exist £ and ® so that
ofa = oy (t, O)a, —ay, +a,(t, O)ay; <0
we seek ming oa by solving (8/00)x’a=0. We find a unique solution

Oy = L, + Fo + (2t log agfa,) /(x5 —2,) (14)
and get
(p—m) (23 —xz)) —a,

ming 7@ = [a(ll'a—Iz>a§1’z“1'1)]1/(1'a'1'1) exp ( 2

For some a,, a, and a,, this expression is not negative even when - co, meaning
that there does not exist any plane separating @ and P; even for large ¢. From such
a;, our theorem gives no estimate. For other a,, the expression is negative for large ¢.
Then 7' is the value of ¢ for which ming @ =0.
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Remark. For three equidistant points, Theorem 2 gives the same estimate as
Theorem 1. Cf. example 1.

Remark. For equidistant x;, the method of proof for theorem 2 can be generalized
to handle 5, 7, ete. points by introducing 2, 3, ete. points of contact like ©®. Such a
generalization gives exactly the estimate of theorem 1. Also for nonequidistant z;,
the generalization of the above method is usable, but explicit expressions correspond-
ing to (14) are not obtained.

Y. Practical measurements

Since it is hard to construct a thermometer that gives the temperature v(x;) at a
single point, we shall consider the situation that the information about » is given
by the values of n (>3) linear functionals

d; =§ v(@;—2)v(dz) (1<i<n), (15)

where » is a positive measure with total mass equal to 1. The measure v is thought
to describe the measuring instrument and the values d; are obtained when the in-
strument is “centered’” at the points x,. Physicist often assume

v(dx) = (1)y2r0) exp (-~ 2%20%)de = Yona(e) da (16)

for some ¢>0. The limit case when ¢—0 corresponds to v—0 and d,—>v(x;) =a,,
that is the case in secs 1I-1V. We pose

Problem II. For given d,>0 (1<i<n, n=>3), find an upper bound for the supre-
mum T of all t for which there exists a positive bounded u, satisfying (15).

Remark. This problem has not always a solution since there may not exist any ¢
for which the d; (1 <i<n) is a conceivable set of data. Cf. the corollary of Lemma 3.
The equations (15) can also be written

d;=vxy(x;) (1<i<n) (15")
or by (3) d, =ug*yp,xv(x) (1<i<n). (15")
Let Ry =P RV (17)
so that d; = wyxug(x) (1<i<n). (18)

By Rogosinski (1958), theorem 1 and corollary 1 we get

Theorem R’. There exists a positive bounded u, satisfying (18) if and only if the
point d=(d,, dy, ..., d,) € R" 1s in the hull cone K, of the curve

kyx) = (e, — ), (@ — ), ..o X, — 7)), —o00 << o0,
By this theorem we have
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T =sup {t: d€K}. (19)
Most of the results of section 11 have their counterparts here.
Lemma 2. K,<K, if t<t, (20)

Proof. If y€ K, there exists a positive measure y such that y =g %k, =y % pe, ¥ v =
WK Pe, o %P, ¥y =%y, ¢, % ke, Since px,_:, is a positive measure the lemma
is proved.

By this lemma we have, as in section I1, that

T=sup {t:d€K}=inf {t:d¢K,} (1)
if we interpret the infimum as oo when d€ K, for all £ >0.
Define
@ =sup {t : v =y,*4, A positive measure}.
The total mass of 1 equals that of ¥ so it is equal to 1. We can think of ¢,, v and 1

as probability distributions corresponding to random variables X,, X, and X,.
Taking variances, we get

Var (X,) = 28+ Var (X).
Since y, > & when ¢ >0 and Var (X,) >0 we have
0<$ <} Var (X,).

Of course, ¢ >0 only when v is infinitely differentiable. For the particular y in (16)
we get 9 =% Var (X)) =102

Lemma 3. K, <P, .

Proof. If y€ K, there exists a positive measure y such that y =k, u—=p,xv*xu=
PeRPy R AR =P, 9% A¥p. Since A% u is a positive measure, the lemma is proved.

Corollary. In general, K,=1lim, ., K, is not the whole positive orthant. Since Problem
11 has a solution if and only if d€K,, the condition d;>0 (1 <i<n) is not in general
sufficient for Problem I1I to have a solution.

Theorem 3. Assume d €K, and apply Theorem 1 or 2 with a=d so that an estimate
T is obtained. Then,

T<T-9.

Proof. For every t<T we have d€K,cP, 4 by Lemma 3. Then, t+9<7T =
sup {t : d€P,} proving the theorem.

The physical interpretation of the last formula is that the dispersion of u, caused
by heat conduction during the time 7' and the dispersion caused by the measuring
instrument, which is larger than if it had been aged ¥, together form a dispersion
corresponding to heat conduction during a time 7'.

3567



J. PHILIP, Age of a heat distribution

ACKNOWLEDGEMENT

The problem here treated was suggested by Hans Radstrém. He has also made many valuable
remarks during the preparation of this paper.

Department of Mathematical Statistics, Royal Institute of Technology, Stockholm, Sweden

REFERENCES
KreIwNy, M. G., The ideas of P. L. Chebyshev and A. A. Markov in the theory of limiting values
of integrals and their further development, Amer. Math. Soc. T'ranslations, ser. 2, no
12, 3-120 (1951).
Rocosinskr, W. W., Moments of non-negative mass, Proc. Roy. Soc. (London), A 245, 1-27 (1958)

Tryckt den 8 april 1968

Uppsala 1968. Almqgvist & Wiksells Boktryckeri AB

358



