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An extremal problem related to Kolmogoroff's 
inequality for bounded functions 

By YNGVE DOMAR 

A B S T R A C T  

Let  A and B be positive number s  and m and n positive integers, m < n. Then  there is for complex 

valued functions ~0 on R with  sufficient differentiability and boundedncss  propert ies a representa-  
t ion 

~o (rn) = ~ ( n ) - ) t - v l  + ~-X-vs, 

where  r l  and  v2 are bounded Borel measures  wi th  vl absolutely continuous,  such tha t  there exists 

a funct ion V wi th  IV ̀n)] < A  and ]9] ~<B on R and  satisfying 

cf(m) (O) = A L [ dvl l + B ~ l dv2 I. 

This result  is formulated and proved in a general set t ing also applicable to derivatives of frac- 

t ional  order. Necessary and sufficient conditions are given in order t h a t  the measures  and the 

opt imal  functions have the same essential propert ies as those which occur in the par t icular  ease 
s ta ted  above. 

1. We denote by M(R) the Banach space of bounded Borel measures on R and by 
AC(R) the subspace of M(R) consisting of all measures which are absolutely con- 
tinuous with respect to the Lebesgue measure. The Fourier-Stieltjes transform 
/2 of a measure/t EM(R) is defined by the relation 

p ( t )  = f d/t(x), 
for every t on the dual R. Convolution of elements in M(R) is defined in the usual 
way such t h a t  it corresponds to pointwise multiplication of the Fourier-Sticltjes 
transforms. 

Let / t l  and/ t  2 be given elements in M(R), and tt o a third given element such that  
there exist elements 1 and v2 in M(R) such that  

/to =/tl"eVl+#2~ev2. (1) 

We assume that there exist a real number a and measures 00 and a2 in AC(R) such 
that  the three relations 
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pl(t) + 0, (2) 

p2(t) = fq(t) ~z(t), (3) 

p0(t) = pl(t) d0(t) (4} 
all hold, if [ t [ ~ a. 

H denotes the set of all pairs of bounded Borcl measures  {vl, v2}, which satisfy (1). 
L denotes the  set of all pairs of bounded Borel measures  {Vl, ~2} such t h a t  

/A~I-)(- y I +/~2-X-~) 2 = 0 

We finally form the  class K of all pairs of functions {91,w in L~(R), such tha t  wi th  
the  usual  definition of convolut ion between elements  in L~C(R) and AC(R), 

91 ~ vl +92 * v2 = 0, 

for every  vl C AC(R) and v2 EAC(R) such t h a t  {vl, v2} EL. 

Theorem 1. 1 ~ I /  {'~1, ~,~}~H then VlCAC(R ). 

2 ~ I/{91, 92} E K, then 9z is continuous, after a change in a set o/Lebesgue measure O. 

3 ~ With this assumption on 92, we/orm/or any {91, 9z} e K  and {~, r2} eH  the/unc- 
tional 

F(91, 92)=  F(91, 92, vl, v2) = f 91( x)v~(x)dx+ ~ 9 2 ( - x ) d v 2 ( x ) .  
JR JR 

l ts value does not depend on the choice o/{vl, vz}. 

4 ~ Let (A, B) be a/ixed pair o/positive numbers and let K(A, B) denote the subset of 
all {91, 92} e K such that 119111~ <~ A, ]19~[] ~ <~ B. Then there exists a {~F1, 1F2 } e K ( A, B) 
such that 

] F(91, 92) 1 < F(uIV'l, ~F2), 

/or every {91, 92}eK(A, B). 

5 ~ There exists a {vl, v~}EH such that 

Id~(x) l. (6) 
JR JR 

Before we give the  proof  of Theorem 1, we shall discuss a par t icular ly  i m p o r t a n t  
example  and make  some general comments .  

Le t  m and n be integers such t h a t  0 < m < n. I t  is easy to see t ha t  all our  assump-  
tions are fulfilled if we choose #1,/~z and tt0 such t h a t  

fq(t) = e -t~ (it) '~, 

ft2(t) = e -t*, 

po(t) = e-t' (it)rn. 
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Using the definition of K we find tha t  K consists of all pairs of bounded functions of 
the form {~v("),g}, where g is absolutely continuous together with its n - 1  first 
derivatives. Let us then form the continuous function 

gO = g(n) -)(- ~)1 -~-~) "~- Y2' 

where {Yl' v2} EH. Convoluting this with an arbi trary measure # with compact sup- 
port  and high differentiability properties, it is easy to see, by  using (1) and partial 
integration, tha t  we obtain 

go-X-# =iv ++#(r"), 

where #(m) denotes the measure which, in the distribution sense, is the m-th derivative 
of the measure #. Hence g0 =g(~). I f  we substitute x = 0 in g(m) we obtain 

g(m>(0) = F(g  (~), g, ~1, v~). 

Hence our theorem shows tha t  there is for every pair (A, B) of positive numbers a 
representation 

g<m)(o)= fRg(n)(-x)~;(x)dx + f g(-x)  d~2(x) 

such tha t  equality can be attained in the resulting inequality 

IIv( >II  <A, Ilgll+--< B. 

In  this particular case, the value of (6) is known, since the optimal functions g 
have been found by Kolmogoroff [6], see also Bang [2]. As was shown in Bang's  
paper, the inequality given by  Kolmogoroff is very closely related to the well-known 

�9 inequalities by  Bernstein and Bohr. As can be seen for instance in Achiezer [1, w167 74, 
86] these two inequalities can be proved and generalized using representations which 
are similar to our formula (5). The starting point for our investigations was an a t t empt  
to prove and generalize Kolmogoroff 's inequality using similar ideas. We shall in 
section 3 show tha t  the representation obtained in Theorem 1 can give a direct infor- 
mation on the possibility of such generalizations. 

I t  should finally be mentioned tha t  the ideas in this paper have connections with 
questions on minimal extrapolations of Fourier-Stieltjes transforms (see for instance 
[3] and Herz [4, Theorem 4.1]). I t  is possible to put  certain parts of these two theories 
into a common framework. Generalizations in the same direction as those in HSrman- 
der [5] are also possible. 

2. Proo/ o/ Theorem 1. 

10. I f  {vl, v2 } E H, then by  (1) 

Po = Pl~l +P2~2. 
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B y  (2), (3) and (4) this relation implies tha t  if it] ~>a 

~o(t) = ~(t) -t-d2(t)r (7) 

The difference ~3(t) between the left and r ight  members  of (7) is a Fourier-Stiel t jes  
t ransform which vanishes for large t, hence the corresponding measure v3 belongs to  
AC(R). We thus have the relation 

'Pl = 0-0 --~)3 - -  0-2-)(- ~2, 

where 0-0, v3 and 0-2 belong to AC(R). But  the convolution of a measure in AC(R) 
with a measure in M(R)  belongs to A C(R). Hence 0-2 -)r ~2 E A C(R) and as a consequence 
vl EAC(R). 

2% We choose a measure vEAC(R)  such tha t  ~(t)=1 if It[ ~a .  Let  (~1, ~2} EK- For  
any/~ EAC(R) the pair 

((0-2-a2~r)~, v~-~} 

lies in L, and both  measures belong to AC(R). Hence by  the definition of K, 

~01-)(- (0" 2 - -  0-2-)(- ~2) -)(-/~ ~- ~92-)(- (V-X-~ - - ~ )  = 0 .  

A rearrangement  gives 

This implies t ha t  
9?2 = 9)2 -)~'v -{- (i01-)~" 0-2 --(~1 "~ ( 0-2-)(- ~)) 

almost  everywhere. Since v, 0-2 and 0-2~v all belong to AC(R), the r ight -hand mem- 
ber is continuous which proves the assertion 2 ~ . 

3 ~ We form the Banach space X of all pairs {vl, v2} where vl EAC(R) and v2 EM(R),  
with the  norm 

and with the  vector  operations defined in an obvious way. L is a linear subspace in X 
and H a hyperplane,  parallel to  L. For  every given (~1, ~2)EK,  

represents a linear functional  on X, which vanishes for every {vl, v2} EL such t h a t  
v2 EAC(R). I f  now (vl, v2} EL is arbi t rary  and does not  annihilate the functional,  it is 
in view of 1 ~ and 2 ~ possible to find a measure r EAC(R) with its support  concentrated 
to  a neighborhood of x = 0  and such tha t  the functional, applied to {Vl-~V, v2~v}, does 
not  vanish. But  this element belongs to L and v2-)(-v EAC(R) which gives us a contra- 
diction. Hence the functional vanishes on L and thus  the value is constant  on H. 

4". Wi th  the notions introduced above we let d denote the distance between H and 
L, i.e. 
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Obviously ]-~(~01, ~V 2, vx, v2)] ~<d, (9) 

if {~vl,~2}eK(A, B), {v~, v2}eH. 

We know from the H a h n - B a n a c h  theorem tha t  there exists a bounded linear func- 
t ional G(Vl, v~) on X, with norm 1, vanishing on L, and taking the  value d on H. G 
is also a linear functional  with norm ~< 1, on the  closed subspace of X, consisting of 
the  pairs {Vl, v2} where bo th  v 1 and v2 belong to AC(R). The dual of this space is 
well known, and we obtain f rom this t ha t  there exist bounded measurable functions 
~ 1  and 1F~ such tha t  

G ( v ,  = f ( - x) v; (x) dx § f ) r 2  ( - x) v; (x) dx, (10) 

if vl and v2 E AC(R). Obviously 

II~r~ll| II~II| 
Since G vanishes on L, the definition of K shows tha t  {~F1, 1F2}EK, in part icular  
t ha t  we can assume ~F2 to be continuous. Since by  (9) 

I X~(~01' ~92) I ~ d = G(~)I, T2) , 

if {cf~,cf2)eK(A , B), {v~, va)eH, 

4 ~ is proved if we can show tha t  

for every {~1, v2} EX. 
We can, of course, because of (10) restrict  ourselves to the case when v 1 =0 .  I n  the 

case when ~ has a compact  support ,  v2 belongs to AC(R), hence by  (10) the  relation 
(11) is true, and thus we can also restrict  ourselves to the case when ~2 vanishes on 
the set {tilt I <a} .  Then (-a2~-v~,  v2}eL, hence 

which gives us 
G( - a 2 ~ 2 ,  ~2) =0, 

G(O, v2) = G(a~ ~ v2, O) = ~ ~1 ( - x) (as ~ ~) '  (z) dx. 
JR 

(12) 

Now let {Tn}~ r be a sequence of non-negat ive measures in AC(R), all with tota l  
mass 1 and with supports  contained in the set {x]]x] <~l/n}. Then v~ in (12) can be 
exchanged to  v2~-Tn. B y  a well-known proper ty  of convolutions with measures in 
AC(R), applied to the r ight-hand member  of (12), we see tha t  

lim G(0, v2 ~ Tn) = G(0,  v2), 
n-)r162 
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Since v 2 ~ - ~  belong to A C(R), the  lef t -hand m e m b e r  of this relat ion can be represented 
using the formula  (10), and this finally gives, b y  s tandard  arguments ,  

? 
G(O, v~) =.I W2( - x) dye(x), 

hence the  desired result.  

5 ~ We have  to prove  t h a t  there  exists an element  {vx, v2} E H  which gives the  mini- 
m u m  in (8). We can find a weakly  convergent  sequence of pairs of measures,  converg- 
ing to a measure  {v ~ v~ where bo th  v ~ and v ~ belong to M(R). I t  is easy  to see, 
using the  Fourier-St ie l t jes  t ransforms,  t h a t  the  relat ion (1 )wh ich  determines  H ,  
can be wri t ten  

f~ ~0 (Y) = ~t 1 (y - x) dVl(X) + ~2 (Y - x) du2 (x), (13) 

for every  y E R, where/to,/~1 and ~2 are the functions 

e -~#i ( i = 0 , 1 , 2 ) .  

Bu t  these functions belong to Co(R ) and hence (13) has to be fulfilled for the  l imiting 
measures  {v ~ v~ Hence  {v ~ v2 ~ } e l l ,  and it is obvious t ha t  it mus t  realize the  inf imum. 

3. We now re turn  to  the  case when f i l -e- t~( i t )  ~, ft2 =e-t~, fto=e-t~(it) m, where m 
and n are integers such t h a t  0 < m  <n .  This case was briefly discussed in the last  
pa r t  of w 1. Under  this assumpt ion  Kolmogoroff  [6] has found the  opt imal  pairs 
{~F1, ~F2}. Disregarding a constant  factor  with modulus  1, t hey  are found among  the  
functions given by  the  relat ion 

U121= A sign (sin (bx+c)), 

where b and c are real, b #0 ,  and with the  corresponding ~F~ determined as the  primi- 
t ive funct ion of ~F 1 of order n and  with  mean  value 0. 

A certain lack of s y m m e t r y  in the  functions {~1, ~2}  appears  when m and n varies. 
This can, however,  be overcome,  for every  fixed set {m, n, A, B}, b y  changing the  
functions /~1 and/2  2 to 

e t~ (it)n ei~, t 

and e-t, (it)m etZ~ t. 

respect ively with the  real numbers  fil and f12 sui tably  chosen. After  such a change, 
which of course only corresponds to t ranslat ions in the functions {~1, ~2} in the  class 
considered, we see t h a t  the op t imal  pair  {Y~I, 92} has the  following properties,  for 
some h > 0 :  

1 ~ ~ F I = A  sign (s in hx-), 

2 ~ ~F2(2nz/h ) = B ( - 1 )  n (nEZ), 

while - B < ~ 2 ( x ) < B ,  if x~-2nz/h  (nEZ). 
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A pair of functions {~1, ~ }  with these properties is said to belong to the class E(A, 
B, h). 

A natural problem is now to investigate if pairs in the class E(A, B, h) occurs as 
optimal pairs in other cases. 

Let  us then first make some assumptions on/20,/21 and/22. We assume that/21 ~:0 
ahnost everywhere, and that/20//21 and/22//21 EL1 except for some bounded interval. 
Finally we assume that  

/2~ (t + hn)//2~(t + hn) * 0, 

almost everywhere. Then the following theorem holds. 

Theorem 2. Suppose that {W~, ~T'2}EK N E(A, B, h). Necessary and su//icient in 
order that {~T'I, ~F2} is an optimal pair, in the sense o/ Theorem 1, is that there exists a 
pair {~1, v2} EH, such that 

~ (x)sign (sin ~ ) =  I ~ (x)I (xER),  

while v~ is a discrete measure composed o/ non-negative pointmasses at x =4n z/h, n EZ, 
and non-positive point masses at x = (4n § 2)z/h, n EZ. 

{vl, v2} is then uniquely determined by the relations 

/~0 (t -~- nh) / /21 (t ~- nh)  = ~2 (t) ~ /22 (t + nh ) / /~  1 (t ~- nh) ,  (14) 
oQ oo 

~1 =/~0//~1 - ~2/22//21. (15) 

Proo/ o/ Theorem 2. The sufficiency is a direct consequence of the conditions on ~1 
and ~ which show that  

[ F((pl, ~ ) ]  = ] F ( ~ i ,  92, "Pl, ?J2) l ~ F(W1, ~F2, "k' 1, ~)2) = I F(Vl ,  V2) I, 

if {~91, q~2} EK(A, B). 

To prove the necessity we assume that  {~1, ~2} EK N E(A, B, h) is an optimal 
pair. Then by Theorem 1, 4 ~ and 5 ~ there exists an optimal {Vl, v2}EH, which 
obviously has to fulfil the conditions on the signs of v~ and v2. 

I t  remains to prove the formulas (14) and (15). (15) is a direct consequence of (1). 
I t  shows, together with the conditions on/20,/21 and/22, tha t  ~1 ELl(R) . Hence we can 
assume that  v~ is continuous. The condition on the sign variation of v~ then implies 
that  

v/(2nze/h) = 0 (nEZ). 

p �9 A But vl is the inverse Fourier transform of the function vl in the L 1 sense. Hence the 
periodic function 

#l(t +nh),  
- o o  

which locally belongs to L 1, has its Fourier coefficients determined by the values 
v~(2n z/h) in such a way that  they, too, must vanish. Hence 
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~x (t + nh) =O, 

almost  everywhere.  
A direct  summat ion  of (15) then  gives (14). 

Theorem 2 is applicable in the  case when / t l , / t  2 and re0 are given by  the  relat ions 

/21 (t) = e -t~ (it) ~' e ~ t, 

t 2 / 2 ~ ( t )  = e  , 

/20 (t) = e -t* (it) ~ e t~*t, 

w h e r e  (~1, ill,  (~2 and flz are real and  

0 < ~ 2 < ~ 1 - - 1 .  

(it)~J, 7" = 1, 2, is then  to be in terpre ted  as 

exl~ ~ i sign t + log I t I) ~J" 

I f  al, a2, A and B are given, it is possible to show t h a t  we can choose h, fil and f12 such 
t h a t  there is a pair  of functions {q~l, qJ2} E K  N E ( A ,  B ,  h). The problem is to decide 
whether  this pair  is an op t imal  one. 

I f  bo th  al  and a2 are integers this is the  case, which follows f rom Kolmogorof f ' s  
result. The  only new in this case is the  existence and the  explicit  form of the  op t ima l  
pair  {YI' V2}" 

The  case when some aj is not  an integer corresponds to  the  prob lem for f ract ional  
der ivat ives  (see Bang [2]). I n  this case it is easy to see f rom (14) t h a t  ~e(t) is ana ly t ic  
within the  period ( - h / 2 ,  h/2) except  a t  t = 0 ,  where it  has a s ingulari ty of a t y p e  
which excludes the  possibil i ty of the  demanded  sign-variat ion in d v~. Hence  {1F1, ~F~} 
is not  op t imal  in this case. 

This completes a discussion of Bang [2] where he came to  the  same conclusion in 
the  case 0 < a S < ~1 = 1. I n  t ha t  case, assuming fll = fi2 = 0, the  opt imal  pairs {~F1, ~F 2 } a re  
explici t ly known. They  consist essentially of all {LF', ~F } wi th  II ~F' II ~o < A, I1 ~F II oo ~ B,  
where ~ is absolutely  continuous and where 

2 B  
t F ( x ) = - B ,  if x ~ - ~ ,  

2 B  
W'(x) = A, if - - - < x < 0 .  

A 

B y  means  of Theorem 1 we can easily give the  necessary and  sufficient condition on  
/20, fulfilling (4) with given 

/21 = (it) e -~', 

22 ~ e-t2 
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in  order tha t  all these funct ions  {y/, ~o} give opt imal  pairs. Easy  arguments  show t h a t  
the  condit ion is tha t  

~o =/xl  *v ,  

where v is an  absolutely cont inuous no t  necessarily bounded  measure,  such tha t  for 
some c 

~ ' = c o n s t a n t ~ c ,  if x < 0 ,  

2 B  
v'>~c, if 0 < x < - -  

A '  
2 B  

v' is ~ c, bounded  and  decreasing, if x > ~ - .  

I n  part icular  we obta in  Bang 's  case when for some d > 0, and  for 0 < ~ < 1, 

{ v t = 0 ,  x < 0 ,  

r x>0. 
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