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An extremal problem related to Kolmogoroff’s
inequality for bounded functions

By YnevE DomaAr

ABSTRACT

Let A and B be positive numbers and m and n positive integers, m <n. Then there is for complex
valued functions ¢ on R with sufficient differentiability and boundedness properties a representa-
tion

P = @M Xy, + K,

where », and », are bounded Borel measures with v, absolutely continuous, such that there exists
a function ¢ with |¢™| <A and |¢| <B on R and satisfying

(p("')(()):Af Idv1|+BJ | dw, |.
R R

This result is formulated and proved in a general setting also applicable to derivatives of frac-
tional order. Necessary and sufficient conditions are given in order that the measures and the
optimal functions have the same essential properties as those which occur in the particular case
stated above.

1. We denote by M(R) the Banach space of bounded Borel measures on R and by
AC(R) the subspace of M(R) consisting of all measures which are absolutely con-
tinuous with respect to the Lebesgue measure. The Fourier—Stieltjes transform
[t of a measure u € M(R) is defined by the relation

alt) = fRe-'“du(w),

for every ¢t on the dual B. Convolution of elements in M(R) is defined in the usual
way such that it corresponds to pointwise multiplication of the Fourier—Stieltjes
transforms.

Let u; and u, be given elements in M(R), and u, a third given element such that
there exist elements ; and », in M(R) such that

Ho =y ¥ V1 g XV, (1)

We assume that there exist a real number a and measures o, and o, in AC(R) such
that the three relations
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pa(t) +0, @)
() = (8 (2), 3)
fo(t) = A (£)6o(?) (4)

all hold, if |t| >a.
H denotes the set of all pairs of bounded Borel measures {v, »,}, which satisfy (1).
L denotes the set of all pairs of bounded Borel measures {»,, »,} such that

P %y + g%y =0

We finally form the class K of all pairs of functions {g,,@,} in L*°(R), such that with
the usual definition of convolution between elements in L*(R) and AC(R),

¥V P2 %V =0,

for every v, € AC(R) and »,€ AC(R) such that {»,, v,}€L.

Theorem 1. 1°. If {v,, v,}€H then v,€ AC(R).
2°. If {@1, 0o} €K, then g, is continuous, after a change in a set of Lebesgue measure 0.

3°. With this assumption on @y, we form for any {p,, p;} €K and {v,, v,} € H the func-
tional

F(py, @2) = F(@r, @2, 1, ¥5) = fR g (—x) »1 () do + fR(Pz( — ) dv, (x). (5)

Its value does not depend on the choice of {,, v,}.

4°. Let (A, B) be a fized pair of positive numbers and let K(A, B) denote the subset of
all {@1, @3} €K such that ||g1]| o <A, ||@alloo < B. Then there exists a {¥,, W} €K (A4, B)
such that

| Fpy, o) | <F(¥y, W),
for every {@., ¢, }€K(A, B).
8°. There exists a {vy, vy} €H such that

F(‘F:U‘Fz):z‘lf Iv{(x)ldx—i—Bf | dvy ()] (6)

Before we give the proof of Theorem 1, we shall discuss a particularly important
example and make some general comments.

Let m and n be integers such that 0 <m <n. It is easy to see that all our assump-
tions are fulfilled if we choose p,, u, and y, such that

fn(t) = =¥ @)™,

fiaft) = =,

frot) = e~ (i)™
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Using the definition of K we find that K consists of all pairs of bounded functions of
the form {p™, @}, where ¢ is absolutely continuous together with its »—1 first
derivatives. Let us then form the continuous function

Po=¢" % v; +@ Xy,

where {v;,7,} €H. Convoluting this with an arbitrary measure u with compact sup-
port and high differentiability properties, it is easy to see, by using (1) and partial
integration, that we obtain

PoXp=gxp™,

where 4™ denotes the measure which, in the distribution sense, is the m-th derivative
of the measure . Hence g, —¢™. If we substitute x =0 in ¢™ we obtain

@"(0) = F(p™, @, vy, v,).

Hence our theorem shows that there is for every pair (4, B) of positive numbers a
representation

¢ (0)= L 9™ (—2)vi(w)do + f @(— ) dvy ()

R

such that equality can be attained in the resulting inequality

|(P(M) (0) | gAf |v1 () | dx + Bf | dvy (@) ],
R R
if o™ lleo <4, llgll o< B-

In this particular case, the value of (6) is known, since the optimal functions @
have been found by Kolmogoroff [6], see also Bang [2]. As was shown in Bang’s
paper, the inequality given by Kolmogoroff is very closely related to the well-known

" inequalities by Bernstein and Bohr. As can be seen for instance in Achiezer [1, §§ 74,
86] these two inequalities can be proved and generalized using representations which
are similar to our formula (5). The starting point for our investigations was an attempt
to prove and generalize Kolmogoroff’s inequality using similar ideas. We shall in
section 3 show that the representation obtained in Theorem 1 can give a direct infor-
mation on the possibility of such generalizations.

It should finally be mentioned that the ideas in this paper have connections with
questions on minimal extrapolations of Fourier-Stieltjes transforms (see for instance
[3] and Herz [4, Theorem 4.1]). It is possible to put certain parts of these two theories
into a common framework. Generalizations in the same direction as those in Hérman-
der [5] are also possible.

2. Proof of Theorem 1.

1° If {»,, v,} €H, then by (1)
191+ s .

=
I
=

0

435



Y. DOMAR, Extremal problem related to Kolmogoroff’s inequality
By (2), (3) and (4) this relation implies that if |¢| >a
Bo(t) = (1) +65(1)55(8). (7)

The difference #,(t) between the left and right members of (7) is a Fourier-Stieltjes
transform which vanishes for large ¢, hence the corresponding measure ¥, belongs to
AC(R). We thus have the relation

V= 0g—V3— 03XV,

where ¢, 7, and ¢, belong to AC(R). But the convolution of a measure in AC(R)
with a measure in M (R) belongs to AC(R). Hence o, % v, € AC(R) and as a consequence
v, EAC(R).

2°, We choose a measure » € AC(R) such that #()) =1 if |{| <a. Let {p;, p,} €K. For
any u € AC(R) the pair
{(oa—opxv) > p, v pu—p}

lies in L, and both measures belong to 4C(R). Hence by the definition of K,
PL¥(0p— 0 X V) ¥t +py % (v~ p) = 0.

A rearrangement gives
{2 — (@ % v+ % 03—y ¥ 03 %) } X = 0.

This implies that
Pr=Qa XV +@y % 0y —Py % (02 %)

almost everywhere. Since ¥, 6, and ¢, % v all belong to AC(R), the right-hand mem-
ber is continuous which proves the assertion 2°.

3°. We form the Banach space X of all pairs {»,, »,} where », EAC(R) and v, € M(R),
with the norm

Af |v1'(x)|dx + Bf Idvz(x)|,

and with the vector operations defined in an obvious way. L is a linear subspace in X
and H a hyperplane, parallel to L. For every given {g,, ¢,} €K,

F(py, @s, ¥4, ¥5)

represents a linear functional on X, which vanishes for every {»,v,} €L such that
v,€ AC(R). If now {»,, v,} €L is arbitrary and does not annihilate the functional, it is
in view of 1° and 2° possible to find a measure » € AC(R) with its support concentrated
to a neighborhood of =0 and such that the functional, applied to {v, % v, v3% v}, does
not vanish. But this element belongs to L and »,%v € AC(R) which gives us a contra-
diction. Hence the functional vanishes on L and thus the value is constant on H.

4°, With the notions introduced above we let d denote the distance between H and
L, ie.
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d= inf (Af |v{(x)ldx+Bf Idvz(x)l). ®)
{r1,va}e H R R
Obviously I F(py, @25 1, v2) | <d, (9)
if {1 @2} €K(A4, B), {v,v,j€H.

We know from the Hahn-Banach theorem that there exists a bounded linear func-
tional G(»y, v,) on X, with norm 1, vanishing on L, and taking the value d on H. ¢
is also a linear functional with norm <1, on the closed subspace of X, consisting of
the pairs {v,, »,} where both », and », belong to AC(R). The dual of this space is
well known, and we obtain from this that there exist bounded measurable functions
¥, and ¥, such that

G(v, v,) = f Wi (—x) v (x) dx + f W, (— ) v () da, (10)

if v, and v,€ AC(R). Obviously
Fillo<4, [¥efl0<B.

Since G vanishes on L, the definition of K shows that {¥,, ¥;} €K, in particular
that we can assume W, to be continuous. Since by (9)

IF(‘PD ‘Pz)l <d =Gy, vy),
if {(pl’ ¢2}€K(A’ B)7 {vli VZ}GH’

4° is proved if we can show that
G(”n”z):f W, (—x) vy () dx—l—f Wy (— ) dvy (), (11)
R R

for every {v,»,}€X.

We can, of course, because of (10) restrict ourselves to the case when », =0. In the
case when 7, has a compact support, », belongs to AC(R), hence by (10) the relation
(11) is true, and thus we can also restriet ourselves to the case when #, vanishes on
the set {t||¢| <a}. Then {—o,%v,, v,} €L, hence

G( —03 % Vs, vZ) =0’
which gives us

G(0, v5) = G0y % vy, 0) = f Wy (—x) (0% v,) (%) de. (12)

Now let {r,}1° be a sequence of non-negative measures in AC(R), all with total
mass 1 and with supports contained in the set {z||#| <1/n}. Then v, in (12) can be
exchanged to »,%7,. By a well-known property of convolutions with measures in
AC(R), applied to the right-hand member of (12), we see that

lim G(0, v, 1,) = G(0, v,),
n—> o0
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Since v, %7, belong to AC(R), the left-hand member of this relation can be represented
using the formula (10), and this finally gives, by standard arguments,

G(0, vy) = f lFz( —x) de (),
R
hence the desired result.

5°. We have to prove that there exists an element {»,, »,} € which gives the mini-
mum in (8). We can find a weakly convergent sequence of pairs of measures, converg-
ing to a measure {»}, ¥3}, where both ») and v; belong to M(R). It is easy to see,
using the Fourier-Stieltjes transforms, that the relation (1) which determines H,
can be written

W= =@ [ hw-aduo, (13)

for every y € B, where 1, 2; and 1, are the functions
e xu; (1=0,1,2).

But these functions belong to Cy(R) and hence (13) has to be fulfilled for the limiting
measures {77, v3 ;. Hence {3}, ¥3} € H, and it is obvious that it must realize the infimum.

3. We now return to the case when g, —e *(it)", fl,=e", g, =€""(it)", where m
and n are integers such that 0 <m <n. This case was briefly discussed in the last
part of § 1. Under this assumption Kolmogoroff [6] has found the optimal pairs
{¥}, ¥, }. Disregarding a constant factor with modulus 1, they are found among the
functions given by the relation

¥, = 4 sign (sin (bz +¢)),

where b and ¢ are real, b0, and with the corresponding ¥, determined as the primi-
tive function of ¥, of order » and with mean value 0.

A certain lack of symmetry in the functions {¥';, ¥} appears when m and  varies.
This can, however, be overcome, for every fixed set {m, n, 4, B}, by changing the
functions 2, and g, to

e (i) ettt

and e ity etfet,

respectively with the real numbers §, and 8, suitably chosen. After such a change,
which of course only corresponds to translations in the functions {g, ¢,} in the class
considered, we see that the optimal pair {y;, y,} has the following properties, for
some h>0:

1°. ¥, =4 sign (sin ﬁ;) ,
2°. WVa(2n k) = B(—1)" (n€Z),
while —B<Wy(x)<B, if x+2nzn/h (nEZ).
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A pair of functions {g,, ¢,} with these properties is said to belong to the class £(4,
B, h).

A natural problem is now to investigate if pairs in the class E(4, B, h) occurs as
optimal pairs in other cases.

Let us then first make some assumptions on f,, 2, and g,. We assume that @, 0
almost everywhere, and that g/, and g,/ €L except for some bounded interval.
Finally we assume that

3 fualt+ I e+ ) 0,

almost everywhere. Then the following theorem holds.

Theorem 2. Suppose that {¥';, V,} €K N B(A, B, h). Necessary and sufficient in
order that {¥, Wy} is an optimal pair, in the sense of Theorem 1, is that there exists a
pair {vy, vy} €H, such that

vy () sign (sin %x) =|vi ()| (€ER),

while v, is a discrete measure composed of non-negative pointmasses at x=4n njh, n€Z,
and non-positive point masses at x={(4n+2)7w/h, n€Z.
{vy, 5} is then uniquely determined by the relations

o0

zw Lo (t+ nh)/ iy (E+nh) =7, (t) 2 faltt nh)/ i, (¢ +nh), (14)

By = Qo fty —Paflaffis- (15)

Proof of Theorem 2. The sufficiency is a direct consequence of the conditions on »,
and v, which show that

| F @y, @2) | = | F (@1, @a, 11, 70) | SF (g, g, 9y, ) = IF(V’D o)
if {91, @} EK(A4, B).

To prove the necessity we assume that {¥';, ¥,}€K n E(4, B, ) is an optimal
pair. Then by Theorem 1, 4° and 5°, there exists an optimal {v;,v,}€H, which
obviously has to fulfil the conditions on the signs of »; and »,.

It remains to prove the formulas (14) and (15). (15) is a direct consequence of (1).
Tt shows, together with the conditions on fi,, f1; and fi,, that #; EL}(R). Hence we can
assume that »{ is continuous. The condition on the sign variation of »; then implies
that

n(2na/h)=0 (n€Z).

But y; is the inverse Fourier transform of the function #, in the L' sense. Hence the
periodic function

z ﬁl(t_l_nh):

which locally belongs to L!, has its Fourier coefficients determined by the values
v1(2n m/h) in such a way that they, too, must vanish. Hence
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el

S 5, (t+nh) =0,

almost everywhere.
A direct summation of (15) then gives (14).

Theorem 2 is applicable in the case when y,, u, and y, are given by the relations
fra(8) =~ (@)™ &,
fa(t)=¢",
folt) =& (it £,
where «,, 3, %, and j, are real and
0<ay<oy—1.

(it)*, =1, 2, is then to be interpreted as
exp T i sign t +1log |t|) .
2

If «,, ay, A and B are given, it is possible to show that we can choose k, 8, and §, such
that there is a pair of functions {p,, p,} €K N E(A, B, k). The problem is to decide
whether this pair is an optimal one.

If both o, and «, are integers this is the case, which follows from Kolmogoroff’s
result. The only new in this case is the existence and the explicit form of the optimal
pair {¥,, v,}.

The case when some «; is not an integer corresponds to the problem for fractional
derivatives (see Bang [2]). In this case it is easy to see from (14) that 7,(¢) is analytic
within the period (—k/2, h/2) except at =0, where it has a singularity of a type
which excludes the possibility of the demanded sign-variation in d »,. Hence {¥,, ¥}
is not optimal in this case.

This completes a discussion of Bang [2] where he came to the same conclusion in
the case 0 <oy <o, =1. In that case, assuming 8, =B, =0, the optimal pairs {¥";, V', } are
explicitly known. They consist essentially of all {¥", ¥'} with ||¥'|| o <4, | |w< B,
where W' is absolutely continuous and where

. _ 2B
Y@)=—B, if z< i

Y)=d, if —¥<x<0.

By means of Theorem 1 we can easily give the necessary and sufficient condition on
fiy, fulfilling (4) with given
Ial = (it) e—t”

—t?

I

[4

=

2
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in order that all these functions {y’, ¢} give optimal pairs. Easy arguments show that
the condition is that

Ho= oy 9,

where » is an absolutely continuous not necessarily bounded measure, such that for
some ¢

y' =constant <¢, if <O,

"ze, if 0< <2B

v ze, 1 AR
2

v is < ¢, bounded and decreasing, if x>

In particular we obtain Bang’s case when for some d >0, and for 0 <« <1,

' =0, x<0,
v'=d|:vl_"‘, x>0.

REFERENCES

1. Acnigzer, N. I., Vorlesungen iiber Approximationstheorie. Berlin 1953 (1947).

2. Baxg, T., Une inégalité de Kolmogoroif et les functions presqueperiodiques. Danske Vid. Selsk
Mat.-Fys. Medd. XIX, 4 (1941).

3. Domag, Y., On the uniqueness of minimal extrapolations. Ark. Mat. 4, 19-29 (1959).

4. Herz, C. 8., The spectral theory of bounded functions. Trans. Am. Math. Soc. 94, 181-232
(1960).

5. HORMANDER, L., A new proof and a generalization of an inequality of Bohr. Math. Seand. 2,
33-45 (1954).

6. Kormocororr, A. N., On inequalities between upper bounds of consecutive derivatives of an
arbitrary function defined on an infinite interval. Ulenye Zapiski Moskov. Gos. Univ.
Matematika 30, 3-16 (1939); Amer. Math. Soc. Translation 4.

Tryckt den 9 april 1968

Uppsala 1968. Almqvist & Wiksells Boktryckeri AB

441



