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Smoothness of the boundary function of a holomorphic 
function of bounded type 

By HAROLD S, SHAPIRO 

In  a recent paper  [5] the author has proved the following theorem: 

Theorem A. Let/(z) be holomorphic and o/bounded type in Iz ] < 1 and suppose its 
radial boundary values/(e g~ coincide almost everywhere with a/unction _F( O) o/period 
27~ and class C ~ such that/or some positive A, 

max [F (=) (0) ] <~ (An) 2~, n = 1, 2 . . . . .  (1) 
0 

Then / is bounded in I z/< 1, and consequently / and all its derivatives are uni/ormly 
continuous in [ z [< l .  I /  the right side o/ (1} were repla~ed by (An) vn /or some p>2 ,  
the resulting theorem would be/alse. 

In  [5] this theorem was proved by  a method based on weighted polynomial approxi- 
mation. I t  was also conjectured that  theorem A is true "locally", tha t  is, if in (1) 
the max is over the interval [01, 02] instead of [0, 27r], a corresponding conclusion 
holds for the neighbourhood of the arc joining d ~ and e i~ 

The main purpose of the present paper is to prove this conjecture. An altogether 
different, more direct, method is employed. Actually the relevant theorem (Theorem 
1 below) is formulated for a half plane rather than a d isk- - the  version for a disk 
(or indeed any domain having an analytic arc on its boundary) can easily be deduced 
from that  for a half plane. 

We also take this opportunity to settle another point from [5]. On p. 334 we 
stated tha t  "i t  seems most plausible" an analogous theorem holds for meromorphic 
functions of bounded type, if (1) is replaced by  the stronger condition tha t  F belong 
to a Denjoy-Carleman quasi-analytic class (that is, under such a hypothesis on F,  
/ is bounded, and in particular is free of poles, near the boundary). This "plausible" 
assertion is false, as shown in the corollary to Theorem 2 below. In  fact, no majorant  
short of (An) ~, which implies analytic continuation of / across the boundary arc in 
question, can guarantee the absence of poles near the boundary. (But, for a plausible 
conjecture, see the concluding remarks.) 

Before turning to Theorem 1, we wish to recall some facts concerning functions 
of bounded type; we formulate them for functions in a disk, the definitions and 
results for functions in a half plane are similar. For the notions of "inner" and 
"outer"  function see I-Ioffman [2] (also [4] but  in [4] these terms are not used). 
A singular/unction is an inner function without zeros. A complete divisibility theory 
exists for singular functions (see [2] pp. 84-85); and every holomorphic function / 
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of bounded  type  in the uni t  disk can be represented as a Blaschke p roduc t  times an  
outer funct ion times the quotient  of two relatively prime singular functions. I f  the  
singular factor  in the denominator  reduces to a constant  / is a Smirnov/unction. 
This is equivalent  to saying tha t  ] = Bg where B is a Blaschke produc t  and  

f e a + z 
g(z) = exp | ~ da(t), 

j e  - z  

whereby a is a measure on the circle whose positive var ia t ion is absolutely contin- 
uous with respect to arc length. The significance of Smirnov functions is t ha t  the  
generalized max imum  principle holds, i.e. a Smirnov funct ion / is bounded  by  the  
essential supremum of the moduli  of its boundary  values. More generally, if the 
bounda ry  function belongs to L v, then / E H  p. The corresponding results localized to  
the neighborhood of an arc on the boundary  are also true (see [4], also papers of 
G. Ts. Tumarkin  referred to there). 

Theorem 1. Let/(z)  be holomorphic and o/ bounded type in the upper hall plane. 
Write z = x  +iy, and suppose there exists a/unction F(x) in/initely di//erentiable on 
an interval (x D x2) and "o/Gevrey class", that is /or some A > 0  

IF(n)(x)l<(An) 2~, Xl<X<:x2, n = 0 , 1 , 2  . . . . .  (2) 

such that F(x)=limu~o /(x +iy ) /or almost all x in @1, x2). Then /(z) is bounded 
(and there/ore /(z) and all its derivatives are uni/ormly continuous) in a neighbour- 
hood o/ each point x in (xx, x2). Moreover, i/ the right-hand side o/(2) were replaced 
by (An) vn with some p > 2, the theorem would be/alse. 

Lemma.  F e r n  >~ 2, ~ 2 ~  (k/n) k < 3. 

Proo/o/lemma. Let  m be the least integer not  less than  in.  The sum on the left 
is less than  

2 k +  ~ < l + n ~  < l + n  t m d t < l + m +  ~ 
k = l  k = m  k f f im  

< 3 .  

Proo/ o/ theorem. The t ru th  of the last assertion in the theorem is established by  
construct ing a suitable counter-example, just  as in [5]. We therefore confine our 
a t ten t ion  to the sufficiency of (2). The proof will be by  contradiction. I f  / were 
unbounded  in the neighbourhood of some boundary  point  lying in (xl, x2), it would 
admi t  a representat ion /=gU -1 where g is a Smirnov function, and U a singular 
funct ion relatively prime to the singular factor  of g, such tha t  the representing meas- 
ure of U has derivative equal to + oo at  some point  x a where x 1 < x a < x 2. I t  then 
follows tha t  for every ~ > 0  and  every y ~ > 0  the funct ion P~(y)=lg(x3+iy)l" 
I U(xa+iy)l -~ is unbounded  for 0 < y < y a .  I f  therefore we show tha t  for every x 3 
such tha t  x 1 < x  3 < x  2 there exists a positive 8 such tha t  P~(y) is bounded  for small y, 
the theorem will be proved. 

B y  trivial changes of the independent  variable we m a y  arrange tha t  A = 1 in (2), 
x3=0;  then (2) holds for Ixl < a ,  where a is some positive number.  Now, 
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~-~ F (k) ~0) 
F ( x ) =  ~ ' x k §  l (x )§  

k=o k! 

where 
Ixln n n 

R~(x) < ~ .  <~(nelxl) n for Ix]<a.  

B y  hypothesis,  we have almost  everywhere on ( - a ,  a), 

g(x) = F(x) U(x), hence a.e. on ( - a ,  a), 

]g(x) - s n _ l ( x )  U(x)[ = I Rn(x) U(x) l < (he ]xl) ~ 

N o w  G(z) = g(z) - S~ ~ (z) U(z) 
Z n 

is a Smirnov function in the upper  half plane whose boundary  values are bounded  
on ( - a ,  a) by  (ne) ~, therefore in some neighbourhood of 0 we have I G(z)] ~<2(ne) ~. 
Thus  

]g(iy) - Sn_l(iy) U(iy) l <~ 2(hey) n, 0 < y <~ yl. (3) 

Now, for some positive number  B, [ U(iy) l >~e -(81y). Wri t ing 5 = 1/8B we have from (3), 

Ig(iy) l <~ I S n _ l ( i y ) [  § 2(hey) n e ~lsy 
i U(iy ) i~ . (4) 

Now (4) holds for all n. I n  particular,  we m a y  choose n such tha t  

e 2 e 2 
- -  - l < n ~ < - - .  

Y Y 

Then,  the second term on the r ight  of (4) does no t  exceed 

2e-n+(l/sY)<2 if y < e - ~ - ~ .  
Moreover, 

k=O k=O k = l  
b y  the lemma. 

Thus, the left side of (4) is less t han  6 ~or small y, and  the theorem is proved. 

Theorem 2. Let Pk be any decreasing sequence o/positive numbers tending to zero. 
There exists a meromorphic /unction /(z) o/bounded type in I zl < 1 whose poles cluster 
at every point o/ I zl = 1 and whose boundary /unction coincides a.e. with a /unc t ion  
. ~ ( 0 )  = ~ = 1  Ck e-ikO, where ck are complex numbers such that ]ck [<<-e-k~k. 

Proo/. Let  ~ be any  complex number  of modulus one which is not  a root  of uni ty ,  
and  let r n --e -1/n.. Consider/(z) = ~ = 1  a~/(z-zn) where zn =rn ~ .  We shall show t h a t  
positive numbers  a n can be chosen so tha t  the series converges uniformly on every 
compact  subset of ]z I < 1 not  containing a ny  of the points zn and  represents a mere- 
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morphic function of bounded type with the asserted boundary behaviour. First of 
all, suppose ~ n2an < ~ .  Then the series converges as stated, and moreover, if B(z) 
denotes the Blaschke product formed with zeros at  {Zn} we have for ]z]< 1, 

B(z)_ an 
[l(z) B(z)] < ~ a. < < ~ n~a. < 

Thus /B  is a bounded holomorphic function in < 1, and / is of bounded type. 
Now, it is readily verified that  the boundary values of z/coincide a.e. with the func- 
tion 

= k ~ cke -ikO, where C k ~ a n z n .  
k - 1  n 1 

Thus, to complete the proof it suffices to show that  if the a n tend to zero fast enough, 
we have 

ane -(k/n~) <e kv~. (5) 
n = l  

l~ow define the function M(k) to be the greatest integer not exceeding p~�89 Clearly 
M(k) is non-decreasing and tends to infinity with k. Now, we can choose positive 
numbers an so that  

~n~an < ~ (to satisfy the earlier requirement), 
1 

an< 1, 
1 

an<~�89 -kpk, k=1 ,2 ,3 , . . . .  
n = M(k) + 1 

(6) 

(7) 

(8) 

Concerning the last inequality, observe tha t  since M(k) tends to infinity we have 
for each r only a finite number  of conditions imposed on the remainder ~n%r an, 
therefore the inequalities (8) can be satisfied by  positive numbers an upon which we 
can moreover impose the conditions (6), (7). Now the left-hand side of (5) does 
not exceed 

M(k) 
(k/n~) ~ an. an + 

n = l  n - M ( k ) + l  

The first sum is bounded by  �89  2 <<.�89 ~vk (by (7)), and the second 
by  12e k~k, by (8). Theorem 2 is proved. 

Corollary. I] Bn are any positive numbers increasing to in/inity, we can/ind a mero- 
morphic /unction satis/ying the hypotheses o/ Theorem 2 and such that 

max [ F(n)(0) ] ~< (nBn) n. 

We shall not carry out the details of the proof. Since IF(n)(0)[ ~< ~ = 1  ]ck] k", it is 
a mat te r  of showing tha t  if p~ tend to zero slowly enough, we have 

e-kVk k ~ <~ (nBn) n 
k ~ l  
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which is straightforward but  tedious. As the result is needed only for a counter- 
example we carry out the estimation only for the concrete choice Pk = 1/log (/C + 1). To 
estimate ~ - 1  exp ( - /c/log (/c + 1))/cn, break up the sum into ~ _ ~  and ~ = ~  +~ where 
m = re(n) is chosen as the least integer such that/c~ ~< exp (�89 (/c + 1)) holds for all 
k >m.  I t  is easy to see tha t  m is around 2n(log n) 2. Then the second sum is bounded 

X~m -ak~n ~ ~Oo ~-akLn uniformly with respect to n and the first sum is majorized by  Lk=l e ~ Lk=l ~ 
where a = 1/(1 +log n). Now, comparing the last sum with an integral we show easily 
tha t  it is O(n/ea) ~+1, therefore, finally, the original sum and hence max lF(~)(0)l is 
bounded by  (An log n) n for some constant A. Thus, F belongs to a Denjoy-Carleman 
quasianalytic class, which disproves the conjecture in [5]. 

Concluding remarks  

1. We have still not been able to settle whether in Theorem A or Theorem 1 the 
Gevrey class can be replaced by  one of the slightly larger Carleson-Korenblyum 
quasi-analytic classes (see the discussion in [5], p. 333, also Korenblyum [3]). For 
example, would Theorem A be true with the right side of (1) replaced by  (An log n)2n? 

2. The rather  drastic smoothness imposed on F could be very much relaxed if 
we had some a priori information about  the singular factor U. For instance, it is 
easy to see by  the method used to prove Theorem 1 tha t  if IU(x§  l>~By ~ for 
some positive B, (~ (here B, ~ may  even depend on x) for x l < x < x  2 then if F(x) 
satisfies a Lipschitz condition of any positive order on [x D x~] we can conclude tha t  
/ is bounded (hence uniformly continuous) in a neighborhood of each point x, 
Xl < X < X  2. 

3. Under the hypotheses of Theorem A, / can have only finitely many  zeros in 
Izl <1 (this follows with the help of considerations outlined in [1] p. 331). As B. I. 
Korenblyum of Kiev has pointed out to the author, it can also be shown in this 
case tha t  / has no (non-constant) singular factor. Korenblyum has suggested to the 
author the interesting question whether perhaps, under the assumption that  / is 
meromorphic and of bounded type and F satisfies (1), we can conclude tha t  / has no 
(non-constant) singular factors (either in numerator  or denominator), i.e. F is a 
quotient of Blaschke products times an outer function. I f  this were true, one would 
have the interpretation tha t  the Gevrey smoothness of the boundary function 
indicates the absence of singular factors, rather than boundedness in the interior. 
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