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Fractional categories 

B y  GERT ALMKVIST 

Introduction 

In  this paper  we study the "localization" of a category C with respect to certain 
subcategories S. This is done by  a category of "right fractions", C$ -1 and a functor 
r C-~C$ -1. In  w 1 conditions for the existence of C$ -1 are given and it turns out 
tha t  r is left exact. 

In  w 2 the existence of left adjoint *r of r is discussed. If  *r exists, a full subcate- 
gory C of C is defined. C consists of those objects A such that  *r162 ~A.  I t  follows 
tha t  C is equivalent ot C$ -1. 

I f  in the dual case (i.e. the right adjoint r exists) r is exact and C is a category of 
set-valued presheaves then C is a category of sheaves for some Grothendieck topo- 
logy. Furthermore the imbedding functor C ~ C  has a left adjoint which is the asso- 
ciated sheaf functor. 

Section 3 is devoted to a study of the functional properties of CS -1, i.e. its behaviour 
under functors and under change of S. 

In  w 4 properties inherited from C to C$ -1 are studied under various conditions 
on S. If  r exists, it follows that  if C is abelian (a topos), then C$ -1 is also. 

In  w 5 some examples are given when C is a special abelian category, in particular 
when C is the category of modules over a commutat ive ring. 

Notation and generalities 

All categories in this paper  are sets. Let ~ be a fixed universe (see [10], Exp. VI). 
I f  nothing else is stated a category C will mean a ~-category, 'i.e. for any pair of 
objects A, B in C there is a bijection from Home(A, B) onto a set belonging to ~ .  
Ens is the category of sets of cardinality less than Card ('U). A category C is small 
if the set underlying C is in Ens. 

I f  C is a category we denote the set of objects of C by  Co and identify Co with 
the identities of C. I f  F: C-~O is a functor, then a functor *F: O-->C is a le/t adjoint 
of F (and F is a right ad]oint of *F) if there is a functor isomorphism Homc (*F.,.) 
ttomD (., F . ) .  Let  Y be a small category and let C: C-->Hom (Y, C)denote the func- 
tor  tha t  maps each A E Co onto the constant functor CA defined by  CA(a)= 1A for 
all ~ E Y. C maps the morphisms of C in the obvious way. 

If  C has a right adjoint, C* =lim,_: Horn (Y, C)~C then C is said to have Y-lim,_. 
In  particular if C has Y-lim~_ for all small (finite) Y, then C has (finite) ]im,_. 

*C =lim_~ is defined dually. 
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G. A L M K V I S T ,  Fractional categories 

If a category has both lim(_ and lim~ we say it has limits. 
A functor having a left (right) adjoint commutes with lim~_ (lim_~). 
In particular lim(_ commutes with lim(_. A functor commuting with finite lim~_ 

(lim_~) is called left (right) exact. I t  is exact if it is both left and right exact. 
If ~/is a discrete small category (i.e. Yo=Y), then lim,_ (lim_)) coincides with the 

product I]~ (sum (D~). The sum in ~ns is the disjoint union and is denoted by H. 

Let A ~ B be a pair of morphisms in C. Then the kernel (or equalizer), al , A 
a~ a 2 

is defined as follows: 

K e r (  aI] i ) A al ~ B 

T \a2! f a2 

3~g ~ u  

(1) al.i=a2.i. 
(2) For all / such that  al./=a2. / there exists a unique g such t h a t / = i . g .  

(al t is a special case of finite lim~_. Ker 
\ ] a2 

Coker(al  ) isdefineddually.  A d i a g r a m o f t h e f o r m K e r ( a l  ) ~ a l  , .  ,~. is said to 
a 2 a 2 a~ 

be exact. 
A functor commutes with (finite) lim~_ if and only if it commutes with Ker and 

(finite) products. 
Given two morphisms s: A-+ B and a: C-~ B we define the fiber product (pull back) 

A • C Sl ~ C 

1 1~ 
A , B  

8 

of a and s by the universal property: 

(1) a's l=s'a 1. 
(2) Given any /, g such that  a. /=s .g  then there exists a unique h such that  

/=sl 'h  and g =al.h. 

The fiber product is also a special case of finite lim,_. 
A functor F is/aith/ul if F(al)=F(a2) implies al=a 2. An object G is a generator 

if Hom (G,.) is faithful. Cogenerator is defined dually. 
Fj 

Two categories C 1 and C2 are equivalent if there exist functors C1 7 C2 such that  
F2 

F 2" F 1 ~ Ic, and F 1" F 2 ~ Ic~. 

(Ic is the identity functor of C.) 
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C O denotes  the  dual  ca tegory  of C., 
I f  (S) is a n y  s t a t emen t ,  t hen  (S ~ is ~he dua l  s t a t emen t .  
A n  objec t  A in C is initial (final) if Horn (A, B) (Horn (B, A)) consists of exac t ly  

one e lement  for all  B ECo. 
A is a zero-object if i t  is bo th  in i t ia l  and  final.  

1. Existence theorems 

Le t  C be a "//-category a n d  le t  S ~  C be a subca tegory  conta in ing  all  the  isomor- 
ph isms  of C (so in pa r t i cu la r  So=C0). W e  say  t h a t  S is nice if for eve ry  objec t  A ECo 
the re  is a set of objects ,  YA E l / s u c h  t h a t  for eve ry  8: C - , A  in S the re  exists  u: D-+C 
with  DE~A and  8"uES. 

Conice is def ined dual ly .  
I f  C is small  t h a n  every  S is nice. 

Definit ion 1.1. A func tor  r C-->CS -1 f rom C to a ca tegory  CS -x defines a right 
/ractional category o / C  with respect to S if the  following axioms are  satisfied: 

F I :  r is an  i somorph ism for all  8 E S. 

F2: E v e r y  morph i sm ~ C S  -1 can be wr i t t en  as ~=r162  -~ wi th  aEC a n d  sES.  

Fs:  r  =r if and  only  if the re  exists  8E S such t h a t  a l . 8  =a2.8. 

The left f rac t ional  ca tegory  S-~C is def ined dual ly .  

Theorem 1.2. Le t  S C C be a nice subca tegory  conta in ing the  i somorphisms  of C. 
Then  CS -1 exists  if and  only  if the  following two condi t ions  are  satisfied: 

$1: F o r  every  a E C, s E S wi th  common te rmina l ,  the re  exis t  b E C and  t E S such t h a t  
8.b=a. t .  

$2: I f  s. a I = s- a 2 where  8 E S and  al,  a 2 E C, then  the re  exists  t E S such t h a t  a 1. t = a~. t. 

Pro@ Assume first  t h a t  (S 0 and  ($2) hold.  

W e  cons t ruc t  CS -1 in the  following way.  W e  first  set  (CS-1)o=Co . Given two 
objec ts  A and  B we consider  the  set of all  pai rs  (a, s) where  a E C a n d  8 E S such t h a t  

there  is a d i ag ram A �9 8 ~ �9 B. On this  set  we define a re la t ion,  ~ ,  as follows: 
(a 1, Sl)~(a~,  s2) if a n d  only  if the re  exis t  Ul, u2EC such t h a t  s l .u l=s2.u2ES and  
al'ul=a2.u2. A compu ta t i on  shows t h a t  ~ is an  equivalence  re la t ion.  W e  now 
define the  set 

Homcs-~(A, B) = [ I_[ (Horns(C, A) x Home(C, B)) ] / ,~ .  
CeY A 

CS -1 c lear ly  becomes a ~/-category.  

Since S is nice eve ry  pa i r  A �9 ~ E a �9 B is in  the  same equivalence  class as  
some A sl al �9 C ~ B wi th  C E ~A" F o r  obvious reasons we d e n o t e  b y  as -1 the  equi- 
valence  class r ep resen ted  b y  (a, s). 
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G. ALMKVIST, Fractional categories 

Let  as -1 and bt -1 be two morphisms in CS -1 suitable for composition. By ( S 1 )  

there exist t 1E $ and a lEC such tha t  a . t~= t . a l ,  i.e. we have a diagram: 

. ,  s / a  t "~  b . 

A rather  long but straightforward computation shows tha t  ( b , a l ) ( 8 . t l )  - I  does not 
depend on the various choices made. For the details see [1]. 

We now define the composition CS -1 by: 

(bt-1) �9 (as -1) = (b" al) (s. tl) -1. 

One verifies that  the composition is associative. 
We define r C ~ C S  -1 by r  ff AECo and if a: A - + B  is a morphism in C 

we set r =a lA 1. 
Then clearly ~ is a functor and as -1 =r162 -1 so F 2 is satisfied. 
F 1 and F a are also trivial to check. 
To prove the converse let aEC and sES with common terminal be given. Using 

(F~) we can find b I EC, t I E S such  tha t  r -1.r =r162 -1 or r tl) =r  bl). 
By (F3) there exists s0E S such tha t  a . t l . S o = S . b l . s  o. Put  t= t l .SoE S and b = b l . S  o 
and we get a . t = s . b  which is ($1). 

I f  s . a l  = s'a2 with s E S, then r .r =r .r and hence r =r by (F1). 
:From (Fa) we conclude tha t  there exists tE S such that  a l . t=a~ . t .  

This ends the proof of the theorem. 

Proposition 1.3. The functor r C-+C$ -1 solves the following universal problem: 
Given any functor F: C - ~  such that  F(s) is an isomorphism for all sES, then 

there exists a unique functor G: C S - I ~ D  such tha t  F = G.r 

C r ,CS -1 
/ / j  

VF / ~  31 G 
/:V 

Proo/. Putt ing G(a8 -1) = F(a) .  F(s) -1 one verifies that  G is a well-defined, unique 
functor such tha t  F = G.r 

Corollary. I f  C$ -1 exists, then it is unique up to an isomorphism. In  particular 
if S-1C also exists then $-1C ~ C$ -1. 

Remar]~. 

Homcs-,(A, B) = lim Homc(C, B), 
(C-->A) 
in Sl/ A 

where Sl/A is the category with objects C 8 �9 A where s E $ and C E ~A and whose 
morphisms are the commutat ive diagrams 
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CI u 'G2 

wi th  u a morph i sm of (2. 

Proo/. F r o m  S 1 and  $2 i t  is easi ly  seen t h a t  ($1/A) ~ satisfies the  ax ioms of a "pseu-  
dof i l te red  ca tegory"  (see [10], def. 2.7). Now the  compu ta t ion  of l im~  can be made  
in the  old.fashioned w a y  for d i rec ted  sets and  we immed ia t e ly  get  the  result .  

L e m m a  1.4. L e t  s~: A~->B be in S for i = 1 ,  2 . . . . .  n. Then  there  exis t  ui: C--~A, 
i = 1 ,  2 . . . . .  n, such t ha t  s~.u~=sE S for i= l ,  2 ..... n. 

Proo/. F o r  n = 2 the  l emma  is ($1). F o r  larger  n i t  follows b y  induct ion.  

L e m m a  1.5. Assmne t h a t  sE S a n d  s .u l=s .u  s . . . . .  s'un. Then  the re  exists  tE S 
such t h a t  

ul.t=u2.t =...=un't. 

Proo/. F o r  n = 2  i t  is (Ss). F o r  la rger  n i t  follows f rom L e m m a  1.4 b y  induct ion .  

L e m m a  1.6. ( "pu t t i ng  f rac t ions  on common denomina to r " ) :  Le t  :r A--~B~ be 
morph i sms  in C$  -1 ( i = l ,  2, ..., n). Then  the re  exis t  sE S and  al ,  as . . . . .  anE$  such 
t h a t  ~ = a i 8  -1 for  i = l ,  2, ..., n. 

Proo/. Assume t h a t  ~i can be r ep resen ted  as at=b~t~ 1. Then  we use L e m m a  1.4 
to  f ind  u~ such t h a t  s=t~.u~E$ ( i = 1 ,  2 . . . . .  n). F ina l l y  we p u t  a~=bi.u~ a n d  get  
bit~l=(b~.u~)(ti.u~)-l=a~s-1 for i = 1 ,  2 . . . . .  n. 

L e m m a  1.7. Assume t h a t  s E $ and  s.u~E S for i = l ,  2 . . . .  , n. Then  the re  exis t  
vl, v s . . . . .  vn such t h a t  u 1 �9 v 1 = u s- v s . . . . .  u~- v~ = u and  s.  u E $. 

Proo/. Fi r s t  use L e m m a  1.4 and  t hen  L e m m a  1.5. 

Proposi t ion 1.8. I f  C has  kernels,  t hen  CS -1 has  kernels  and  r commutes  wi th  
kernels.  

[a~s-~ 
Proo[. B y  L e m m a  1.6 i t  is sufficient to consider  pai rs  of the  form l a~s_l] in C $  -I .  

Hence  all  we have  to  do is to show t h a t  

Consider the  d iagram:  

r  a l  
K e r  ( r 1 6 2  ( a2 ) )  

k a l  

b t b 
(~ �9 , U ~ .  

I/V2 I t 
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 horo (~ As umoal 11 a2 /bt 
a 2 

a Sb 

Hence  there  exis t  Ul, u s ~C such t h a t  t ' u  i - t ' u 2  and  a i .  b . u  i = a 2. b . u  s. Using ($2) 
the re  exists  s o E S such t h a t  Ul.S o = u s . s  o = u  say. 

Hence  t . u  E S and  a i .  (b. u ) = a  s. (b.u).  B y  the  def ini t ion of kerne l  there  exists  a 
unique b 1 such t h a t  k. b i = b .  u. Then  c lear ly  r (bi(t'u) -i) =bt  - i  a n d  we on ly  need  
to  show uniqueness.  

Assume t h a t  r  i = r  i.e. t he re  exis t  vi, v s such t h a t  
t .  u- v i = s. vs E S and  k. b i .  v i = k. c. v s. Bu t  k is a monomorph i sm and  i t  follows t h a t  
b 1 �9 v i = c. v s and  hence cs -1 = bi(t. u) - i .  

Proposi t ion 1.9. I f  C has  f ini te  p roduc t s  so has  C$  -1 a n d  r commutes  wi th  f in i te  
products .  

Proo/.  W e  show t h a t  r  i • 1 6 2 2 1 5 1 6 2  Given two a r b i t r a r y  morph i sms  
~i: B - ~ A 1  and  ~s: B - + A s  we m a y  assume (by L e m m a  1.6) t h a t  ~l = a i  s-1 and  ~2 = 
a2s - i .  The def ini t ion of p roduc t  in C then  implies  t ha t  the re  exists  a unique  a such 
t h a t  PV a = a  1 and  P s ' a  = a  s (Pl, Pe are  the  canonical  project ions) .  Clear ly  

al s-1 = r  (as- l) ,  

a2 s-1 =r (as- l)  �9 

To show the  uniqueness  of as -1 assume t h a t  r (bl 8-1) =r - i )  for i = 1, 2. 
The  there  exist  ui,  u s such t h a t  s .u~E $ and  p~.bl .U~=p~'bs .u~,  i = l ,  2. L e m m a  1.7 
implies  t h a t  there  exis t  vl, v s such t h a t  U - U l ' V  i = u s ' v  s and  s - u  E S. Hence  we ge t  
p ~ . b l . U = p ~ . b s . u  , i = 1 ,  2, and  t hen  b l . u = b s . u  t h a t  toge the r  wi th  s . u E  $ says t h a t  
bl s-1 =bss - i .  

Corollary 1.10. I f  C has  f ini te  lim~_ so has CS -1 and  r is lef t  exact .  I f  C also has  
f ini te  lim_~ and  C is S1, Ss, S ~ and  S O then  CS -1 has f ini te  l imits  and  r is exact .  

Definit ion 1.11. Le t  F :  C - ~ O  be a functor .  W e  set t y : { s E C [  F(s)  is an  isomor- 
phism}. A subca tegory  S of C is called saturated if  S satisfies (Si) a n d  (Ss), a n d  
S = Sr for the  corresponding r C-->CS -1. 

Proposition 1.12. Assume t h a t  C is small  and  has f ini te  lim~_ and  le t  S c C  be a 
subcategory .  Then  $ is s a t u r a t e d  if and  only  if S = t F  for some left  exac t  func to r  
F :  C-~O.  

Proo/.  r C ~ C S  - i  is lef t  exac t  and  $ =  Sr if S is sa tu ra ted .  Conversely  if F :  C - + O  
is a lef t  exac t  functor ,  t hen  F commutes  wi th  kernels  and  f iber  products .  
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The morphisms in SF, the existence of which is required in ($1) and (S2), arc easily 
constructed by  fiber products and kernels, respectively. By the definition of CS~ ~ 
we find a factorization F = G . r  where r C-+CS -1. Hence if r is an isomorphism 
then F(s)=G(r is an isomorphism and SF= Sr Thus Sr is saturated. 

Proposition 1.13. Let  S F  C be saturated for all i E J  and assume that  C is small 
and has finite lim~_. Then S = f'] ,r is saturated. 

Proo]. First we show tha t  S satisfies (S1) and ($2): 

$1: Let  aEC and sES, i.e. sES~=Sr for all iEJ ,  where r C-~CS:, 1. We form the 
fiber product and it is clear tha t  

81 

a 1 

) ,  
s 

sI E Sr for all i E J. Hence sl E S and a . s l = s . a  1. 

~  ' i l  S~: If  ~" , is given with s . a l = s . a  ~ and sES,  then Ker  al E$ satisfies 
a~ \ a~/ 

the requirements. 

Consider the diagram: 

C r , CS -~ 

CS~ I 

Since S c  S~, r is an isomorphism~for all sES. Hence there exists a functor Ui 
such tha t  r  Ui ' r  If  r is an isomorphism, i.e. sE Sr then r162 is an 
isomorphism for all i E J .  

Thus sE S r  for all i E J  and s6 f']jS~= S which proves tha t  S is saturated. 

Denote by  S the smallest saturated subcategory of C that  contains S (if it exists). 

Proposition 1.14. Let  S c  C be nice and satisfy ($1) and ($2). Then S = Sr = {a EC[ Xc, 
d E C such tha t  a.  c E S and c. d E S} is nice. 

Proo]. S =  $r follows from the universal properties of r C ~ C S  -1. Call the right- 
hand side 9". 

9"c Sr Assume that  a E 9", i.e. there exist c, d EC such that  a.  c = s E S and c- d = t E S. 
Then r162 =r and r162162 
Thus (r -1.r162 = 1 and r162162 -1) = 1. Hence r has both left and 

right inverse. I t  follows tha t  r162162 -1, is invertible and aE Sr 
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Sr  ~': Let a E Sr with r = bt-1, where b E C and t E S. Then we have a commuta- 
tive diagram: 

r  gives a.b.Ul=U2=t.UlE S. We set c = b ' u  1 and get a . c = u 2 E S .  Now 
bt -1 =cu2 -1 =r -1 and hence (c.u2 -1).r = 1 and we have the following diagram: 

a �9 ) �9  ~ u 3  l u 2  
1 . 

M'v2 a~ [c 

($1) implies tha t  there exist uaES, alEC such that  u 2 . a l = a ' u  3. Thus c . a l . v l =  
v~ = u s- v 1 E $ and d = a t. v 1 will do. 

One verifies that  S is nice. 

2. Existence of adjoints of  r C-~ CS -1 

In  general when a functor F: C - + ~  is given, one can ask if F has adjoints, com- 
mutes with limits or if F is left or right exact. So far we only know tha t  r C--->CS -1 
is left exact. We will find conditions for the existence of left and right adjoints of r 

Definition 2.1. Let C have lim~_. Let F, G: Y--'C be two functors from a small 
category Y end q): F ~ G  a ~ o r - m o r p h i s m  such that  ~(i)E S for all iEY 0. We say 
tha t  S satisfies ($3) if under the above assumptions lim~_ ~: lim~_ F-+lim,_ G is in S- 
I f  the above is true for all finite 7, we say that  S satisfies (Ssfin). 

Remark 2.2. ($3) is equivalent to the following: 

(a) I f  in the following commutat ive diagram, where the rows are exact, sl, s2 E S, 
then the induced morphism s E S. 

~ "~~ 

1, l, 
and 

(b) I f  s,: A,--->B, is in S for all iEY, then I-[~si: I-[~A,~I-I~B, is also in S. ( Incase  
of ($3 f~n) we take 3 finite in (b).) 

Proposition 2.3. Assume that  C has finite lim~_. 

(a) If  S is ($3 u') then S is ($1) and ($2). 

(b) If  S is ($1) and ($2) then S is (Satin). 
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Proo/. (a) Assume tha t  $ is (Sstin). 
$1: Let s: A-~C in $ and a: B-~C be given. 
Consider the diagram (where everything commutes). 

1 B 

Here A • cB and B = B • cC are finite lim~_. Since 1B, 1 c and s E $, (Sa t~n) implies tha t  
alEC. 
$2: Consider the diagram, where s- a 1 = s- a 2 with s E $. 

Ker  ~al~ i ,A al ~B 

i 1 A s 

A = K e r ( S ' a l ]  1A ,A  s ' a t  ' , C  
k s /  a 2 s �9 a 2 

Since 1A, sE S, ($3 tin) implies that  iC $ and al . i=a2. i .  

(b) This follows directly from Corollary 1.10 and Proposition 1.12. 

Remark. In  particular ($3) implies (S 0 and ($2). 

Theorem 2.4. Let  C have lim~. Assume that  $ is nice, saturated and ($3). Then 
for every A EC0 there exists a morphism so: ~i-+A in $ such tha t  for every s: C-~A 
there exists a unique u: _d-~C such that  so=s.u.  Furthermore,  r has a left adjoint 
"4: CS-~C. 

Proo I. y={s :  C-~A IseS and CEyA}EN since $ is nice. We form the fiber pro- 
duct B of all s: C-~A in y. Then every t: D-~A in $ can be "extended" to B (see 
the diagram) and x E $ since $ is ($3). 

t 

Set, H={b:  B - ~ B l x . b = x } .  Every  b e l l  is in $ because $ is saturated. Let y: A - + B  
be the projective limit of all b EH (i.e. the kernel of perhaps infinitely many  mor- 
phisms). Then y is a monomorphism and b . y = b ' . y  for all b, b'EH. Let r C->C$ -1 
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be the usual functor.  Then  4@) is an  isomorphism and 4@)=4@)"4(b)  implies t ha t  
4(b)=lr for all bEH. Hence  4(y)=lr  since 4 commutes  with lim(_ and  it fol- 
lows t h a t  y E S. Then  s o - x . y  E $ and  there  exists h: A - > A  such tha t  x -  s o. h -  x . y . h .  
Hence y . h E H  and since l s E H  we get y ' h ' y = l s ' y = y .  But  y is a monomorph i sm 
and so 

h . y =  l-~. 

To prove  the  uniqueness of the  extension assume tha t  t: D-~A is in S and  tha t  there  
are two morphisms u, v : ~ I ~ D  such tha t  S o - t . u - t . v .  B y  ($2) there  exists t IES 
such tha t  u.  t~ = v. t r Now s o �9 t~ E S so there  exists t 2 such t h a t  s o. t~- t 2 = s o. Fur thermore ,  
t2E $ since S is sa tu ra ted  and  sett ing d =y. t l . t2"h we find x . d = x .  Hence  d E H  and  
d . y = y  or y . t v t 2 . h . y = y .  Then  tx is an  ep imorphism since y is a monomorph i sm 
and finally we get u = v. 

We define two maps  

nomcs-X (r r  ~ Homc(-~, D) 

b y  the  following: of(as -1) = a . u  where u is the  unique morph i sm such tha t  so=s.u,  

W(c) =es0 -1. 

One verifies t ha t  ~ is welldefined and  tha t  ~ and ~o behave  functorial ly  wi th  respect  
to A and D and tha t  they  are each others '  inverses. Hence  "4 exists and  A = ' 4 " 4 ( A )  �9 

Remark 2.5. I f  $ is (St) and  ($2) but  we do not  know t h a t  $ is nice, then  we can 
construct  CS -~ as in Theorem 1.2 bu t  CS -~ is not  necessari ly a ~/-category.  How- 
ever, if 4: C ~ C S  1 has a left (or right) adjoint ,  "4, then  

Homes ~(4(A), 4(B)) ~ Homc(*r r B) 

and CS -1 is a W-category. 

Proposition 2.6. Assume tha t  C has lira(__ and  tha t  S is ($1) and  (Sz). I f  4: C ~ C S  -1 
has a left adjoint  "4: C-~CS -1, then  

(a) CS -1 has l im~ and 4 conmmtes  with lim~, 

(b) S is nice and  (Sz). 

Proo/. (a) We only need to show tha t  C$ -1 has products .  Indeed  ~Lr  
r will work  which follows f rom the isomorphisms below, valid for any  
B [I  (CS-1)o: 

HOmcs ~(B, 1-[r = Homcs- l (B,  r 
3 Y 

Homc(*r VIA,) ~ I-[ Homc(*r A~) 
3 Y 

YI Homcs_l(B, r 

Clearly 4 commutes  with lim,_. 

(b) An a rgumen t  similar to the  proof  of Proposi t ion 1.12 shows t h a t  S =  $~ is (Sa). 
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Let a: *r162 and b: Ics : -+r162 be the adjunction morphisms. Then we have 
(see [3]) r162162 for every A EC0. Assume that  br -1 with cEC, tES. 
Then (aA'c)t-:= 1r and there exists u E S such tha t  aA'c'u = t .u  C S. Let u start  
at  A 1. Hence a A can be extended to a morphism in S starting at A 1. But  every 
morphism s: D-+A in S can be extended to aA. This follows immediately from the 
diagram below: 

R, *r r 

81 aB 1 ~ 
A, .A *r162 

Remark 2.7. Theorem 2.4 and Proposition 2.6 imply that  the adjunction mor- 

phism aa: *r162 is in S for every A EC0. 
Furthermore,  we can take :~ =*r162 

All this can be formulated in the following way: 

Theorem 2.8. Let C be a W-category with lim+ and let S c C  be saturated. Then 
the following statements are equivalent: 

(a) r C--->CS 1 has a left adjoint *r 

(b) S is nice and (Sa); 

(c) For every A CCo there exists So: A + A  in S such that  for every s: C-~A in S 
there exists a unique u: A-~C such that  So=S.U. 

RemarIc 2.9. I t  is also true that  if S is ($3) (but not necessarily saturated) then r 
commutes with liln~_ (see [1]). 

For the rest of this chapter we assume, unless something else is stated, tha t  S 
satisfies the conditions in Theorem 2.8. 

Proposition 2.10. (a) The adjunction morphism b: Ics 1-->r162 is an isomorphism. 
(b) *r is fully faithful. 

Proo/. (a) In  the proof of Proposition 2.6 we had the following: r162 = lr 
But  r is an isomorphism (Remark 2.7) and so is be(A> for every A E Co- I t  follows 
that  b is an isomorphism. 

(b) We must  show that  the canonical map: 

~: Homcs-:(r  CB)-> Home (*r CA, *r CB) 

is a bijection for all A, B E Co. 
Let cs-:: r162 be given. Writing _4 for *r we get a commutat ive dia- 

gram where 6=*r162 
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:IlV - 5 
2/ , C -  ,B  

S r 

~o is given by ~(cs -1) ~5.v. One verifies that  q) is well defined and has an inverse ~o 
where ~0([)=(aB./)aA -1 for a given /: ~i->/~. 

Definition 2.11. (a) Let $ be any subset of C. We define a subset of Co in the 
following way: 

p(sl={per for all  s: A ~ B i n  S and all b: P - ~ B  in (2 there exists a unique 
a: P---,A such that  b =s.a}. 
J($)  is defined dually. 

(b) If OCCo, then we define a subset of C as follows: 

E(O)={s: A->B[ for all P E O  and all b: P->B in C there exists a unique 
a: P-+A such that  b=s.a}.  

~ ( O )  is defined dually. 

Remark. If S=a l l  epimorphisms (monomorphisms) in C, then ~)(S) (Y(S)) is a 
subset of the projective (injective) objects in Co. The definitions look similar to those 
of projective (injective) classes (see [8] p. 135 and [7]), but we require uniqueness 
for the morphism a. 

Proposition 2.12. Let $ c  C and O C Co- Then 

(a) O1C 02 implies ~(O1)D E(O2) and ~ (OI )D  ~(O2); 
(b) Sl= S2 implies O(S1)~ 0(S2) and J(S1)~ ~(S~); 
(c) S c E ~ ( S ) ,  $ =  "]qlY( S), O =  ~ ( 0 )  and O = Y ~ ( O ) ;  
(d) OE0($)  = 0($) ,  etc.; 
(e) If C has lim~_ (lim_,), then ~(O) is (Sa) (~(O)  is ($3 ~ for any O~C0; 
(/) The embedding functor ~)(S)-> S(Y(C) ~ C) of the full subcategory 0($) (Y(S)) 

into C commutes with lim_, (lim(_) for any S~  C. 

Proo/. (a)-(d) follow from the usual lattice arguments. 
(e) The functor H P =Homc (P,-): S - ~ n s  commutes with lim,_. But then E(O)= 

A ~'~ o SHY is (Sa) since each SHP is. 

(]) We show that  ~)(S)->C commutes with sums and cokernels. Let P, eO(S) 
for all iE1. We want (~zP~E O(S). Let  s: A->B be in S and let a: O z P ~ - B  be in C. 
Let u~: P~-~ | be the canonical morphism. 

Since P~E ~)($), there exists a unique b~: P~->A such that  s.b~=a.u~ (for all iEI ) .  

P~ u~ ~.  | p~ 
/ / I , . 

A ~ s ~-B 
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By the definition of sum there exists a unique b: ~)zP~+A such tha t  b,=b.u, for 
all i e I .  But thell 8.b.u~=s.b~-a.u~ for all iEI  and by the uniqueness it follows 
tha t  a-s .b .  Hence D(S)-+C commutes with sums. 

Next  let A IB be given with A, B E D ( S  ) . Let  p: B ~ C  be Coker al . W e  
a~ 5 2 

show tha t  CED($  ). Let 8: E--~F be in $ and c: C ~ F  in C (see diagram below). 
Since BED(S  ) there exists a unique d : B - ~ E  such tha t  s.d=c.p. 

al P 
A \  ~B ~C 

~ d J /  c 

8 

But  A ED($  ) and c.p .al=c.p.a2=s.d.al=s.d .a  2 implies that  there exists a uni- 
que e: A ~ E  such tha t  s . e = s . d . a l - s . d . a  ~. Hence d.al -d .a2=e and by  the deft- 

/ \ 

nition of Coker ~al~ there exists a unique /: C ~ E  such tha t  d=/'p.  But  then 
\ ] 52 

c ' p=s 'd=s . / . p  and c=s.] since p is an epimorphism. Hence CE D($) and we a r e  
done. 

Now let S satisfy the conditions of Theorem 2.8 again. 

Definition 2.13. C c  C is the full subcategory defined by  

Go = {A E Co I aA: *r r (A) -~ A is an isomorphism}. 

Proposition 2.14. (a) Go = D(S)-  

(b) $ = E(C0). 

Proo/. (a) Assume that  aA: A-> A is an isomorphism and let/ :  A -> C in C and 8:B ~ C 
in S be given. Consider the diagram where [ =*r r I t  follows tha t  / = s- (u. [. aA -1) 
and it is easily seen tha t  this factorization is unique. 

. a  aA ) A_ 

C ac '~ C 

Hence A E 0 ( $ ) .  
Conversely assume tha t  A E D(S). Since ace S we get two diagrams: 

A 

aA 
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zi ~ ,A 
aA 

From the first one we get u: A - ~  such tha t  a~. u = 1A. But  then aA" (u.aA)= aA" 1 
and the uniqueness in the second diagram implies tha t  a A is an isomorphism and 

A EGo. 
(b) The proof of $ =  E(Co) is identical with the first part  of the proof of (a). Assume 

that  t: B-+C is in E(C0) and consider the diagram: 

i 

a B ! ~ ~ l a c  

t ' C  

Since /~, (~ E C0 there exists a unique u such tha t  a c = t .u.  Now t'aB = ac" i = t. (u. i) 
and uniqueness implies that  a~=u. t .  But ae, ace  $ and from Proposition 1.14 we 

conclude that  u E S = S and hence t E $. 

Proposition 2.15. (a} The imbedding funetor j: C ~ C  has a right adjoint ]*: C ~ C .  
(b) The categories C and CS -1 are equivalent. 

Proo/. (a) follows immediately from Proposition 2.14 by  setting j*(A) = *r r = ~i. 

(b) First we observe that  if A, BEC0 then the canonical map 

Homc (A, B) - - ~  Homcs-1 (r r 

is bijeetive. Hence the functor ~.~: C ~ C $  -1 is fully faithful. Furthermore,  r 
r162 is an isomorphism and thus every object in C$ -1 is isomorphic to an 
object of the form r  with BEC 0. This implies that  r  is an equivalence. 

3. Functorial properties of C $  -1 

In  this section we study the behaviour of C$ 1 under functors and changes of S. 

Proposition 3.1. Let  F: C-+O be left exact and assume tha t  C is small and has 
finite lim._. Set S = St and let F = F I ' r  be the canonical factorization of F. Then: 

(a) r is left exact and an epimorphism in Cat. 

(b): F 1 is left exact and conservative, i.e. F 1 (a) is an isomorphism if and only if 
a is an isomorphism. 

Proo/. (a): We know that  r is left exact (Corollary 1.10). That  r is an epimorphism 
follows from the universal property of C$ -1. 

(b): Fl(as -1) =F (a ) .  F(s) -1 by definition. Assume tha t  F(a) .F(a)  -1 is an isomor- 
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phism. I t  follows that  F(a) is an isomorphism and hence a E SF. Thus r and a8 -1 = 
r162 -1 are isomorphisms and F 1 is conservative. To prove that  F 1 is left exact 
we first note that  FI(~(A1) • r ~ (F 1-r (A 1 • A2) = F(A 1 • A~) : F(A1) • F(A~) 
FI(r ) • FI(r so F 1 commutes with finite products. 

By Lemma 1.6 it is sufficient to consider kernels of pairs of the form /4(al)~ 
\4(a~)]" 

Then 

Ker ~Fl(4(al)~ = Ker  [ F ( a l ) ~  F ( K e r  ( : : ) )  
\Fl(4(a2) ] \F(az)] 

= ~ l ( 4 ( K e r  ( : : ) ) ) ~ / ~ 1 (  Ker  (~((::)))), 

since r commutes with kernels. Hence F 1 is left exact. 

Definition 3.2. Let  S c C  and $1cC1 be categories such that  S and Sl are nice 
and satisfy ($1) and ($2). A functor G: CI~C is continuous (with respect to $1 and S) 
if G(S1)c S.~ Assume furthermore that  *r and *r exist. G is called cocontinuous if 

G((Q)o) ~ Co. 

Proposition 3.3. (a) G: C I ~ C  is continuous if and only if there exists a functor 
~: CISI_I.__>C s 1 such that r162 

(b) G: CI-+C is c0continuous if and only if there exists a functor G: C1S1-1~CS -1 
such that  *r G ~ G.*r 

Proo/. (a) This follows directly from the definitions. v v 
(b) Assume that  G is cocontinuous. Then we define a functor G: CI~C by setting 

G(a) = G(a) for all a E Cr  Clearly G. ?'1 :?." 4 and we have a diagram: 

r ) C 

C 1 5 ;  1 ) CS -1 

where 

Furhermore, 

Then we get 

J~. Jl ~ i~,  j*. j ~ / ~ ,  61. "61 ~ ~ and r  "6 ~ L 

Jl' J~ = *4" r and j .  j* = ' 4 -  4.  Set G = r  G. *r 

�9 4 ~ = ' 4  4 G. "41 ~ i J*. c .  ( '41 41) "41 

: j" j*' (G" ?.1)" J~" "41 = ?." (?.** ?.)" 4" ?.~" *41 

(?." 4)" ?.~'' *41 = G' (?.1" ?.~)" *41 = ~" (*41" (41" *41)) ~ a" *41" 
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Conversely, assume that  there exists G such that  *r G ~ G.*r Let  B C (Cl)0, i.e. 
*r ._r ~ B. Then we get *r .r ~*r .r (G'*q~l)-r ~ *r (r162 G'r ~ 
*r G'r ~ G. *r162 ~ G(B), i.e. G(B) CCo and G is cocontinuous. 

Remark. (a) Since r is an epimorphism, it follows that  G is unique with property 
�9 r 1 6 2  a .  

(b) If G is both continuous and cocontinuous, then ~ ~ 0 =r  G.*r 

Proposition 3.4. (a) Assume that  G: CI-~C has a right adjoint G*. If G is coeon- 
tinuous then G* is continuous and G has a right adjoint (0)* =r G*'*r 

(b) Assume that  G has a left adjoint *G. Then *G is cocontinuous if and only if 
G is continuous and ~ has a left adjoint *(~). 

Proo/. (a) We have *r G ~ G.*r since G is cocontinuous. Using the fact that  *r 
is fully faithful we obtain: 

Homes I (G(A) ,  B)  ~ Homc(*r *r ~ Homc(G'*r *r 

Homc,(*r G*.*r ~ Home, s~-~(A, r G*'*r 

which shows that  (0)* =r G*'*r 
Now taking right adjoints of both sides of G.*r ~*r gives r G*~ (G)*'r i.e. 

G* is continuous. 
(b) If G is continuous then r 1 6 2  Assuming that  *(0) exists we conclude 

that  *G.*r =*r *(G) and *G is coeontinuous. Conversely if *G is cocontinuous, then 

(a) implies that  (*G)* = G is continuous and so G ~r G. *r exists. Hence 

Homes I(A, G(B))~Homcs I(A, r162162 *r 

Homc,(*r (*G)(A), "61(B)) ~ Home, s,-l((*G)(A), B) 

since *G is cocontinuous, and r is fully faithful. This shows that  *(0)= (*G). 

Remark. Let G: C1---'C be left exact with C1 small and let $ c  C be nice and satisfy 
(SO and ($2). T h e n  $1={aeCI[G(a)ES}~C1 satisfies (S 0 and $2) and makes G 
continuous. 

Proo]. $1 = $r c and r G is left exact. 

Proposition 3.5. Let  S~cC for iEY be a set of nice subcategories of C, each of 
them satisfying (S 0 and ($2). Let  $ be the subcategory of C generated by I,J~Si. 
Then $ is nice and satisfies (S1) and ($2). 

Proo/. A morphism s in S is a finite composition s,.sj" ....sk=s with sic $i, sjE Sj, 
etc. Given a E C with the same terminal as s there exist t i E $i and a, C C such that  
a.ti=s~.a i since $i is (S 0. Similarly there exist tjESj and ajEC such that  a,.tj= 
sj.aj. Continuing in this way a finite number of steps we prove that  S is (Sa). In  
the same way we verify (S~). 

Let  ACCo and s: C-->A in S be given. Assume that  s=s,l.s~,'...'s~, with si~ESi~ 
for k = 1, 2 .... , n. 
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Denote by  J~) the set of objects to which every �9 8~ , B in Si can be extended in 
S~ (saying tha t  S4 is nice). Considering the  following commuta t ive  diagram we find 
tik: A~k~A~k 1 in $i~ with A~kEJA~k_I for k = 1, 2 .. . . .  n and Aso =A.  The existence of 

t 'E S~, etc. follows from ($1). Hence there exists u E C  such tha t  

U 
C,  A 

I i j 
I / 

�9 ( �9 ( A i z  

�9 , A .  

A 
s. u = t ~ .  ti~. ... �9 t~,~ ES. 

Now define K~ = J~') and K~k+l = U B~K~eJ~+I) for k = 1, 2, . . . ,  n - 1. Then A~ EK~,~ 

and K~n is an object in ~ns. Final ly we set K~ = U (i,, i ...... i~) K~ where the union 
is taken over all finite subsets of J .  Clearly K~ is in ~ns and every morphism in S 
ending in A can be extended in S to an object in K~. Thus $ is nice and we are 
done. 

Proposition 3.6. Let  $4 and $ be defined as in Proposi t ion 3.5. Then r C-+CS -1 
is the fiber sum (in Cat) of r C-+CS[ 1, iCY. 

Proo]. Consider the diagram: Since S~c S then exist U~ such tha t  5 - U ~ . r  for 
all i~3.  Given funetors Fi: C S - ~  such tha t  F~.r162  for all i, iCY then 
G(s) is an isomorphism for every s E S. Hence there exists a unique functor  H: 
CS ~ such tha t  G=H.r  Then F ~ . r 1 6 2  U~'r and it follows F~=  
H .  U~ for all i E J since r is an epimorphism. I t  is easily seen tha t  H is unique with 
this p roper ty  and the proof is finished. 

C ' C S i  "1 

4. Hereditary properties 
I n  this section we consider properties of C which are inherited by  CS -1 under  

various conditions on S. 

Proposition 4.1. Let  S c  C satisfy ($1) and  ($2). Then  

(a) I f  C has finite lim._ so has CS -1. 
(b) If  C is additive so is CS -1. 

Proo/. (a) is Corollary 1.10. 
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(b) From proposition 1.9 we know that  C S  -1 has finite products. Let  0 be a zero- 
object in C. Then clearly r is a final object in CS -1. Consider the following com- 
mutat ive  diagram: 

s a 

Here we read off tha t  as-l=OoBlo -1 for all aEC, sES. 
Hence Homes 1(r r consists of exactly one element and r is a zero- 

objeet in CS -1. 
Given two morphisms in Homes I(A, B), they can be represented as  a l  8-1 and 

a2s -1, and we define addition by  al s-1 + a 2 s - l =  (a 1 +a~)s -1. This defines an abelian 
group strueture on Homcs-l(A, B), as is easily checked. 

Let  C be a category with finite limits. Then, given any  morph ism/ :  A ~ B  in C, 
there exists a eanonieal faetorization. 

Here 

AxBA Pl lA / 'B ~.-~I ,B+.~B 

P~ ql [} 92 
f 

Coim / , I m  / 

AxBA 'A 

A ,B / 

is the fiber product of / by itself ("the square o f / " ) .  B + AB is defined dually and 

(i:) q = Coker _Pl_ and ] =  Net  .It  is easy to check tha t  there exists a unique f such 
\ P 2 /  

that  / = ]- [ .  q. 

Definition 4.2. A category C is called regular if C has finite limits and / (defined 
above) is an isomorphism for every [ EC. 

Example. Ens, any topos, any  abelian category, are all regular categories. 

Definition 4.3. An epimorphism (monomorphism) /: A-->B is e//ective if 

Proposition 4.4. Let  C be a regular category. 

(a) The factorization, / = j .  q, of a morphism / into an epimorphism q and a mono- 
morphism ?" is unique up to an isomorphism. 
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(b) Eve ry  epimorphism (monomorphism) is effective�9 

(c) If  ] is both  a monomorphism and an epimorphism, then  / is an  isomorphism. 

Pro@ (a) Since kernels and cokernels are only defined up to isomorphism we m a y  
as well assume tha t  C o i m / = I m / .  Assume tha t  ] = j . q = v . u  where v is a mono- 
morphism and u an epimorphism. We look at  the following diagram: 

A xB A Pl I A q , Imf  ? ' B 

] 'Pl=/ 'P2 implies tha t  v . u . p l = v . u . p e  and u . p l  = u . p 2  since v is a monomorphism.  
Hence there exists a unique a such tha t  u = a.q and a must  be an epimorphism since 
u is. Fur thermore ,  v . a .  q = v. u = / = j. q and v. a = j, since q is an  epimorphism. F r o m  
the  fact  t ha t  } is a monomorphism it follows tha t  a is both  a monomorphism and  an 
epimorphism. (c) implies tha t  a is an  isomorphism. 

(b) I f  l: A-+B is an epimorphism, then  i1=i2 is an isomorphism and j: I m  I ~ B  

is an isomorphism. Hence / = Coker (Pp:) and / is an effective epimorphism. 

(c) Since / is both  an  effective epimorphism and  a monomorphism we know f rom 
the  proof of (b) tha t  j and q and hence ] are all isomorphisms. 

Remark 4.5: I t  is easily verified tha t  a morphism I is an effective epimorphism 

if and only if there exists a pair ._ I .  such tha t  [ = Coker al . 
as  a 2 

For  the rest of this chapter  we assume tha t  $ ~ C is a nice subcategory con- 
taining the isomorphisms of C. 

Proposition 4.6. Let  C be regular and let $ c C  be such tha t  r C-+CS -1 is exact  
{e.g. satisfies $1, $2, S O and S~ Then CS 1 is regular. 

Pro@ Let  a =/s -1 be a morphism in CS -1. We first show tha t  it suffices to consider 
morphisms of the form r with a e C. Indeed  we have c~=r where/5 = r  -1 
is an isomorphism in CS -1. Consider the following diagram (in CS-1), where every- 
thing commutes:  

Pl 

2t • A ~ C xBA ~A 

C xB6' ' C 

A ~ , C  , B  
/5 r 
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Here we used the fact A • c (C • B A) ~ A  • B A. Hence p~ =fl-l .q~.y (i = 1, 2) where 

 oim , 

/ \ 

~Coker  [qx)=Coim (/). Similarly we have I m  (r  
\ / % 

Now let c~=r be a morphism in CS -1 where/ :  A-->B is in C. We take r on the 
diagram preceding Definition 4.2 and use the fact tha t  r commutes with finite 
limits. Hence Coim r 1 6 2  (Coim/) and I m  r = r  ( Im/) .  Furthermore ~(]) = 
r .r -r and f is an isomorphism. I t  follows that  r is an isomorphism (since 
is a funetor) and CS -x is regular. 

Proposition 4.7. Let  S c C  satisfy the assumptions of Proposition 4.6. Let / = ] . q  
be the canonical factorization of a morphism in C. If  / C S then ], q C S. 

Pro@ r162162 is an isomorphism and hence r is a monomorphism. But  
q is an epimorphism and r is exact, hence r is an epimorphism. I t  follows tha t  
r is an isomorphism since CS -x is regular. Thus q C S and similarly j C S. 

Definition 4.8. An epimorphism/:  A-~ C is called universal if for every morphism 
g: B--->C the lifted morphism/1 is an epimorphism. 

1 
A x c B  , B 

A ] ' C  

A universal monomorphism is defined dually. 

Proposition 4.9. Let  C be regular and r exact. If  every epimorphism (monomor- 
phism) in C is universal, then the same is true for CS -1. 

Proo/. I t  is clearly sufficient to consider epimorphisms of the form r wi th /CC.  
Let /=  j .q be the canonical factorization of / in C. Then r =r162 is the canoni- 
cal factorization of r since r is exact. By uniqueness we conclude tha t  r is an 
isomorphism if r is an epimorphism. Hence we can restrict to the case of r - r  
where q is an epimorphism in C. I t  is also sufficient to take fiber products with mor- 
phisms of the form r with gCC. Since r is exact, it commutes with fiber products 
and the result follows. 

Proposition 4.10. If C is abelian and r is exact then CS -1 is abelian. 

Pro@ Follows directly from Propositions 4.4 and 4.6. 

Proposition 4.11. Assume that  C has lira,_ and *r exists. If  C has a cogenerator 
so has CS -1. 

Pro@ I f  C is a cogenerator then r is a cogenerator of CS -1. Indeed 
t tOmcs-l( ' ,  r162 C) is faithful since *r and HOme(',  C) are. 
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f~ 
Definition 4.12: Set A(X) = Home(X, A). A pair R ,~ A is an e~uivalence relation 

f2 
in C if for all X E Co the induced map R(X)->A(X) • A(X)  defines an equivalence 
relation (in the usual sense) in the set A(X).  

(,:) Assume tha t  C has finite limits. Set further A �9 A I R  = Coker . The equi- 

valence relation R is effective if R = A • A/RA -- the  square of p. 
]'1 

Lemma 4.13: Assume tha t  ~: (2-+ CS 1 has a right adjoint r If  R - - , ~  A is an 

r 
equivalence relation in CS - i  then r ~ r is an equivalence relation 

r 
in C. 

Proof. Consider the following diagram (for an arbi trary X E C0): 

r 
Homc (X: 4)* (R)) } Home (X, r (A)) 

11" 
I-Iomc$ 1 ((~(X), R) ~ Home $ 1 ( r  A) 

f2" 

The lower pair defines an equivalence relation in Ens for every X CC0. By eom- 
muta t iv i ty  the same is true for the upper pair since the vertical maps are bijeetions. 
From this the Lemma follows. 

Proposition 4.14. Assume that  C has finite limits and that  r C ~ C S  -1 has a right 
adjoint r If  every equivalence relation is effective in C, then the same is true in 
CS-1. 

Proof: Let R _ _ ~ A  be an equivalence relation in CS -1. Consider the diagram 
f~ 

(in CS 1): 

fl p 
R ' A ' A / R  

31h I ~112~ 
A x A,RA 

where A x A/a A is the square of p. Since p .  I1 =P"/2 there exists a unique h such tha t  
/ 1 -g l ' h  and f~-g2.h. Considering that  r is left exact and hence commutes with 
fiber products, we apply r to the diagram above: 

~* (A) x ~,(~) ~,(,,)r (,A) 

\ ,;D* (I1) "% . ,  ':/:'* (P) , - 
r  , , , . ,  , r  ( A ) ~ r  (A/R)  

~* (A) x r162 (A) " ~ 6 "  (A)/r (R) = Cokcr 
r 
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Here  (m~, me)is  there square of q = C o k e r  ~r By Lemma 4.13, r  r ~r 
is an equivalence relation in C and hence is effective. I t  follows tha t  the canonical 
morphism x, such tha t  m~.x =r i = 1, 2, is an  isomorphism. Since r162 
r162 it follows from the definition of Coker t ha t  there exists a unique u such 
t h a t  q~*(p) = u.q.  Furthermore,  r .m 1 = u- q. m 1 - u.  q. m 2 =r -m 2 and thus there 
exists a unique y such tha t  m~ =r i = 1, 2. Then we get r162162 
m~.. x =r Y" x and hence r = y. x by  uniqueness. 

Now we take r on the diagram. Using tha t  r is exact  and tha t  r .r ~ Ics-1 we see 
tha t  r A/R-+r162162 is an  isomorphism. Bu t  this implies t ha t  r is an 
isomorphism and from (r162162162 we find tha t  (r162 is an  isomor- 
phism. Since r162 ~ Ics-  1 we finally conclude tha t  h is an isomorphism and R ~ A 
is effective. 

Due to a theorem of Linton ([6], Prop. 3) a category C is varietal if and  only if 
there  is a functor  U: C-+Ens having a left adjoint  *U and the following axioms are 
satisfied: 

(0) C has kernels and cokernels, 
(1) a morphism p in C is an  effective epimorphism if and only if U(p) is surjective. 

A 
(2) A pair R ; A in C is a square of a morphism g if and only if 

fz 
u(A) 

U(R) : U(A) 
U(fD 

is an equivalence relation in Ens (Def. 4.12). 

Proposition 4.15. Let  C be a varietal  category and assume tha t  r C-+C$ -1 has an  
exact r ight  adjoint  r Then CS -1 is varietal. 

Proo]. V = U . r  C$-l-+Ens has a left adjoint  * V = r  We know tha t  C$  -1 
has kernels and cokernels since C has. 

(1): Let  q: A-+B be an effective epimorphism in CS -1. I f  A • B A is the square 
Pl q 

of q then A • ~ A ~ A , B is eaxct  in C$  -1. But  since r is exact  we see tha t  
P~ 

r r 
r • , . ( . ) r  r • . A )  : r �9 r (*) 

r 

is exact  in C. Hence r is an  effective epimorphism in C and  U.r V(q) is 
surjective in Ens. 

Conversely, assume tha t  V(q)= U-r is surjective in Ens. Then  r is an  
effective epimorphism in C and (*) is exact. Now we take  r on (*) and use the fact  
t h a t  r is exact  and tha t  r 1 6 2  Ics-1. We get a diagram: 

J?'r215162162 , r  r  

A x ~ A  ~A ,B  
P.. q 
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The upper row is exact and the vertical morphisms are all isomorphisms. I t  follows 
tha t  the lower row is exact and q is effective. 

f~ 
(2) Let  R = A • BA ~ A be the square of g: A - + B  in CS -1. Then 

f2 

(r 
r 

is the square of r in C. Since C is varietal 

( U" r : ~ W(/1)~ 
u.r \V(l~)/ 

(**) 

is an equivalence relation in Ens .  
f~ 

Conversely let R ; A be given in CS 1 and assume (**) is an equivalence re- 
f~ 

lation in Ens .  But  then 

r 
r 

s a square in C. Taking ~b on it we get a commutat ive diagram in C$-1: 

r r (/1) 
r r  (R) r  r ~ r r 

/, 1 ~ 4 ,  
R I A  

The first row is a square since r is exact. I t  follows tha t  also the second row is 
a square and this ends the proof. 

Proposition 4.16. Let  C be a category with finite limits and such tha t  all epimor- 
phisms and monomorphisms are universal. Set 

S = {sCCI  s is both an epimorphism and a monomorphism}. 

Then S satisfies ($1) , ($2) , (S~ (S ~ and hence r C - + C S  -1 is exact. Furthermore,  
CS -1 is regular. 

Proo/ .  Everything is clear except that  CS -1 is regular. I t  is sufficient to study the 
canonical factorization of a morphism of the form r  ]EC. Let  ] = j . [ . q  (j a 
monomorphism, q an epimorphism) be the canonical factorization of / in S. Since 
r is exact it is sufficient to prove t h a t / E  S, i.e. tha t  / is both an epimorphism and a 
monomorphism. 

We show tha t  ] is a monomorphism (then [ is an epimorphism by  duality). Assume 
t h a t / ,  u 1 = / .  us and consider the following diagram: 
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A x z A  
p l  / 

,~A )B  

U l  

U2 

Le t  (q~, v~) be the  f iber  p roduc t  of (ui, q) for i = 1, 2. qi is an  ep imorph i sm since q is 
a universa l  ep imorphism.  Le t  (rl, re) be the  f iber  p roduc t  of (ql, q2). As before rl,  r 2 
are  ep imorphisms  and  ql.rl =q2.r2. Set  w~ =v,.r  i for i = 1, 2. Then  [. u 1 = [ .  u 2 impl ies  
t h a t  j .  [.  u 1 �9 ql" rl  = ]" [" u~. q2" r2 o r / .  w 1 - / .  w 2. 

F r o m  the  def ini t ion of A • B A we see t h a t  there  exists  w such t h a t  w 1 = p l ' W  a n d  
w2 = P2" w. I t  follows t h a t  u 1 �9 ql" ?'1 = q "  V l "  r l  = q" Y21 = q "  P l "  W = q "  p 2 "  ~t0 - -  q "  W 2 = q "  Vg" ~'2 = 

u~. qe. r 2 = u 2. ql"rl- Hence  u 1 = u 2 since qv  rl is an epimorphism.  Thus  f is a mono- 
morph i sm and  the  proof  is finished. 

Corollary 4.18. I f  we fu r the rmore  assume t h a t  C is addi t ive ,  t hen  C$  1 is abel ian.  

5. Special categories and examples 
I n  this  sect ion we consider  special abe l ian  categories  (in pa r t i cu l a r  the  ca t egory  

of modules  over  a ring) and  give some examples .  

Proposi t ion 5.1. Assume t h a t  C is abe l ian  wi th  lim_~ and  t h a t  r C-+CS -1 has a 
r igh t  ad jo in t  r If  l im over  f i l te red  J is an  exac t  functor  in C, t hen  the  same is 

- 7 "  
t rue  in CS -1. 

Pro@ W e  know t h a t  C$ -1 has lira (Corollary 2.7). Fu r the rmore ,  since 4 '  r ~ I ts-1 

and  r commutes  wi th  lim, we get  

l im ~ lim-q~, q~* ~ ~ i l i~ .  4*" 

The las t  l im is t aken  in C and  is exact .  Bu t  q~* and  q~ are  left  exac t  and  so is 

lira in C$-1.  Since lira a lways  is r igh t  exac t  we are  done. 
7 7 . - - - .  

Corollary 5.2: The  same assumpt ions  as above  and  assume fu r the r  t h a t  C has  a 
genera tor .  Then CS -1 has  exac t  lira over f i l te red  J and  a genera tor .  Hence  CS -1 

has in jec t ive  envelopes.  

Pro@ This follows f rom Corol lary  4.110 and  [3] (p. 362). 

Remark. Assume t h a t  C is abe l ian  and  t h a t  r is exac t  and  r exists.  I f  B E (CS-1)o 
is in jec t ive  then  r is in jec t ive  in C. 

Pro@ We have  Home(- ,  r  1(r B). This  is an  exac t  func tor  since 
i t  is the  composi t ion  of r and  Homes 1(' ,  B) which bo th  are  exac t  since B is injec- 
t i re .  Hence  r is inject ive.  

F o r  convenience we set C r = y(S)  = {A E C] r162  ~ A }. 
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Proposition 5.3. The same assumptions as in Corollary 5.2. Let  Q(A) denote the 
injectivc envelope in C of A EC0. If BECk) then Q(j(B))EC~). Here ?': C~)~C is the 
imbedding. 

Prop/. Since C o is equivalent to CS -1 it has the same properties. In particular 
BECk) has an injective envelope u: B-+C in C~) (Corollary 5.2). If v: j(B)-+Q(j(B)) 
is the injeetive envelope of )'(B) in C we get a diagram in C. 

j(B) i(u) ' ] (C) 

Q(j(B/) 

j(u) is a monomorphism since ?" is left exact. Q(](B)) is injective and hence there exists 
w: ](C)~Q(j(B))such that  v-w.](u).  Furthermore, w is a monomorphism since v is 
essential. But then also j(u) and w are essential ([8], Lemma 2.4, p. 88). Since ](C) 
is injective in C, j(C) is an injective envelope of ?'(B) in C. This implies that  w is an 
isomorphism and finally Q(](B)) EC~). 

Proposition 5.4 (6abriel). Let  C be abelian with generator and exact filtered lim_~. 
Then S~  C is saturated and satisfies (S p) if and only if S = ~ ( O )  where O is contained 
in the set of injective objects of C. 

Prop/. Assume first that  O consists only of injective objects. Then 

HQ=Homc(. ,  Q): C ~ Ab ~ 

is exact and hence SHQ is (S p) and saturated for all QEO. Proposition 1.13 then 
implies that  ~ ( 0 )  = [1 Q ~ oSHQ is saturated and satisfies (S~ 

Conversely assume that  S is saturated and satisfies (sO). We form CS -1 and C ~ 
and set O={QEC~)IQ is injective}. OcC~) and hence ~ ( O ) ~  ~(C~))=,~= S (Propo- 
sition 2.14 ~ b). We must show that  ~ ( O ) c  S. Let  u: A ~ B  be in ~ ( O )  and consider 
the exact sequence O-->K->A-+B-+C-+O where K - K e r  (u) and C=Coker  (u). H'e 
want to show that  r is an isomorphism, that  is r  and r  since r is 
exact. Now u E ~ ( 0 )  implies that  HQ(U) is an isomorphism for every Q E O. But HQ 
is exact since Q is injcctive and thus HQ(K)= 0 and HQ(C)= 0 for every Q E O. Let  
r162162162 denote the injcetive envelope of r162 By Proposition 
5.3 Q(r162 and hence Homcs-l(r162162162 
(K, Q(r162 We get Endcs-l(_C(K))=0 and so r  Similarly r  
and r is an isomorphism and u E S =  S. This shows ~ ( O ) c  S and finishes the 
proof. 

Example 5.5. Let A-~C be a Serre subcategory of the abelian category C i.e. if 
O~A-+B--->C-+O is exact in C then BEAo if and only if A and CEA0 ([3], p. 365). 
Set $={sECIKcrs, Coker sEA0}. Then S is ($1), ($2), (S p) and (S~ $ is nice if C 
has a generator. r C--->CS -1 is exact and C$ -1 -C/A ,  the quotient category of C 
with respect to S ([3]). If r exists, A is called a localizing subcategory. Conversely, 
if r C-+C$ -1 is exact, then Kerr162 is a Serre subcategory and 
C$ -1 =C/Ker  r 
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Example 5.6. Let C be an abelian category and S - { s  ECIs is an essential mono- 
morphism}. S satisfies ($1) and ($2) and is nice if C has a generator. C$ -1 is the 
spectral category of C (see Gabriel-Oberst: Spektralkategorien, Math. Z. 92, 1966, 
p. 389). If  C is a Grothendieck category, then C$ -1 is abelian. 

Example 5.7. Let B be a small category and set C=~=Hom (B ~ Ens), the cate- 
gory of set-valued presheaves on B. Let $ c  C be the subcategory consisting of the 
bicovering morphisms corresponding to some Grothendieck topology on B (see [10]). 
Then $ is conice and satisfies ($1), ($2) and (so). I t  follows tha t  r C-->C$ 1 is exact 

and has a right adjoint r and C$ -1 is equivalent to Y ( $ ) = B = t h e  category of 
sheaves for the given topology on ~ (Propositions 2.14~ and 2.15~ 

Conversely given C = ~ and any $ ~  C such that  r C->C$ -1 is exact and r exists 
then CS -1 is equivalent to a category of sheaves for some topology on B. Indeed 
C$ -1 is equivalent to Y(C) and the imbedding Y ( $ ) ~ C = ~  has an exact left adjoint 
since r is exact. The result now follows from a theorem of Giraud ([10], Prop. II.3.19). 

A topos is a category equivalent to a category, ~, of setvalued sheaves ([10]). 

Proposition 5.8. If  C is a topos and r C--->CS -1 is exact and r exists, then C $  -1 

is a topos. 

Proo/. Proposition 4.9 and 4.15 that  show two of the characteristic properties 
of a topos ([10] Def. II.4.12) are preserved under forming of CS -1. One can verify 
that  the same is true for the other axioms of a topos. However, it is easy to give 
a direct proof. The imbedding 

has an exact left adjoint and the theorem of Giraud mentioned above implies tha t  
y($) is equivalent to a category of sheaves. Hence CS -1 is a topos. 

A radical in an abelian category C is a monomorphism ~: R ~ I c  in Hom (C, C), 
such tha t  R-Coker ~ = 0  ([7]). 

Proposition 5.9. Let  r C-~-S-1C be a left fractional category. Assume that  r 
exists. Set R - K e r f l  r "Ic where fi: I-+r162 is the adjunction morphism. Then 

R r ' Ic is a radical in C and R is left exact. 
Set Bo = {B EColR(B)= 0}. Then the imbedding L: B-~C of the full subcategory 

has a left adjoint *L. Furthermore,  Y($)c  B0. 

Proo/. Using Theorem 2.8~ one verifies tha t  R(A)~Ker s for any  s: A--->Q with 
sE $ and QE.Y(S). Let flA: A~r162  be factored through ImflA as flA=k-h_with 
k a monomorphism and h an epimorphism. Proposition 4.7 implies that  k E $ and 
since r .r E Y($) we get R (Coker ~%) = R (Im flA) ~ Ker  k = 0. Hence R is a radi- 
cal. Clearly R is left exact. 

I t  is easily checked that  *L=Coker~0=Im/~ is a left adjoint of L. Finally, if 
A E U(C) then flA is an isomorphism and R(A)=Ker flA = 0 .  
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Example 5.10. If C = Ens there are only two saturated subcategories: C itself and 
all isomorphisms in C. For the proof one uses Proposition 4.7 and the fact that  the 
subcategory is closed under fiber products. 

In other categories there are in general many saturated subcategories. For the 
category of right modules, ~R, over a ring R, there is a one-to-one correspondence 
between certain sets of ideals in R (see [3] and [ll]) and subcategories $ of C = ~ R  
such that  the corresponding 4: C --->CS-1 is exact and has a right adjoint. 

We collect some elementary observations in the following proposition (For a proof 
see [1]). 

Proposition 5.11. Let R be a commutative ring. If r ~ R = C - + C S  -1 has a right 
adjoint r then the following is true: 

(a) Homes I(A, B) has a canonical R-module structure. 

(b) The bijections h: Hom cs- i (4 (A) ,  B) ~ ,  Hom (A,4*(B)) are R-module iso- 
morphisms for all A CC0, B E (C$-1)0 . 

(c) 4" is representable. 

(d) S=4*.4(R)  is an R-algebra and the canonical map fla: R-+4"4(R)  is a ring- 
homomorphism preserving identity element. 

(e) S ~ E n d c s - l ( 4 ( R ) )  and fiR: R-+S induces an isomorphism Enda S = ,  S. 

(/) If B E Y(S) then fir induces and isomorphism Horn n (S, B)-~ B. 

Remark. If 4 has both left and right adjoints, then S can be characterized by one 
ideal A (satisfying A ~ =A) in R (see [9]). 

Example 5.12. Let C=~0~R be the category of right R-modules over a ring R. 
Let  T c  R be a multiplicative subset satisfying (S1) and ($2) when R is considered 
as a category with one object. Then R T  -1, the ring of right fractions of R with 
respect to T exists (see [3] p. 415). R T  -1 is R-flat and thus the functor F = "  |  -1 
is exact. Clearly F commutes with lim_~. If we set S = St, then S is nice, ($1), ($2) 
and (S ~ and hence 4:C~+CS-1 has a right adjoint 4". We have F ( A ) = A  |  -1 
for all A EC0. Hence F .  F ( A )  = ( A T  -1) T -1 ~ A T -1 = F(A) .  One verifies that  CS -1 
is equivalent to the category of right modules over the ring S =4" "4(R) = RT-I"  
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