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Fractional categories

By GERT ALMKVIST

Introduction

In this paper we study the “localization” of a category C with respect to certain
subcategories §. This is done by a category of ‘“right fractions”, C$~! and a functor
¢: C—>CS$. In §1 conditions for the existence of CS1 are given and it turnsout
that ¢ is left exact.

In § 2 the existence of left adjoint *¢ of ¢ is discussed. If *$ exists, a full subcate-

gory C of C is defined. C consists of those objects A such that *¢-$(4) ~ 4. It follows

that C is equivalent ot CS§1.
If in the dual case (i.e. the right adjoint ¢* exists) ¢ is exact and C is a category of

set-valued presheaves then C is a category of sheaves for some Grothendieck topo-

logy. Furthermore the imbedding functor C—(C has a left adjoint which is the asso-
ciated sheaf functor.

Section 3 is devoted to a study of the functional properties of CS§—1, i.e. its behaviour
under functors and under change of §.

In §4 properties inherited from C to C$™! are studied under various conditions
on §. If ¢* exists, it follows that if C is abelian (a topos), then C$-! is also.

In § 5 some examples are given when C is a special abelian category, in particular
when C is the category of modules over a commutative ring.

Notation and generalities

All categories in this paper are sets. Let U be a fixed universe (see [10], Exp. VI).
If nothing else is stated a category C will mean a UY-category, i.e. for any pair of
objects A, B in C there is a bijection from Hom¢(4, B) onto a set belonging to U.
Ens is the category of sets of cardinality less than Card (U). A category C is small
if the set underlying C is in Ens.

If C is a category we denote the set of objects of C by C, and identify C, with
the identities of C. If F: C—D is a functor, then a functor *F: D— is a left adjoint
of F (and F is a right adjoint of *F) if there is a functor isomorphism Hom. (*F-,-)»~
Hom, (-, F-). Let J be a small category and let C: C—Hom (J, C) denote the func-
tor that maps each 4€C, onto the constant functor C, defined by C,(x)=1, for
all x€J. C maps the morphisms of C in the obvious way.

If C has a right adjoint, 0*=lim._: Hom (J, C)—C then C is said to have J-lim,.

In particular if C has J-lim_ for all small (finite) J, then C has (finite) lim,.
*C =lim,, is defined dually.
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G. ALMKVIST, Fractional categories

If a category has both lim. and lim_, we say it has limits.

A functor having a left (right) adjoint commutes with lim. (lim.,).

In particular lim. commutes with lim.. A functor commuting with finite lim
(lim.,) is called left (right) exact. It is exact if it is both left and right exact.

If J is a discrete small category (i.e. J,=J), then lim. (lim_) coincides with the
product ], (swum @®,). The sum in Ens is the disjoint union and is denoted by [T.

1

Let 4 :l B be a pair of morphismsin C. Then the kernel (or equalizer), (Zl) — 4
2

is defined a:s follows:

a
Ker (al) — A4 a:‘
1 U 2
i
EN g: \4i
|

1) ay-t=ay"1.
(2) For all f such that a,-f=a,'f there exists a unique g such that f=i-g.

Ker (Zl) is a special case of finite lim...
2

Coker (Zl) is defined dually. A diagram of the form Ker (Zl) — " 3.issaid to
2 2, as
be exact.
A functor commutes with (finite) lim.. if and only if it commutes with Ker and
(finite) products.
Given two morphisms s: 4 B and a: C'— B we define the fiber product (pull back)

Ax,0—2—¢
all 1(1
A——B

of a and s by the universal property:

(1) a-s;=s"a,.

(2) Given any f,g such that a-f=s-g then there exists a unique A such that
f=s,-h and g=a,-h.

The fiber product is also a special case of finite lim..

A functor F is faithful if F(a,)= F(a,) implies a; =a,. An object G is a generator
if Hom (@, -) is faithful. Cogenerator is defined dually.

F
Two categories C; and C, are equivalent if there exist functors C; <> 0, such that
F
FyFi~1o, and Fy-Fy~Ig,.
(I is the identity functor of C.)
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C° denotes the dual category of C.

If (8) is any statement, then (8°) is the dual statement. -

An object 4 in C is nitial (final) if Hom (4, B) (Hom (B, 4)) consists of exactly
one element for all BE€C,. ‘

A is a zero-object if it is both initial and final.

1. Existence theorems

Let C be a U-category and let §<C be a subcategory containing all the isomor-
phisms of C (so in particular §,=C,). We say that § is nice if for every object 4 €C,
there is a set of objects, J, €U such that for every s: O~ A4 in § there exists u: D—~C
with D€J, and s-u€S.

Conice is defined dually.

If C is small than every § is nice.

Definition 1.1. A functor ¢: C—CS$-! from C to a category C$— defines a right
fractional category of C with respect to § if the following axioms are satisfied:
Fy: ¢(s) is an isomorphism for all s€ §.
Fy: Every morphism «€CS$—* can be written as a=¢(a) $(s)! with ¢ €C and s€S.
Fgy: ¢lay) =d(a,) if and only if there exists s€ § such that a,-s=a,-s.

The left fractional category $~1C is defined dually.

Theorem 1.2. Let S=C be a nice subcategory containing the isomorphisms of C.
Then C$- exists if and only if the following two conditions are satisfied:

8;: For every a€(, s€ § with common terminal, there exist €C and ¢ € § such that
s'b=a-t.

Sy If s:a;=5-a, where s€ § and a,, a, €C, then there exists £ € § such that a,-t =a,-¢.

Proof. Assume first that (S;) and (S,) hold.

We construct C$-! in the following way. We first set (CS$~1),=C,. Given two
objects 4 and B we consider the set of all pairs (a, s) where a €C and s€ § such that

there is a diagram 4 2.~ B. On this set we define a relation, ~, as follows:
(@, 81) ~ (@, 8,) if and only if there exist u;, u,€C such that s;-u, =8, u,€§ and
ay° Uy =0y U,. A computation shows that ~ is an equivalence relation. We now
define the set

Homes—(4, B) = [ ] (Homy(C, 4) x Hom¢(C, B))]/ ~ .
Ce;A
CS§71 clearly becomes a UY-category.

. . . . 8 a .. .
Since § is nice every pair 4«— E—— B is in the same equivalence class as

some A < —(C "> B with ¢ €374. For obvious reasons we denote. by as~! the equi-
valence class represented by (a, s).
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G. ALMKVIST, Fractional categories

Let as~! and bt~! be two morphisms in CS-! suitable for composition. By (S;)
there exist £, € § and a, €C such that a-f, =¢-a,, i.e. we have a diagram:

BN
. s . a . t . b )

A rather long but straightforward computation shows that (b-a,)(s-#,)~! does not
depend on the various choices made. For the details see [1].
We now define the composition CS$—! by:

(bt71) - (@s™) = (b-ay) (s-8))

One verifies that the composition is associative.

We define ¢: C+>CS™! by ¢(4)=4 if A€, and if a: A— B is a morphism in C
we set ¢(a) =al'.

Then clearly ¢ is a functor and as'=¢(a) $(s)~? so F, is satisfied.

F, and F, are also trivial to check.

To prove the converse let a €C and s€ § with common terminal be given. Using
(F3) we can find b, €C, ¢, €§ such that $(s)"1-d(a) =¢(b,)-{t;) L or ¢{a-t,) =¢(sb,).
By (F,) there exists sy€ § such that a-f;-s;=5-b;'s,. Put t=¢,-5,€§ and b=b;-s,
and we get a-t=s-b which is (S;).

If s-a, =s-a, with s€ §, then ¢(s)-d(a,) =¢(s) ‘$(a;) and hence ¢(a,) =¢(a,) by (F,).
From (F,) we conclude that there exists {€ § such that a,-t=a,-f.

This ends the proof of the theorem.

Proposition 1.3. The functor ¢: C->CS§~! solves the following universal problem:
Given any functor F: C—D such that F(s) is an isomorphism for all s€§, then
there exists a unique functor G: C$~1—D such that F=G-¢.

¢

C »CS™
| i
D(

Proof. Putting G(as™1)=F(a)- F(s)™! one verifies that @ is a well-defined, unique
functor such that ¥ =G¢.

Corollary. If C$! exists, then it is unique up to an isomorphism. In particular
if $§71C also exists then $-C~(CS-L.

Remark.
Hom(A, B)= lim Hom.(C, B),

(C>4)
in $1/4

where §,,4 is the category with objects C—> A where s€ § and C€F, and whose
morphisms are the commutative diagrams
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¢ Cy
2

N

Proof. From 8, and S, it is easily seen that (S,/,)° satisfies the axioms of a “psen-
dofiltered category” (see [10], def. 2.7). Now the computation of lim_, can be made
in the oldfashioned way for directed sets and we immediately get the result.

with % a morphism of C.

Lemma 1.4. Let s;: 4,5 B be in § for ¢=1,2, ..., n. Then there exist u;: C—~4,
t=1,2, ..., n, such that s;-u;=s€ § for i=1,2, ..., n.

Proof. For n=2 the lemma is (S;). For larger » it follows by induction.

Lemma 1.5. Assume that s€§ and s u; =s-uy=...=$"u,. Then there exists € §
such that

Uy b= t=...=u," L.
Proof. For n=2 it is (S,). For larger n it follows from Lemma 1.4 by induction.

Lemma 1.6. (“putting fractions on common denominator”): Let a;; A—B; be
morphisms in C$2 (=1, 2, ..., »). Then there exist s€ § and a,, as, ..., @, €§ such
that a;=a;s 1 fore=1,2, ..., n.

Proof. Assume that «; can be represented as a;=b,t;'. Then we use Lemma 1.4
to find w; such that s=¢;-u;€S (¢=1, 2, ..., n). Finally we put a;=b;-u; and get
bit:'=(byru)(tou) ' =as T fori=1,2, ., n.

Lemma 1.7. Assume that s€§ and s-u;€§ for 4=1,2, ..., n. Then there exist
Uy, Vg, ..., ¥, such that u; v, =uy-vy=...=u,-v,=u and s-u€S§.

Proof. First use Lemma 1.4 and then Lemma 1.5.

Proposition 1.8. If C has kernels, then CS-! has kernels and ¢ commutes with
kernels.
-1
Proof. By Lemma 1.6 it is sufficient to consider pairs of the form (:1::_1
2

) in C§

Hence all we have to do is to show that

wor (o) =4 (r (7))

Consider the diagram:
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6. ALMKVIST, Fractional categories

where k= Ker (al

o,

/\
U M N,

al-k‘ %b

Hence there exist u,, u, €C such that ¢-u; =t 4, and a;-b-u; =ay b-u,. Using (S,)
there exists s,€ § such that u,-s,=1u,"s,=u say.

Hence t-u€ § and a;-(b-u)=a,(b-u). By the definition of kernel there exists a
unique b; such that k-b;=b-u. Then clearly ¢(k)- (by(¢-u)"1) =bt~ and we only need
to show uniqueness.

Assume that ¢(k)-(cs™1) =bt1=¢(k): (by(t-u)~!, i.e. there exist v, v, such that
t-u-v, =s-0,€8 and k-b;-v; =k-c-v,. But k is a monomorphism and it follows that
b, v, =c-v, and hence cs*lzbl(t-u)‘1

) - Assume a, - (bt1) =a,- (bi~1).

Proposition 1.9. If C has finite products so has C§~! and ¢ commutes with finite
products.

Proof. We show that ¢(4, x 4,) =¢(4,) x$(4,). Given two arbitrary morphisms
oy B4, and a,: B—~A4, we may assume (by Lemma 1.6) that o; —a,s7! and o=
a,s~t. The definition of product in C then implies that there exists a unique a such
that p,-a=a, and p,-a=a, (p,, p, are the canonical projections). Clearly

a5t =¢(py) - (as™),
ay st =¢(p,)* (as™).

To show the uniqueness of as~ assume that ¢(p;)- (b s™1) =¢(p,) - (bys™) for ¢=1, 2.
The there exist u,, u, such that s-u;€ § and p;-b,-u;=p; b, u,, %—1 2. Lemma 1.7
implies that there exist v,, v, such that U=1u;-v, =%y vy and s-u€ §. Hence we get
Pibyru=p;-by-u, =1, 2, and then b,-u—=>b, u that together with s-«€ § says that
bysl=bys L.

Corollary 1.10. If C has finite lim_ so has C§~! and ¢ is left exact. If C also has
finite lim_, and C is S;, §,, 8%, and 83 then C$-! has finite limits and ¢ is exact.

Definition 1.11. Let F: C—~D be a functor. We set Sy={s€C|F(s) is an isomor-
phism}. A subcategory § of C is called saturated if § satisfies (S;) and (8,), and
§=§; for the corresponding ¢: C—~CS$-1.

Proposition 1.12. Assume that C is small and has finite lim_ and let S<C be a
subcategory. Then § is saturated if and only if §= §; for some left exact functor

F.C-D.

Proof. ¢: C—>CS§1 is left exact and §= §, if § is saturated. Conversely if F: C->D
is a left exact functor, then F commutes with kernels and fiber products.
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The morphisms in §;, the existence of which is required in (:S;) and (S,), are easily
constructed by fiber products and kernels, respectively. By the definition of CSz'
we find a factorization F=G-¢$ where ¢: C—~CS™'. Hence if ¢(s) is an isomorphism
then F(s)=G(¢(s)) is an isomorphism and $p=§,. Thus §; is saturated.

Proposition 1.13. Let $,=C be saturated for all t€J and assume that C is small
and has finite lim. . Then §=[,;$; is saturated.

Proof. First we show that § satisfies (S;) and (S,):

S;: Let a€C and s€8§, i.e. s€S;=S§y, for all €J, where qu C—~CS:t We form the
fiber product and it is clear that

$1

$ €8y, for all ¢€J. Hence s,€$ and a-s, =s-a,.

ax s a o pe
8y I - 3—— is given with s-a,=s-a, and s€ §, then Ker (al) € § satisfies
as 2

the requirements.

Consider the diagram:

¢

c—2 .cs
N 10

CS$:t

Since $<§,, $,(s) is an isomorphism for all s€ §. Hence there exists a functor U,
such that ¢, =U,;-¢. If $(s) is an isomorphism, i.e. s€ §4, then ¢;(s)=U(¢(s)) is an
isomorphism for all i€.J.

Thus s€ §4,=§; for all i€J and s€N;$;=§ which proves that § is saturated.

Denote by § the smallest saturated subcategory of C that contains § (if it exists).

Proposition 1.14. Let S<C be nice and satisty (8;) and (S,). Then S= Ss={a€C|He,
d€C such that a-c€$ and ¢-d € §} is nice.

Proof. S_ = S¢ follows from the universal properties of ¢: C—CS8~1. Call the right-
hand side 7.

J< §4: Assume that a €7, i.e. there exist ¢, d €C such that a-c=s€ Sand ¢c-d ={€ §.

Then $(a)-$(c) =¢(s) and $(c)-$(d) =(t).

Thus ($(s)2-¢(s))-p(c) =1 and H(c)(d(d)-$(t)~) =1. Hence ¢(c) has both left and
right inverse. It follows that ¢(a) =d(s)-¢(c)~!, is invertible and a € §,.
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6. ALMKVIST, Fractional categories

$4<T: Leta€ §, with(a)~! =bt~!, where b€C and{€ §. Then we have a commuta-

tive diagram:
¢ \

da)-bt1=1 gives a-b-u;=u,—t-u, € S. We set ¢=b-u, and get a-c=u,€§. Now
bt-1 —cu,~1 =¢(a)~! and hence (c-u, 1) ¢(a) =1 and we have the following diagram:

(S,) implies that there exist u,€S, a,€C such that uy-a,=a-u; Thus c-a, v, =
vy=1u3-v € § and d=a,-v, will do.
One verifies that § is nice.

2. Existence of adjoints of ¢: C—>CS™*

In general when a functor F: C—D is given, one can ask if F has adjoints, com-
mutes with limits or if F is left or right exact. So far we only know that ¢: C—>CS§™*
is left exact. We will find conditions for the existence of left and right adjoints of ¢.

Definition 2.1. Let C have lim.. Let F, Q: J->C be two functors from a small
category J-and ¢: F--G a funetor-morphism such that ¢(i) € § for all 1€J,. We say
that S satisfies (Sg) if under the above assumptions lim ¢: lim_ F—lim_ Gisin §.
If the above is true for all finite J, we say that § satisfies (S5™").

Remark 2.2. (S,) is equivalent to the following:

(@) If in the following commutative diagram, where the rows are exact, s, $,€ §,
then the induced morphism s€ §.

Rk

(b) If s; A;~ B, isin § for all i€J, then [],s;: [[;4,~]], B;is also in §. (In case
of (8,™) we take J finite in (b).)

Proposition 2.3. Assume that C has finite lim._.
(@) If § is (S;7) then § is (S;) and (S,).
(®) If §is (S;) and (S,) then § is (S5").
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Proof. (@) Assume that § is (S;™™).

S,: Let s: A—>Cin § and a: B—C be given.
Consider the diagram (where everything commutes).

lp

Bx.,C=B
° S ! B/IB,
o]0
/A y O&‘
C ’ Lo C

Here A x (Band B=B x ,C are finite lim__. Since 1, 1, and s€§, (8,™®) implies that

B

5 €C.
8,: Consider the diagram, where s-a, =s-a, with s€ §.
; a
Ker (“1) L 4— =B
a, 2
7 11,1 s
. s-a
A =Ker (‘9 “1) e a—=—0
Sty Sty

Since 1,, s€ §, (S,"?) implies that 1€ § and a,-7 =a,-1.
(b) This follows directly from Corollary 1.10 and Proposition 1.12.

Remark. In particular (S;) implies (S;) and (S,).

Theorem 2.4. Let C have lim._. Assume that § is nice, saturated and (S;). Then
for every A €(C, there exists a morphism s,: 4~ 4 in § such that for every s: C—4
there exists a unique u: A—C such that s,=s-u. Furthermore, ¢ has a left adjoint

*¢: C§7—C.

Proof. J={s: C—~A|s€S§ and C€F,} €Y since § is nice. We form the fiber pro-
duct B of all s: C—+A4 in J. Then every &: D—>A in § can be “extended” to B (see
the diagram) and z € § since § is (S,).

B
e
Cy x
i
cl \
D A

17

Setr H = {b: B—>B|x-b=x}. Every b€H is in § because § is saturated. Let y: A-B
be the projective limit of all b€H (i.e. the kernel of perhaps infinitely many mor-
phisms). Then y is a monomorphism and b-y=b"-y for all b, b’ € H. Let ¢: C—>CS§!
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G. ALMKVIST, Fractional categories

be the usual functor. Then ¢(x) is an isomorphism and ¢(x) =¢(x) () implies that
$(b) =145 for all bEH. Hence $(y) =14 since ¢ commutes with lim and it fol-
lows that y € §. Then s,=z-y € § and there exists k: 4->A4 such that x=s,-h=z-y-h.
Hence y-h€H and since 1,€H we get y-h-y=15-y=y. But y is a monomorphism
and so

hoy=15.

To prove the uniqueness of the extension assume that iz D~ A4 is in § and that there
are two morphisms u,v: 4~ D such that sy=t-u—t-v. By (8,) there exists t,€
such that u-t, =v-f,. Now s,-t, € § so there exists {,such that s,t; -, =s,. Furthermore,
t,€ § since § is saturated and setting d =y-t,+t,-h we find z-d =z. Hence d € H and
d-y=y or y-t,-t,-h-y—y. Then £, is an epimorphism since y is a monomorphism
and finally we get u =v.

We define two maps

Home, 1 ((A), (D)) =2 Hom(d, D)

by the following: ¢(as1)=a-u where u is the unique morphism such that s,=s-u,

ple)=csy L

One verifies that ¢ is welldefined and that ¢ and y behave functorially with respect
to A and D and that they are each others’ inverses. Hence *¢ exists and 4 =*¢-$(4).

Remark 2.5. If § is (S;) and (S,) but we do not know that § is nice, then we can
construct C§—! as in Theorem 1.2 but CS~! is not necessarily a U-category. How-
ever, if ¢: C—~CS§ 1 has a left (or right) adjoint, *¢, then

Homc-1(4(4), $(B)) ~ Home(*¢ - $(4), B)
and CS$-1is a U-category.

Proposition 2.6. Assume that C has lim_ and that § is (S;) and (S,). If ¢: C->CS—2
has a left adjoint *¢: C->CS$-1, then

(@) C§' has lim. and ¢ commutes with lim_,
(b) § is nice and (Sy).

Proof. (@) We only need to show that C$-1 has products. Tndeed [[,4(4,) =
H(I14,)) will work which follows from the isomorphisms below, valid for any
BIT(CS™)y:

Hom,-1(B, I;I¢(Al)) = Home,-1(B, 95(13141))

~ Hom(*$(B), I}Ai) ~ I;[ Hom(*¢(B), 4;)

~ I; Hom¢ (B, ¢(Az))

Clearly ¢ commutes with lim,_.

(b) An argument similar to the proof of Proposition 1.12 shows that S= S48 (S3).

458



ARKIV FOR MATEMATIK. Bd 7 nr 32

Let a: *¢-¢— 1. and b: I.-1—~¢-*$ be the adjunction morphisms. Then we have
(see [3]) dlay) by =Ly for every A €C,. Assume that by, =ct with ¢€C, 1€S.
Then (a,-c)~'=1,.,) and there exists u€§ such that a,-c-u=¢t-u€S§. Let u start
at 4,. Hence a, can be extended to a morphism in § starting at 4,. But every
morphism s: D—>4 in § can be extended to a,. This follows immediately from the
diagram below:

B ag *¢’ “p(4)
SJ lm
At $(A)

Remark 2.7. Theorem 2.4 and Proposition 2.6 imply that the adjunction mor-
phism a,: *¢-¢(4)—> A is in § for every 4€C,.
Furthermore, we can take A =*¢-$(A).

All this can be formulated in the following way:

Theorem 2.8. Let C be a U-category with lim. and let S<C be saturated. Then
the following statements are equivalent:

(@) ¢: C—>CS* has a left adjoint *¢;
(b) § is nice and (S,);

(¢) For every 4€C, there exists sy A—A4 in § such that for every s: 0-~4 in §
there exists a unique u: 4-—>C such that sy=s-u.

Remark 2.9. 1t is also true that if § is (8;) (but not necessarily saturated) then ¢
commutes with lim.. (see {1]).

For the rest of this chapter we assume, unless something else is stated, that §
satisfies the conditions in Theorem 2.8.

Propesition 2.10. (a) The adjunction morphism b: I;-1—>¢-*¢ is an isomorphism.
(b) *¢ is fully faithtful.

Proof. (a) In the proof of Proposition 2.6 we had the following: ¢(a4)-bya) =1sca)-
But ¢(a,) is an isomorphism (Remark 2.7) and so is by, for every A4 €C,. It follows
that b is an isomorphism.

(b) We must show that the canonical map:

@: Homes-1(¢pA, $B) - Hom, (*¢ - A, *¢ - .B)
is a bijection for all A, BEC,,
Let cs~': ¢(A4)—~>$(B) be given. Writing A for *¢-$(4) we get a commutative dia-

gram where é="*¢-$(c).
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i—x s ¢ .3
aAl A lac laB
A PR C z B

@ is given by g(cs)=¢-v. One verifies that ¢ is well defined and has an inverse y
where y(f) = (ap*f)a,* for a given f: A—B.

Definition 2.11. (a) Let § be any subset of C. We define a subset of C, in the
following way:

D(S)={P€C,| forall s: A>Bin §and all b: P~ B in C there exists a unique
a: P— A such that b=s-a}.
J(S) is defined dually.

(b) If 0<=C,, then we define a subset of C as follows:

E(0)={s: A-B| for all PEQ and all b: P—>B in C there exists a unique
a: P-4 such that b=s-a}.

M(O) is defined dually.

Remark. If §=all epimorphisms (monomorphisms) in C, then P(S§) (J(S) is a
subset of the projective (injective) objects in C,. The definitions look similar to those
of projective (injective) classes (see [8] p. 135 and [7]), but we require uniqueness
for the morphism a.

Proposition 2.12. Let S=C and O<(,. Then

(@) 0,<0, implies £(0,)= E(O;) and M(0,)> M(Os);

(b) $,< S, implies P(S,)> P(S,) and J($1)=> I(Ss);

(¢) SSEP(S), SSMI(S), O< PE(O) and O<=IM(O);

(@) DEP(S)=DP(S), ete.;

(e) H C has lim_ (lim.,), then Q) is (8;) (M(QO) is (5;5°) for any O<Cy;

(f) The embedding functor P(S)—S(J(C)<=C) of the full subcategory P(8)(J(S))

into C commutes with lim_, (lim.) for any S<C.

Proof. (a)—(d) follow from the usual lattice arguments.
(¢) The functor HY =Hom, (P,-): §—>Ens commutes with lim.. But then £(0)=
NreoS,p is (S3) since each Sar is.

(/) We show that P(S)—C commutes with sums and cokernels. Let P,€D(S)
for all i€ 1. We want ®,P,€ D(S). Let s: A—~B be in § and let a: ®,P;~ B be in C.
Let u;: P,— @ P, be the canonical morphism.

Since P,€ P($), there exists a unique b;: P,—~A4 such that s-b;=a-u, (for all t€I).

Uy

Pi - GIB P‘
by b7 la
pRSait A,
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By the definition of sum there exists a unique & @ ;P,~.A4 such that b,=b-u, for
all s€1. But then s-b-u;=s-b,=a-u, for all €] and by the uniqueness it follows
that o =s-b. Hence P(§)—~C commutes with sums.

Next let A—= B be given with 4, BEPD(S). Let p: B->C be Coker (Zl). We
2

show that CE€P(S). Let s: E—~F be in § and ¢: C—F in C (see diagram below).
Since BE [)(§) there exists a unique d : B->E such that s-d=c-p.

ay P
A\\a2 B /,O
ld =y l
\E( 3 F

But A4€P(S) and ¢ pra;=c-p-ay=s-d-a,—s-d-a, implies that there exists a uni-

que e: A— E such that s-e=s-d-a, =s-d-a, Hence d-a;=d-a,=e and by the defi-

nition of Coker (Zl) there exists a unique f: O—E such that d=f-p. But then
2

¢p=s-d=s-f-p and c=s-f since p is an epimorphism. Hence C'€ P(§) and we are

done.

Now let § satisfy the conditions of Theorem 2.8 again.

Definition 2.13. C<C is the full subcategory defined by
éo={A €ECylaa: *¢-$(4)—~A is an isomorphism}.

Proposition 2.14. (a) CO— D(S).
(b) S$=E(Co).

Proof. (a) Assume that a,: A~ 4 is an isomorphism and let f: 4 ~Cin C and s:B—~>C
in § be given. Consider the diagram where f =*¢ -¢(f). It follows that f=s-(u-f-a,)
and it is easily seen that this factorization is unique.

Ay

RS

Hence 4 € P(S)

Conversely assume that 4 € P($). Since a,€ § we get two diagrams:
A a

31:5 461
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o
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From the first one we get u: 4—~ 4 such that a,-u=1,. But then a,- (u-a,)=a,-1
and the uniqueness in the second diagram implies that @, is an isomorphism and

A€C,.
(5) The proof of S< £(C,) is identical with the first part of the proof of (a). Assume
that ¢ B—~C is in £(C,) and consider the diagram:

Since B, C_'Eéo there exists a unique u such that a;=t-u. Now t-az=ac-I=t-(u-?)
and uniqueness implies that az=u-{. But ag, a;€ § and from Proposition 1.14 we
conclude that € §=§ and hence {€S.

Proposition 2.15. (a) The imbedding functor 7t C—>Chasa right adjoint j*: C—>é.
(b) The categories C and CS! are equivalent.

Proof. (a) follows immediately from Proposition 2.14 by setting j*(4) =*¢-¢(4) =A.
(b) First we observe that if 4, BEC, then the canonical map

Hom, (4, B) —— Homgs-1 ($(4), ¢(B))

is bijective. Hence the functor ¢-j: CV—>CS‘1 is fully faithful. Furthermore, #{a,):
#(A)—~¢(4) is an isomorphism and thus every object in C$~! is isomorphic to an
object of the form ¢-j(B) with B€C,. This implies that ¢-5 is an equivalence.

3. Functorial properties of CS™"
In this section we study the behaviour of C$! under functors and changes of §.

Proposition 3.1. Let F: C—D be left exact and assume that C is small and has
finite lim,_. Set §=S; and let F = F, ¢ be the canonical factorization of F. Then:

(@) ¢ is left exact and an epimorphism in Cat.

(b): F, is left exact and conservative, i.e. F; (a) is an isomorphism if and only if
a is an isomorphism,

Proof. (a): We know that ¢ is left exact (Corollary 1.10). That ¢ is an epimorphism
follows from the universal property of CS-L.

(b): Fi(as™t)=F(a)- F(s)! by definition. Assume that F(a)- F(a)~! is an isomor-
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phism. It follows that F(a) is an isomorphism and hence a € §;. Thus ¢(a) and as—1 =
¢(a)-P(s)~! are isomorphisms and F, is conservative. To prove that F; is left exact
we first note that Fi(d(4,) xp(Ay) ~ (F-¢)(A; x Ay) =F(A, x Ay) = F(A4,) x F(4,)~
Fi($(A,)) x Fi($(4,)), so F; commutes with finite products.

¢(“1))

b(a) ’

By Lemma 1.6 it is sufficient to consider kernels of pairs of the form (
Then ‘
F (‘]S(a’l)) (F(a1)) ( (al))
Ker ( ! =Ker ~ F|Ker
F($(as) Fla) ay

o) ()

since ¢ commutes with kernels. Hence F, is left exact:

Definition 3.2. Let S<C and §;<=C,; be categories such that § and §; are nice
and satisfy (8;) and (S;). A functor G: C,~C is continuous (with respect to §, and §)

if G($;)<S. Assume furthermore that *¢ and *¢, exist. G is called cocontinuous if

G((Cido) = Co-

Proposition 3.3. (a) G: C;—~C is continuous if and only if there exists a functor
G: C,8,71—>CS ! such that ¢-G=G-¢,.

(b) & C,;—~C is cocontinuous if and only if there exists a functor ¢: C,$,1~>CS$™!
such that *¢-G~G-*¢,.

Proof. (@) This follows directly from the definitions.
() Assume that ¢ is cocontinuous. Then we define a functor G C1—>C by setting
G(a)=G(a) for all a,GCl. Clearly G+j,=j- & and we have a diagram:

v

¢ ¢
71(1:117 p 7@7
N
G 8t ——~——>CS"1
where it~ I, gy, byt~ T and ¢ F T

Furhermore, jiojt="*¢-dy and j-j*="*¢-$. Set G=¢- G- *,.
Then we got  *b-G="*b-d- G- *bp ~j-j*- G- (*b,- ;) *¢,
= (G f) - A= () G ¥
N Q) fE =G (- GT) =G by (br- b)) ¥ Gy
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Conversely, assume that there exists @ such that *h G~ Q% Let BG(CI)

*$1°$i(B)~ B. Then we get *¢-$-G(B)~*b-¢ (G- ") dy(B) ~*¢-($-%¢)- G-by(B
*b- G- (B)~G-*p, -, (B)~G(B), i.e. G(B)€EC, and G is cocontinuous.

Remark. (a) Since ¢, is an epimorphism, it follows that ¢ is unique with property

G-¢,—¢-G.
(6) If G is both continuous and cocontinuous, then G~G=¢-G-*,.

Proposition 3.4. (a) Assume that G: C,—C has a right adjoint G*. If & is cocon-
tinuous then G* is continuous and G has a right adjoint (G)* =¢,-G*-*¢.

(b) Assume that G has a left adjoint *&. Then *@ is cocontinuous if and only if
@ is continuous and G has a left adjoint *(G).

Proof. (@) We have *¢-G~G-*$, since G is cocontinuous. Using the fact that *¢
is fully falthful we obtain:

Home;-1(G(4), B) ~Homc(*¢- G(A4), *$(B)) ~Home(G-*$(4), *$(B))
~Home,(*¢1(A), O*-*$(B)) ~ Home, 5,~(4, ¢, G*-*¢(B)),

which shows that (G)* =, G*-*¢.

Now taking right adjoints of both sides of G*$, ~*$-G gives ¢, - G* ~(G)*-¢, i.e.
G* is continuous.

(b) If G is continuous then ¢-G=G-$,. Assuming that * (G) exists we conclude
that *G-*¢ =*$,-*(G) and *@ is cocontinuous. Conversely if *@ is cocontinuous, then

(@) implies that (*G)* =@ is continuous and so G~¢-G. *$, exists. Hence
Homg, 1(4, ((B)) ~Homes 1(4, $-G-*¢,(B)) ~Home, (G- *$(A), *$,(B)
~Home, ("¢, (*G) (4), *$,(B)) ~ Hom, s ~((*C) (4), B)
since *@ is cocontinuous, and ¢, is fully faithful. This shows that *(G) =(@).

Remark. Let G: C;~C be left exact with C; small and let $=C be nice and satisfy
(8y) and (S,). Then §;={a€C;|Ha)eS}=C, satisties (§;) and §,) and makes &
continuous.

Proof. §;=3S5,.¢ and ¢- G is left exact.

Proposition 3.5. Let §,=C for 1€J be a set of nice subcategories of C, each of
them satisfying (8;) and (S;). Let § be the subcategory of C generated by U,S:.
Then § is nice and satisfies (S;) and (S,).

Proof. A morphism s in § is a finite composition s;-s;...-s,=s with s,€§,, s,€S;,
ete. Given a €C with the same terminal as s there exist {,€§; and a;€C such that
a-t;=s; a; since §; is (S,). Similarly there exist ¢,€S; and a,€C such that a,¢;=
$;-a;. Continuing in this way a finite number of steps we prove that § is (S;). In
the same way we verify (S,).

Let A€C, and s: C—~4 in § be given. Assume that s=s,-8;"..."8;, With 5,€Si
for k=1,2,..,n
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Denote by J¥ the set of objects to which every -—*» B in §; can be extended in
S, (saying that §; is nice). Considering the following commutative diagram we find
by Ay~ A1 in Sy with Ay, €J4;,  for k=1,2, ..., % and 4, =4. The existence of
t'€S§,;, ete. follows from (8;). Hence there exists # €C such that :

C
I

Ai1

|

|

d
sizl
S"‘J/

4
Scu=ty t; ... 4,€S.

1 12

Now define K;, =J3’ and K, = U pex;, J 55+ for k=1,2,...,n— 1. Then 4;, € K;,
and K, is an object in Ens. Finally we set K, = Uq,, 1, .., 4) Ki where the union
is taken over all finite subsets of J. Clearly K is in Ens and every morphism in §
ending in 4 can be extended in § to an object in K . Thus § is nice and we are
done.

Proposition 3.6. Let §; and § be defined as in Proposition 3.5. Then ¢: C—~CS$?
is the fiber sum (in Cat) of ¢ C—~CSit, i€J.

Proof. Consider the diagram: Since §,< § then exist U, such that ¢ =U, ¢, for
all i€J. Given functors F;: C§~1~D such that F,-¢,= F,-¢,=G for all 4, j€J then
G(s) is an isomorphism for every s€ §. Hence there exists a unique functor H:
C§$1—D such that G=H-¢. Then F;:¢;=G=H-$=H -U,-¢; and it follows F,=
H-U, for all i€J since ¢, is an epimorphism. It is easily seen that H is unique with
this property and the proof is finished.

C i cSit
c?/ \\F
TR

4. Hereditary properties

In this section we consider properties of C which are inherited by CS~! under
various conditions on §.

Proposition 4.1. Let $<C satisfy (S;) and (S,). Then
() If C has finite lim. so has CS-1.
(b) If C is additive so is CS—1.

Proof. (a) is Corollary 1.10.
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G. ALMKVIST, Fractional categories

(6) From proposition 1.9 we know that CS$-! has finite products. Let O be a zero-
object in C. Then clearly ¢(0) is a final objeet in CS$-'. Consider the following com-
mutative diagram:

0 g A 4 B

A 0
]'O I OOB

Here we read off that as—1=04,1,7! for all a€C, s€S.

Hence Homcs-1{¢(0), ¢(B)) consists of exactly one element and ¢(0) is a zero-
object in CS-L.

Given two morphisms in Hom-1(4, B), they can be represented as a,s~! and
a,571, and we define addition by a;s71 +a,5~1=(a; +a,)s~1. This defines an abelian
group structure on Homgs-1(4, B), as is easily checked.

Let C be a category with finite limits. Then, given any morphism f: A—B in C,
there exists a canonical factorization.

1
Axpd Py —L p+,B
P2 2
qJ [
. f
Coim f——— Im §
Here
Ax g4 e A
le lf
A B
f

is the fiber product of f by itself (“the square of f”). B+ ,B is defined dually and
g = Coker (z 1) and j=Ker (zl) It is easy to check that there exists a unique f such
2 %2
that f=4-f-q.
Definition 4.2. A category C is called regular if C has finite limits and f (defined
above) is an isomorphism for every f€C.

Ezample. Ens, any topos, any abelian category, are all regular categories.

Definition 4.3. An epimorphism (monomorphism) f: 4 B is effective if

can(Z)r - (sef])-)

Proposition 4.4. Let C be a regular category.

(@) The factorization, f=j-¢, of a morphism f into an epimorphism ¢ and a mono-
morphism j is unique up to an isomorphism. ’
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(b) Every epimorphism (monomorphism) is effective.

(c) If f is both a monomorphism and an epimorphism, then f is an isomorphism.

Proof. (a) Since kernels and cokernels are only defined up to isomorphism we may
as well assume that Coim f=Im f. Assume that f=j-g=v-u where v is a mono-
morphism and % an epimorphism. We look at the following diagram:

f-p1=f-p, implies that v-u-p, =v-u-p, and u-p, =u-p, since v is a monomorphism.
Hence there exists a unique a such that w=a-q and ¢ must be an epimorphism since
u is. Furthermore, v-a-g=v-u=f=4-¢q and v-a =4, since ¢ is an epimorphism. From
the fact that j is a monomorphism it follows that @ is both a monomorphism and an
epimorphism. (c) implies that @ is an isomorphism.

AXB.A.———>A

(b) If f: A~ B is an epimorphism, then i; =i, is an isomorphism and §: Im f—B

Y41

is an isomorphism. Hence f= Coker( ) and f is an effective epimorphism.

P,

(¢) Since f is both an effective epimorphism and a monomorphism we know from
the proof of (b) that j and ¢ and hence f are all isomorphisms.

Remark 4.5: 1t is easily verified that a morphism f is an effective epimorphism

. . . . i a
if and only if there exists a pair -=—3- such that f= Coker (al) .
as 2
For the rest of this chapter we assume that $< C is a nice subcategory con-

taining the isomorphisms of C.

Proposition 4.6. Let C be regular and let $=C be such that ¢: C—CS81 is exact
(e.g. satisfies Sy, S, 83 and 89). Then CS1 is regular.

Proof. Let a=fs~1 be a morphism in C§-1. We first show that it suffices to consider
morphisms of the form ¢(a) with a €C. Indeed we have a=¢(f)-8, where f§=d¢(s)?
is an isomorphism in C$-1. Consider the following diagram (in CS$-1), where every-
thing commutes:

P1
PGy e P —
S ~ ~\f
P2 \OJBU————»Q cL
421 ' l‘f’(f)
S 7 B
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Here we used the fact 4 x o (O x z A)y~A4 x 3 A. Hence p;=§"1-¢,-y (i=1, 2) where

-1 . .
B and y are isomorphisms and it follows: Coim (¢(f) - ) = Coker (]; 1) =Coker (‘2_ 1 ilzl 7};)
2 1

~ Coker (gl) ~Coim (f). Similarly we have Tm (¢(f)- ) ~Im /.

2
Now let o =¢(f) be a morphism in C$§-! where f: A— B is in C. We take ¢ on the
diagram preceding Definition 4.2 and use the fact that ¢ commutes with finite
limits. Hence Coim ¢(f)=¢ (Coim f) and Im ¢(f)=¢ (Im f). Furthermore ¢(f)=
$(7)-¢(f)-$(q) and f is an isomorphism. It follows that ¢(f) is an isomorphism (since ¢
is a functor) and CS§! is regular.

Proposition 4.7. Let S<C satisfy the assumptions of Proposition 4.6. Let f=j-¢
be the canonical factorization of a morphism in C. If f€ § then j, g€S.

Proof. ¢(f) =(7}-$(¢) is an isomorphism and hence ¢(g) is a monomorphism. But
q is an epimorphism and ¢ is exact, hence ¢(g) is an epimorphism. It follows that

&(q) is an isomorphism since C$! is regular. Thus ¢€ § and similarly j€ §.

Definition 4.8. An epimorphism f: 4—C is called universal if for every morphism
g: B—C the lifted morphism f, is an epimorphism.

Ax B h oy
911 J!]
A 7 %]

A universal monomorphism is defined dually.

Proposition 4.9. Let C be regular and ¢ exact. If every epimorphism (monomor-
phism) in C is universal, then the same is true for C§™1.

Proof. It is clearly sufficient to consider epimorphisms of the form ¢(f) with fe€C.
Let f=j-q be the canonical factorization of f in C. Then ¢(f) =¢{j) - $(g) is the canoni-
cal factorization of ¢(f), since ¢ is exact. By uniqueness we conclude that ¢(j) is an
isomorphism if $(f) is an epimorphism, Hence we can restrict to the case of ¢(f) =¢(q)
where ¢ is an epimorphism in C. It is also sufficient to take fiber products with mor-
phisms of the form ¢(g) with g €C. Since ¢ is exact, it commutes with fiber products
and the result follows.

Proposition 4.10. If C is abelian and ¢ is exact then C§~ is abelian.
Proof. Follows directly from Propositions 4.4 and 4.6.

Proposition 4.11. Assume that C has lim. and *¢ exists. If C has a cogenerator
so has CS1.

Proof. If C' is a cogenerator then $(C) is a cogenerator of C$~1. Indeed
Homeg-1(+, $(0)) »Homc(*$(+), C) is faithful since *¢ and Hom(-, C) are.
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‘ fi
Definition 4.12: Set 4(X)=Hom(X, 4). A pair R—= 4 is an equivalence relation
7

in C if for all X € C, the induced map R(X)- A(X) x /zl(X) defines an equivalence
relation (in the usual sense) in the set A4(X).

Assume that C has finite limits. Set further 4 7 A/R= Coker(;l). The equi-
2
valence relation R is effective if R= A x 4,54 = the square of p.

J1
Lemma 4.13: Assume that ¢: C—CS$ ! has a right adjoint ¢*. If R——3 4 is an
f2
$* D
equivalence relation in CS™ then ¢*(R) ———— ¢*(4) is an equivalence relation

¢*(f2)
in C.
Proof. Consider the following diagram (for an arbitrary X €C,):

Hom, (X: ¢*(R)) Hom (X, ¢*(4))

A

Homcg—1($(X): 4)

Home;-1(¢(X), R)

-
The lower pair defines an equivalence relation in Ens for every X €C,. By com-

mutativity the same is true for the upper pair since the vertical maps are bijections.
From this the Lemma follows.

Proposition 4.14. Assume that C has finite limits and that ¢: C—+CS~! has aright
adjoint ¢*. If every equivalence relation is effective in C, then the same is true in
CcS§.

Proof: Let R—= A be an equivalence relation in C$™*. Consider the diagram

Ia
(in C§71):

h 4 P

A/R

R
AR
Ax 54

2

—
o
.
<

where 4 x 4,5 A is the square of p. Since p-f, =p-f, there exists a unique  such that
fi=¢1-h and fy=g, k. Considering that ¢* is left exact and hence commutes with
fiber products, we apply ¢* to the diagram above:

5’5*(44) X ¢*(A>w¢‘<m(]5*(f1)

X VIANNUSY
“(f, “
J = ) TP am

/ ¢*(f2) \
4+ () 4,*(,(;1%* w I“ |
¢*(4)/¢* (R) = Coker (‘f’ (fl))

4)* (4) % ¢*(A/R)¢* (4) ¢* (fa)
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E3
Here (m,, m,) is there square of g=Coker ((ﬁ*gl;) By Lemma 4.13, ¢*(R) —=3¢*(4)
2
is an equivalence relation in C and hence is effective. It follows that the canonical
morphism #, such that m;-x=¢*(f,), i=1, 2, is an isomorphism. Since ¢*(p)-¢*(f,) =
H*(p) ¢»*(f2) it follows from the definition of Coker that there exists a unique % such
that ¢*(p) =u-g. Furthermore, ¢*(p)- ml_u g -my=u-q-my=¢*(p)- m2 and thus there
exists a unlque y such that m, qS* )y, =1, 2. Then we get ¢*(g,)-¢*(h) =¢*(f;) =
m;.x=¢*(g,)-y-x and hence ¢*( =y-x by uniqueness.

Now we take ¢ on the diagram Using that ¢ is exact and that ¢-¢*~ I.—1 we see
that ¢(u): A/R—>P(¢*(4)/¢*(R ) 1s an isomorphism. But this implies that ¢( y) is an
isomorphism and from (¢-¢*) (k) =¢(y)-$(x) we find that (¢-¢*)(h) is an isomor-
phism. Since ¢-¢*~ ;-1 we finally conclude that % is an isomorphismand R——= 4
is effective.

Due to a theorem of Linton ([6], Prop. 3) a category C is varietal if and only if
there is a functor U: C— Ens having a left adjoint *U and the following axioms are
satisfied:

(0) C has kernels and cokernels,
(1) a morphism p in C is an effective epimorphism if and only if U(p) is surjective.

A
(2) A pair R—=3 4 in C is a square of a morphism ¢ if and only if
{2
U

U(R)—— U(4)

U(f2)

is an equivalence relation in Ens (Def. 4.12).

Proposition 4.15. Let C be a varietal category and assume that ¢: C-—~>CS$~! has an
exact right adjoint ¢*. Then CS$-1 is varietal.

Proof. V=U-¢* CS$S 1~ Ens has a left adjoint *V =¢-*U. We know that C$1
has kernels and cokernels since C has.
(1): Let ¢: A—B be an effectlve epimorphism in C$-. If 4 x 5 4 is the square

Y41
of g then 4 x , A_,A——> B is eaxct in C§1. But since ¢* is exact we see that
D

¢*@
$*(A) X goim $*(A) = $*(4 x 5 A) $*(4) —— $*(B) (*)
is exact in C. Hence ¢*(g)} is an effective epimorphism in C and U-é*(g)=V(g) is
surjective in Ens.
Conversely, assume that V(q)=U-¢*(q) is surjective in Ens Then ¢*(g) is an
effective epimorphism in C and ( ) is exact. Now we take ¢ on (*) and use the fact
that ¢ is exact and that ¢+¢*~ I ;-1. We get a diagram:

¢ ¢ (Axpd)—=¢ ¢*(4)

, |
Ax A = A

2

470



. ARKIV FOR MATEMATIK. Bd 7 nr 32

The upper row is exact and the vertical morphisms are all isomorphisms. It follows
that the lower row is exact and ¢ is effective.

f
(2) Let R=A x 34 =3 A be the square of g: 4B in CS™. Then
7a
(qb*(fl))
$*(f2)
is the square of ¢*(g) in C. Since C is varietal

(o500~ (7 )

is an equivalence relation in Ens.

Conversely let R ‘_’A be given in C$ ! and assume (**) is an equivalence re-

lation in Ens. But then
(¢*(f1))
¢*(f2)

s a square in C. Taking ¢ on it we get a commutative diagram in C§™:

o b
b

f -
R A
2

The first row is a square since ¢ is exact. It follows that also the second row is
a square and this ends the proof.

Proposition 4.16. Let C be a category with finite limits and such that all epimor-
phisms and monomorphisms are universal. Set

§={s€C| s is both an epimorphism and a monomorphism}.

Then § satisties (S;), (S,), (S9), (S9) and hence ¢: C—~CS! is exact. Furthermore,
CS§-1is regular.

Proof. Everything is clear except that C$~ is regular. It is sufficient to study the
canonical factorization of a morphism of the form ¢(f) with f€C. Let f=j-f-q (j a
monomorphism, ¢ an epimorphism) be the canonical factorization of f in §. Since
¢ is exact it is sufficient to prove that f€ §, i.e. that f is both an epimorphism and a
monomorphism,

We show that f is a monomorphism (then f is an epimorphism by duality). Assume
that f-u, =f-u, and consider the following diagram:
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p
Ax p4 L, g
D2 .
N
%,

Let (g,, v;) be the fiber product of (u;, q) for ¢ =1, 2. ¢; is an epimorphism since ¢ is
a universal epimorphism. Let (r,, 7,) be the fiber product of (g;, ¢,). As before ry, ry
are epimorphisms and ;- 7, =@, 7,. Set w; =v,-r, for i=1, 2. Then f-u, =f-u, implies
that j-7-uy qry=7-F-uy qary OF frwy =f w,

From the definition of 4 x 5 A we see that there exists w such that w, =p,-wand
wy =Py w. It followsthat g 9y, =q v, 1y =q W, = Py W=0" P W=q Wy =q Vg Ty =
Uy* Gy Ty =Wy g, 7. Hence u, —u, since g,-7; is an epimorphism. Thus f is a mono-
morphism and the proof is finished.

Corollary 4.18. If we furthermore assume that C is additive, then C$- is abelian.

5. Special categories and examples

In this section we consider special abelian categories (in particular the category
of modules over a ring) and give some examples.

Proposition 5.1. Assume that C is abelian with lim_, and that ¢: C—~>CS$~! hasa
right adjoint ¢*. If lim over filtered J is an exact functor in C, then the same is

7
true in CS-L.

Proof: We know that C§ * has lim (Corollary 2.7). Furthermore, since ¢ - ¢* ~ Ics-1

and ¢ commutes with lim, we get

lim~lim-¢- ¢*~ - lim - p*.
- 7 7

The last lim is taken in C and is exact. But ¢* and ¢ are left exact and so is

—_—

J
lim in C§~%. Since lim always is right exact we are done.
s -
Corollary 5.2: The same assumptions as above and assume further that C has a
generator. Then CS™' has exact lim over filtered J and a generator. Hence CS™*

—_—

7
has injective envelopes.

Proof. This follows from Corollary 4.11° and [3] (p. 362).

Remark. Assume that C is abelian and that ¢ is exact and ¢* exists. If BE(CS™),
is injective then ¢*(B) is injective in C.

Proof. We have Hom(-, $*(B)) ~Home¢s-1(¢(* ), B). This is an exact functor since
it is the composition of ¢ and Hom¢s 1(+, B) which both are exact since B is injec-
tive. Hence ¢*(B) is injective.

For convenience we set C°=J(§)={4 €C|¢*-$(4d)~ A}.
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Proposition 5.3. The same assumptions as in Corollary 5.2. Let Q(A4) denote the
injective envelope in C of A€C,. If BEC] then Q(j(B))€CS. Here j: Ci—~C is the
imbedding.

Proof. Since C° is equivalent to CS-! it has the same properties. In particular
Be€CH has an injective envelope u: B—C in C§ (Corollary 5.2). If v: j(B)—Q(j(B))
is the injective envelope of j(B) in C we get a diagram in C.

i — oy
UJ /
Q(B)

() is a monomorphism since § is left exact. Q(j(B3)) is injective and hence there exists
w: §(C)—>Q(j(B)) such that v —=w-j(u). Furthermore, w is a monomorphism since » is
essential. But then also j(u) and w are essential ([8], Lemma 2.4, p. 88). Since j(C)
is injective in 'C, §(C) is an injective envelope of j(B) in C. This implies that w is an
isomorphism and finally Q(j(B))€Cs.

Proposition 5.4 (Gabriel). Let C be abelian with generator and exact filtered lim_.
Then S is saturated and satisfies (S3) if and only if §=M(0) where O is contained
in the set of injective objects of C.

Proof. Assume first that (O consists only of injective objects. Then
H,=Hom(-, @): C~>Ab°

is exact and hence Sx, is (S3) and saturated for all QEO Proposition 1.13 then
implies that M(O) =N o« OSHQ is saturated and satisfies (S9).

Conversely assume that § is saturated and satisfies (S3). We form CS—1 and C°
and set O={Q€C;|Q is injective}. O<=C§ and hence T(0)> M(Co)=S§=§ (Propo-
sition 2.14° b). We must show that T(O)< §. Let u: A— B be in TH(O) and consider
the exact sequence O—>K-—~A—B—(C—+0 where K=XKer (u) and C=Coker (u). We
want to show that ¢(u) is an isomorphism, that is ¢(K)=0 and ¢(C) =0 since ¢ is
exact. Now % € M(O) implies that Hy(%) is an isomorphism for every Q€0. But Hy
is exact since @ is injective and thus Hy(K)=0 and Hy(C)=0 for every Q€0. Let
d* H(K) —>Q(¢* ¢(K)) denote the injective envelope of ¢*-¢(K)€CE. By Proposition
53 Q(¢* ¢(K))€C; and hence Homes-1(¢(K), $(K))~Hom (K, ¢*-H(K))~Hom,
(K, Q(¢*-¢(K))) =0. We get Endgs-1((K))=0 and 80 H(K)=0. Similarly ¢(C)=
and ¢(u) is an isomorphism and u€S§=S. This shows M(O)< § and finishes the
proof.

Example 5.5. Let A—C be a Serre subcategory of the abelian category C i.e. if
0—A—~B—C—0 is exact in C then BE€ A4, if and only if 4 and 06,40 ([3], p- 365).
Set §={s€C|Ker s, Coker s€A}. Then § is (8y), (Sy), (51) and (83). § is nice if C
has a generator. ¢: C—~CS1 is exact and C$§2=C/A4, the quotient category of C
with respect to § ([3]). If ¢* exists, 4 is called a localizing subcategory. Conversely,
if ¢: C>CS§? is exact, then Ker¢={4€C,|$(4)=0} is a Serre subcategory and
CS$*=C/Ker¢.
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Example 5.6. Let C be an abelian category and §={s€C|s is an essential mono-
morphism}. § satisfies (S;) and (S,) and is nice if C has a generator. CS™ is the
spectral category of C (see Gabriel-Oberst: Spektralkategorien, Math. Z. 92, 1966,
p. 389). If C is a Grothendieck category, then C$~* is abelian.

Ezample 5.7. Let B be a small category and set C=B=Hom (B°, Ens), the cate-
gory of set-valued presheaves on B. Let $=C be the subcategory consisting of the
bicovering morphisms corresponding to some Grothendieck topology on B (see [107]).
Then § is conice and satisfies (S;), (S,) and (S9). It follows that ¢: C—>CS$1 is exact

and has a right adjoint ¢* and CS$~! is equivalent to J(§)=B=the category of
sheaves for the given topology on B (Propositions 2.14°a and 2.15°).

Conversely given C =8 and any $<C such that ¢: C—CS$!is exact and ¢* exists
then C§-! is equivalent to a category of sheaves for some topology on B. Indeed
CS$-! is equivalent to J(C) and the imbedding J(8S)—~C =B has an exact left adjoint
since ¢ is exact. The result now follows from a theorem of Giraud ([10], Prop. I1.3.19).

A topos is a category equivalent to a category, ﬁ, of setvalued sheaves ([10]).

Proposition 5.8, If C is a topos and ¢: C—C$~" is exact and ¢* exists, then CS™*
is a topos.

Proof. Proposition 4.9 and 4.15 that show two of the characteristic properties
of a topos ([10] Def. 11.4.12) are preserved under forming of C§~*. One can verify
that the same is true for the other axioms of a topos. However, it is easy to give
a direct proof. The imbedding

9(5)~C=B~B

has an exact left adjoint and the theorem of Giraud mentioned above implies that
J(S) is equivalent to a category of sheaves. Hence CS~! is a topos.

A radical in an abelian category C is a monomorphism ¢: R —1I. in Hom (C,C),
such that R-Coker ¢ =0 ([7]).

Proposition 5.9. Let ¢: C->$-1C be a left fractional category. Assume that ¢*
exists. Set R=Kerf 1. where f8: I->¢*-¢ is the adjunction morphism. Then
R—%> 1, is a radical in C and R is left exact.

Set B,={BE€C,| B(B)=0}. Then the imbedding L: B—~C of the full subcategory
has a left adjoint *L. Furthermore, J(§)< B,.

Proof. Using Theorem 2.8°c one verifies that R(4)~Ker s for any s: 4@ with
s€S and QEJ(S). Let f,: A—>¢*-$(4) be factored through Im S, as f,=k-h with
% a monomorphism and % an epimorphism. Proposition 4.7 implies that k€ § and
since ¢*-$(4)€JI(S) we get R (Coker ¢,)=R (Im ) ~Ker k=0. Hence R is a radi-
cal. Clearly R is left exact.

It is easily checked that *L —Coker ¢ —Tm f§ is a left adjoint of L. Finally, if
A€J(C) then B, is an isomorphism and R(4)=Ker ,=0.

474



ARKIV FOR MATEMATIK. Bd 7 nr 32

Example 5.10. If C= Ens there are only two saturated subcategories: C itself and
all isomorphisms in C. For the proof one uses Proposition 4.7 and the fact that the
subcategory is closed under fiber products.

In other categories there are in general many saturated subcategories. For the
category of right modules, My, over a ring R, there is a one-to-one correspondence
between certain sets of ideals in R (see [3] and [11]) and subcategories § of C=Mjz
such that the corresponding ¢: C—~CS$~! is exact and has a right adjoint.

We collect some elementary observations in the following proposition (For a proof
see [1]).

Proposition 5.11. Let R be a commutative ring. If ¢: Mp=C—CS 1 has a right
adjoint ¢*, then the following is true:

{(¢) Homs-1(4, B) has a canonical E-module structure.

(b) The bijections h: Hom c-1(4(4), B) —» Hom (4, ¢*(B)) are R-module iso-
morphisms for all 4 €Cy, BE(CS™),.

(¢) ¢* is representable.

(d) S=¢*-$(R) is an R-algebra and the canonical map f5: B—¢*-$(R) is a ring-
homomorphism preserving identity element.

(¢) S~End¢-1(¢(R)) and By B—S induces an isomorphism End, §—=.8.
() If BEJ(S) then B induces and isomorphism Homy, (S, B)— B.

Remark. If ¢ has both left and right adjoints, then § can be characterized by one
ideal A (satisfying A?=A4) in R (see [9]).

Example 5.12. Let C=M5 be the category of right R-modules over a ring R.
Let T< R be a multiplicative subset satisfying (S;) and (S;) when R is considered
as a category with one object. Then R7-1, the ring of right fractions of R with
respect to 7' exists (see [3] p. 415). RT-!is R-flat and thus the functor F=- @ fRT*
is exact. Clearly ¥ commutes with lim_,. If we set $= S, then § is nice, (8,), (Sp)
and (S9) and hence ¢: C—~CS~! has a right adjoint ¢*. We have F(4)=A4® zRT!
for all A€C,. Hence F:F(A)=(AT)T~AT-'=F(A). One verifies that C§™*
is equivalent to the category of right modules over the ring S =¢*-$(R)=RT.
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