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Renewal theory and the almost sure convergence 
o f  branching processes 

By PETER JAGERS 

Let Z(t), t/>0, Z(0)= 1, be an age-dependent branching process, defined in the 
usual way on a probabili ty space of the family tree type. Let  the probabili ty 
law be determined by  the right continuous life-length distribution G, G(0) = 0, and 

OO ~ k the reproduction law {Pk}~0, P0 + Pl < 1, h(s)= X~=opk8 �9 Thus, in an applied 
language, we count the number of individuals at  time t, Z(t), in a population 
where each member has a random life-length, distributed according to G, and 
where any individual at  its death is substituted by  a random number v of new 
individuals, P{v = k} = Pk. Different individuals are supposed to act independently 
of one another and independence is also assumed between the life-length and the 
reproduction of any specific individual. 

The distribution of Z(t) is determined by  its generating function, F(s, t )= 
E[sZ(t)],E for expectation, F being in its turn determined by  the integral 
equations 

;o F(s, t) = 811 - G(t)] + h{F(8, t -  u)}dG(u), Is] <~ 1, 

as is well known. Differentiating this for s < 1 and passing to the limit s t 1 
with a certain care yields a renewal equation for the mean M, M(t )=  E[Z(t)], 

f: M(t)-= 1 - G(t) § m M ( t -  u) dG(u), 

m =  h'(1), supposed finite [2, p. 140]. From an analogous relation for the generating 
function of the vector (Z(t) ,Z(t+~)),~>~O, equations for the second moment  
k, ,k,( t)=E[Z(t)Z(t+~)],-~>~O, may be obtained in a similar manner, 

k~(t) = 1 - G(t + ~) + m M(t  + T - u)dG(u) + h~(1) M(t - u )M( t  + ~ -  u)dG(u) 

§ m f l  k~(t - u) dG(u), 

h"(1) assumed finite [2, p. 144]. With the help of renewal theory [el. 1], these 
equations may  be used to investigate the asymptot ic  behaviour of the process, 
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as t ime passes. I f  G is no t  a lattice distribution, i.e. its po in t s  of increase are 
no t  integer multiples of some positive number,  m > 1 and ~r satisfies 

mf:e-~tdG(t)=l, 
m - - 1  

then M(t) ,.~ ae ~t, t ~ co, a -  

If  fur ther  h"(1)< co, then 

k~(t) ~ ce ~§ t--> co, ~ >1 O, c = 

and from this it follows tha t  

z(t) 
w(t)-  ae~ 

r162 2 f :  te-~t dG(t) 

h'(1)a~f:e-2~UdG(u) 
1 - m f :  e -2~u dG(u) 

converges in mean  square, as t-> co, to some random variable W with expec- 
ta t ion 1 bu t  a strictly positive variance [2, p. 146]. I n  1960 Harris proved tha t  
if m > 1, h"(1)< co, G is non-latt ice and, furthermore,  

f ~ E [ ( W ( t ) -  W)2]dt < co, 
0 

then W(t) converges also with probabil i ty one to W [2, p. 147]. I f  G has a den- 
si ty g a more manageable criterion is known. Suppose tha t  r e > l ,  h"(1)< co 
and tha t  

f :  [g(t) ]P dt < co 

for some p > 1, then W ( t ) ~  W almost  surely, [2, p. 147]. Here we shall prove 
tha t  the last condition in these theorems m a y  simply be discarded: 

Theorem. I /  m > 1, h"(1)< co, and G is not a lattice distribution, then W ( t ) ~  W 
almost surely, as t--> co. 

The idea is to show tha t  Harr is '  condit ion 

f :  E [ ( W ( t ) -  W)2]dt < co 

is actual ly  satisfied under  the assumptions of the theorem. For  the sake of clar- 
i ty  the proof will be given as a chain of simpler propositions. 

We shall use tradit ional convolut ion notat ion:  

496 



ARKIV FOR MATEMATIK. Bd 7 nr 34 

0, if t < O, 
/*~ 1, if t>/0, 

/*n =/~e/*(n-i), n>~l, 

/ and g supposed to be functions such that  the definitions make sense. Integrals 
~a b should be interpreted as ranging over the half-closed interval (a, b], except 

" ~  t t when a =  0. Then zero is included in the integration. The statement ~a /( )dg( ) 
converges" simply means that  limr-~oo yra/(t)dg(t) exists. 

Our main tool of proof will be renewal theory, where some results of inde- 
pendent interest will be derived, though Tauberian arguments and Laplace trans- 
forms might seem nearest to hand. Let  us therefore begin by stating the so- 
called key renewal theorem in a form suitable for our purposes. 

Proposition 1. I] fl is a non-lattice probability on (0, oo) with finite second 
moment, / is o/ bounded variation on /inite intervals and converges to zero as its 
argument tends to infinity and 

f :  l(t) dt 

converges, then the solutiou x o/ the renewal equation x = / +  x e eft satisfies 

I :  /(t) dt " : : 
lim x(t) - "  

t--~oo W 

where w = f~r tdff(t). 

This theorem is well known, though seldom deduced in detail. A proof can be 
given by applying the fact that, v 2 denoting S~t2d#(t), 

oo 

0 <- ~off*n(t) t v 2 
= - w-> 2w - 2 '  

as t ~  oo [1, p. 357], to the formal solution of the renewal equation: 

oo 

x=t~  Z ,a*". 
n=O 

Elementary approximations will yield Proposition 1. 
We shall also need a much simpler fact, the renewal theorem for defective 

measures [1, p. 361]: 
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Proposition 2. Assume that p is a non-decreasing function on [0, oo) with ~(0) = 0 
and/~(oo)< 1, and that limt_~ f(t) = f( oo ) exists. Then, if x= f + x ~ /~, 

1(oo) 
lira x(t) - 
t - ~  1 -/~(oo)" 

This s tatement is a direct consequence of the following well-known theorem. 

Proposition 3. I f  f is bounded, limt_.c~/(t)=A, g(t) increases to B, as t - ,oo ,  
and f~eg is well defined, then limt~cc/-)eg(t)= AB.  

Proposition 4. Suppose that /a is a probability on (0, oo), satisfying v 2= 
]~ t2d~(t) < oo, that ~ f(t)dt= 0 and that l imt_~ ~ ( t -  u) /(u)du = r exists finitely. 
Then, if x = f + x ~ e ~ ,  

f ? x ( t ) d t =  wr' 

and is, thus, convergent. 

Proof. Introducing 

X(t) = f l  x(u) du 

and integrating the equation for x, we obtain 

x ( t ) =  f 'of(u)du + f l  x ( t - u ) d ~ ( u ) ,  

after a change of the order of integration in the double integral. This is again 
a renewal equation and since 

the assertion made follows from Proposition 1. 
An analogous assertion for defective measures can be deduced by  the same 

trick from Proposition 2: 

Proposition 5. I//~(0) = 0, /~(t) t/~(oo) < 1, as t--> co, and ~ f(t) dt converges, then 
the solution of the equation x=  f+  x ~e p has a convergent integral on [0, ~ )  

Proposition 6. I /  the conditions of Proposition 4 are satisfied, / is o/ bounded 
variation on every finite interval, f(t)=o(t-1), as t-* oo, and ~ if(t)dt converges, 
then ~ tdx(t) is convergent, too. 
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Proo/. Introducing ~ by  

 (t)=foUdX(U) 
(evidently this integral is well defined), we conclude that  

~(t) = f :  ud/(u) + f o X ( t -  u)ua#(u) + f :  ~(t - u)d~,(u) 

in the following way: Integrate u from 0 to t with respect to x and apply the 
relation x = / + x ~+ # to obtain 

Here, integrate the last term by parts, apply Fubini's theorem and perform 
another integration by  parts. But the relation thus obtained is again a renewal 
equation, for ~. Since 

foud/(u)=q(t)-fo/(U)du, 

it follows that  

lira ud/(u) = 0 and that  ](u) 

converges. But  because 

it is also true that  

I: /(t) gt 
lim x(t) - " - -  
t--~oo W 

, 

fo x(t-u)ud~(u)-~O, as t-~oo, 

by Proposition 3. This one combined with Proposition 4 also shows that  

ff-u)udl~(u)= ud~(u) x(g)dt--w-=r, 
O W 

as v-+ oo. Thus, the key renewal theorem, Proposition 1, may be applied, guar- 
anteeing the existence of 

lim ~(t) = w-1 t/(t) d r -  /(u) du + r - 
t-->~ W 
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Proposition 7. Under the assumptions o/ Proposition 6, it holds that x(t) = O ( t - 1 ) ,  
as t-> ~ .  Furthermore, under these assumptions x(t) = o(t- a) i / a n d  only i / S t / ( u )  du = 
o(t-1), as t - §  

The proof is immediate: Integrat ion by  parts  shows tha t  

As t-~ oo the right-hand side has the limit 

tt(t)at+lim]:(t-u)/(u)du ] 
"u 

t-*'~ W 

We now apply our results to branching processes with a nonlattice life-length 
distribution and 1 < m < ~ .  

Proposition 8. M ( t ) ~ a ~  ~t, as t ~  ~ and 

f :  [e -~ tM( t ) -a]d t  

converges 

Proo/. M is known to satisfy M = 1 - G + m M - ~  G. Multiplication by  e- ~t yields 
a renewal equation, since O, 

O(t)=mf:e-~UdG(u), 
is a probabili ty distribution on (0, ~ ) .  But  G has finite moments  of all orders 
and, thus, the key renewal theorem is applicable showing that  e -~ tM( t )~a ,  a 
well-known fact mentioned also earlier in this paper. 

As to the second assertion of the proposition we note tha t  

e-~tM(t) - a = e-'t[1 - G(t)] - a[1 - G(t)] + f t  ~ [e-~,(~- U)M( t U) a]dG(u).  

The fact that  

j ':~ (e- ' t[1 - - a[1 - O(t)]} dt = 0 G(t)] 
0 

is easily checked and in order to apply Proposition 4 it remains to show tha t  
the function % 

f t  (e-~U[ 1 _ G(u) ] -  a l l -  G(u) J} du, ~(t) 
Jo  
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has a convergent integral on [0, ~ ) .  But  

~(O=af;[1-O(u)]du-f~e-~[1-G(u)]du. 
However, by  l%bini's theorem 

f:dt f~e-~[1-G(u)]du= f:e-~%l-G(u)]du f:dt= f:ue-~%l-G(u)]du< ~. 
And, similarly, 

This completes the proof. 

[1-~(u)]du= f:u[1-G(u)]du< ~o. 

Proposition 9. As  t - ~ ,  e - ~ t M ( t ) - a = o ( t - 1 ) .  

Proo]. By Proposition 7 we have only to prove that  

lim t{e-~t[1 - G(t)] - a[1 - G(t)]} = 0, 

that  ~(t) = o(t-1), 

and that  f: t{e-~t[1 - G(t)] - a[1 - G(t)]}dt 

converges. But these facts are immediate. 
Consider now again the integral equation for k~, k~( t )=E[Z( t )Z ( t+  ~)], 

;/ ;o k,(t) = 1 - G(t + ~) + m M(t  + ~ -  u)dG(u) + h"(1) M ( t -  u ) M ( t  § ~:- u)dG(u) 

f: + m k~( t -  u)dG(u),  

h~(1) assumed finite. Multiplying this by  e - ~ - ~ ,  we verify the above-mentioned 
fact that  

lim e . . . .  ~ t  k~( t )  = c ,  
$")" ~ 

uniformly in ~ ~>0, using Proposition 2, since m S~ e-2~tdG(u)< 1. Subtracting c, 
we get the equation 
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e-~-2~tk~(t) - c  = e-~-2~t[1 - G(t + 3)] + e-~tm f l  +~ e-~(t+~-~)M(t + ~-  u)e-~dG(u) 

+ h"(1) f l  e-~(t- ~)M(t - u) e -~a+~- U)M(t + ~ - u) e-e~UdG(u) 

-c [1-m f'oe-~da(u)J +m f'o[e-~-~'('-~'k~(t-u)-c]e-~da(u ) 

Let  us check whether this equation is such that  Proposition 5 is applicable. The 
first and second terms at the right-hand side are evidently integrable [0, oo), since 
e-~tM(t), t >10, is bounded. The two subsequent ones may be rewritten as follows, 

h"(1) ~ e-~('-U)M(t-u)e-~<'+~-')M(t + ~-u)e-2~'dG(u)-c[1-m f'oe-2~'dG(u)] 

= h"(1)a2 f oe-~UdG(u)-c[1-m foe-2~Uda(u)] - h'(1)a2 fy  e-2~Uda(u) 

+ h"(1) f t  ~ [e-'(*-U)M(t-u)e-*(t+*-~)M(t + ~-u)-a*]e-2"~dG(u). 

But 

However, f ~ o ~ f ~ - ~ ( u ) = f ' ~ - ~ ' ~ ( ~ ) < o o .  

Hence, it remains to prove that  

lim Ii dt fto[e-'(t-U)M(t-u)e-'("-U)M(t + ~-u)-a2]e-2~UdG(u) 
T--->~ �9 

exists. Since the double integral equals 

fle-2 UdG(u)fl 
it is enough to prove that  

fo[e-~tM(t)e-~a+~)M(t+~)-a2Jdt 

converges and then apply Proposition 3. But by an elementary algebraic identity 
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e -~ tM( t )  e-~r + 7:) - a S = [e-~r + 7:) - a] [e-~tM(t)  - a] 

+ a[e -~ tM( t )  - a] + a[e-~<t+~M(t + "r) - a]. 

Proposition 9, however, shows tha t  

[e-~'r M (t + "r) - a] [e-~t M (t) - a] = o(t-2),  

as t ~  ~ ,  whereas the integral 

f :  [ e - ~ ( t + ~ ) M ( t + - c ) - a ] d t  

converges for any r >~0 by  Proposition 8. This completes the proof of 

Proposition 10. 1/  h"(1)< ~ a n d  ~>~0, then 

f : [ e - ~ - ~ t k ~ ( t ) - c ] d t  

converges.  

Consider now for ~ >~ 0 

ko(t + ~:) . ko(t ) kT(t) 
E[( W ( t  + 3) - W(t)) 2] = a2eZ~(t+~) ~- ~ - 2 a2e~+Z~ t . 

Since W(t ) -+  W in mean square, as t ~  oo, a fact following from this relation, 
it is also true that  

and tha t  

lim E[(W(t + ~) - W(t)) 2] = E [ ( W ( t )  - W) ~] 

k~(t) 
ae~r t +~ - E [  W ( t  + ~) Z(t)]  

tends to some limit k(t) ,  as v ~  c~. Dividing the integral equation for k,(t)  by 
ae ~<t+*~ and then passing to the limit v - + ~ ,  we get, by  dominated convergence, 

Multiplication of this by  ae -~t and an application of Proposition 2 show tha t  

lira ae-~tk( t)  = c. 
t--~ 0o 

We have thus proved the first par t  of 
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Proposition 11. ]] h"(1)< ~ ,  then 

ae-~k(t) -* c, 

converges 

and 

The res t  of the  deduc t ion  follows the  p a t t e r n  of ear l ier  proofs,  a p p l y  Pro-  
posi t ion 5 to  the  in tegra l  equa t ion  for a e - ' * k ( t ) - c .  

Since l im ,_~  e-2~(~+*)ko(t+ ~ ) =  c, i t  follows t h a t  

a2E[(W(t) - W) 2] = c + e-2~ko(t) - 2ae-~k( t )  = [ e - ~ k o ( t )  - c] - 2[ae-~tk(t) - c], 

and, hence the integral 

f : E [ ( W ( t ) -  W)2]dt 

converges by propositions 10 and 11. This completes the proof that  W(t)~W 
almost surely, as t-* oo. 
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