Existence of entire functions of one variable with prescribed indicator

By C. O. Kiselman

Let u be an entire function of one complex variable satisfying

$$
\begin{equation*}
\log |u(\zeta)| \leqslant A|\zeta|^{e}+B \quad(\zeta \in \mathbf{C}) \tag{1}
\end{equation*}
$$

for some constants A, B. The number ϱ is positive and fixed throughout the paper. The indicator of u is the function

$$
\begin{equation*}
p(\zeta)=\varlimsup_{t \rightarrow+\infty} \frac{\log |u(t \zeta)|}{t^{\varrho}} \quad(\zeta \in \mathbf{C}) \tag{2}
\end{equation*}
$$

It is clear that p is positively homogeneous of order ϱ and that $p(\zeta) \leqslant A|\zeta|^{e}$ if (1) holds. It also follows from standard theorems for subharmonic functions that the regularized indicator p^{*}, defined by

$$
p^{*}(\zeta)=\varlimsup_{\theta \rightarrow \zeta} p(\theta)
$$

is subharmonic. However, it is known that we always have $p^{*}=p$.
The purpose of this note is to provide a proof of the following theorem of V. Bernstein [1, 2] (see also Levin [5] and, for $\varrho=1$, Pólya [8]).

Theorem 1. A function defined in the complex plane \mathbf{C} is the regularized indicator of some entire function satisfying (1) for some constants A and B if (and only if) it is subharmonic and positively homogeneous of order ϱ.

As noted above, the theorem can be improved by deleting the word "regularized". We shall not prove this here.

Formulas (1) and (2) have immediate generalizations to functions of several variables; then p^{*} becomes a plurisubharmonic function. In [6, 7] Martineau has proved that a function in \mathbf{C}^{n} is the regularized indicator of some entire function satisfying (1) for some constants A and B if and only if it is plurisubharmonic and positively homogeneous of order ϱ. His proof has the form of an induction on the dimension and relies on a more precise version of the same result in one variable given in Levin [5]. It might be a justification for printing the present proof of Theorem 1 that it gives a more unified proof of the characterization of regularized indicators when combined with the induction step in [6, 7]. To be precise, the induction in such a proof could start with a function satisfying the estimate (6) below which could then be extended successively in analogy with Lemma 4 of [6]. The

c. o. kiselman, Entire functions of one variable

paper also serves to illustrate the fact that the estimates for the $\bar{\partial}$ operator given by Hörmander [3] are non-trivial even in one variable.

Let F be a given subharmonic function which is positively homogeneous of order ϱ. To prove Theorem 1 we shall construct an entire function u with indicator p_{u} satisfying

$$
\begin{equation*}
p_{u}(1)=F(\mathrm{l}), \quad p_{u}(\zeta) \leqslant F(\zeta) \quad(\zeta \in \mathbf{C}) \tag{3}
\end{equation*}
$$

Let us first observe that this implies the desired result, viz. that $p_{v}^{*}=F$ for some entire function v. (Using integral transformations one can prove that $p^{*}=p$ so that the regularization is unnecessary.) This is proved by a category argument which has been carried through by Martineau [6, 7] (cf. also a remark in [4]). In fact, the space of all entire functions satisfying (1) for some constants A, B and with indicator $\leqslant F$ is a Fréchet space with the topology defined by the norms

$$
u \mapsto \sup _{\zeta \epsilon \mathbf{C}}|u(\zeta)| e^{-G(\zeta)}
$$

where G is an arbitrary continuous function which is positively homogeneous of order ϱ and $>F$ at every point on the unit circle. It is easy to see that F is continuous (the function $\zeta \mapsto F\left((a \zeta)^{1 / \varrho}\right)$ is locally convex) so it suffices to take G of the form $G(\zeta)=F(\zeta)+|\zeta|^{e} / j(j=1,2, \ldots)$. Let E_{F} be this Fréchet space. Suppose that we have found $u \in E_{F}$ with $p_{u}(\theta)=F(\theta)$ for any preassigned $\theta \in C$ (it is of course enough to do this for $\theta=1$). Then E_{G} is meager in E_{F} by the Banach theorem provided $G \leqslant F, G \neq F$. Here G, as well as G_{j} and H below, are assumed to be continuous and positively homogeneous of order ϱ. Hence $\bigcup_{j=1}^{\infty} E_{G j}$ is meager in E_{F} if $G_{j} \leqslant F, G_{j} \neq F(j=1,2, \ldots)$. But it is easy to find a sequence of functions $G_{j} \leqslant F$, $G_{j} \neq F$, such that $H \leqslant G_{j}$ for some j if $H \leqslant F, H \neq F$. Therefore all functions in E_{F} not in $\bigcup E_{G_{j}}$ must have regularized indicator p^{*} equal to F.

To find u satisfying (3) we shall use the following adoption to supremum norms of Theorem 4.4.2 in Hörmander [3].

Theorem 2. Let G be a plurisubharmonic function in \mathbf{C}^{n}. For every form $f \in C_{(0,1)}^{\infty}\left(\mathbf{C}^{n}\right)$ satisfying

$$
\bar{\partial} t=0 \quad \text { and } \quad|f(\zeta)| \leqslant e^{G(\zeta)}
$$

there exists a function $u \in C^{\infty}\left(\mathbf{C}^{n}\right)$ with

$$
\begin{gathered}
\bar{\partial} u=f \quad \text { and } \quad|u(\zeta)| \leqslant e^{H(\zeta)}, \\
H(\zeta)=\sup _{|\theta| \leqslant 1} G(\zeta+\theta)+a \log \left(1+|\zeta|^{2}\right)+b .
\end{gathered}
$$

where
Here a may be taken as an arbitrary number $>1+n / 2$, and b is a constant which depends only on a and n.

As to the notation in this theorem we only mention that $C_{(0,1)}^{\infty}\left(\mathbf{C}^{n}\right)$ denotes the space of forms of type $(0,1)$:

$$
f=\sum f_{j} d \bar{z}_{j}
$$

with C^{∞} coefficients $f_{j} ; \bar{\partial} f$ is defined by

$$
\bar{\partial} f=\sum \frac{\partial f_{f}}{\partial \bar{z}_{k}} d \bar{z}_{k} \wedge d \bar{z}_{j}
$$

whereas $\bar{\partial} u$ for $u \in C^{\infty}\left(\mathbf{C}^{n}\right)$ is given by

$$
\overline{\hat{\partial}} u=\sum \frac{\partial u}{\partial \bar{z}_{j}} d \bar{z}_{j}
$$

a form of type $(0,1)$. Note that $\bar{\partial} f=0$ is no condition when $n=1$. For other notions we refer to Hörmander [3].

We shall take an entire function u satisfying (3) of the form

$$
u=g-h v
$$

where h is the entire function

$$
h(\zeta)=\prod_{1}^{\infty}\left(1-2^{-j} \zeta\right)
$$

with zeros at $2^{j}(j=1,2, \ldots)$, and g, v are C^{∞} functions to be described presently. Let $\varphi \in C_{0}^{\infty}(\mathbf{C})$ be a function which is zero when $|z| \geqslant 1$ and equal to one when $|z| \leqslant \frac{1}{2}$, $0 \leqslant \varphi \leqslant 1$. We shall define g by

$$
g(\zeta)=\sum_{1}^{\infty} \varphi\left(\zeta-2^{j}\right) e^{F\left(2^{2}\right)}
$$

It is then clear that $g \in C^{\infty}(\mathbf{C})$ and that

$$
u\left(2^{j}\right)=g\left(2^{j}\right)=e^{F\left(2^{j}\right)}
$$

Hence, if p_{u} is the indicator of $u, p_{u}(1) \geqslant F(1)$. It remains to define $v \in C^{\infty}(\mathbf{C})$ so that u becomes analytic and $p_{u} \leqslant F$. That u is analytic means that

$$
0=\bar{\partial} u=\bar{\partial} g-h \bar{\partial} v
$$

i.e.

$$
\bar{\partial} v=f,
$$

where

$$
f=\frac{1}{h} \bar{\partial} g \in C_{(0,1)}^{\infty}(\mathbf{C})
$$

It can easily be proved by estimating the factors ($1-2^{-j} \zeta$) constituting h that for some constant C_{1},

$$
|h(\zeta)| \geqslant \frac{1}{C_{1}}>0
$$

when

$$
\frac{1}{2} \leqslant\left|\zeta-2^{j}\right| \leqslant 1 \quad(j=1,2, \ldots) .
$$

Hence, if C_{2} is chosen so large that

$$
\begin{gather*}
|\bar{\partial} \varphi| \leqslant C_{2} \\
|f(\zeta)|=\left|\frac{1}{h(\zeta)} \bar{\partial} g(\zeta)\right| \leqslant C_{1} C_{2} e^{F\left(2^{\prime}\right)}, \tag{4}
\end{gather*}
$$

we obtain
when $\left|\zeta-\boldsymbol{2}^{j}\right| \leqslant 1$. Define

$$
G(\zeta)=\sup _{|\theta| \leqslant 1} F(\zeta+\theta) .
$$

c. o. kiselman, Entire functions of one variable

It is easy to see that G is also continuous and subharmonic. We obtain from (4) that

$$
|f(\zeta)| \leqslant C_{1} C_{2} e^{G(\zeta)}
$$

for every $\zeta \in \mathbb{C}$, for either $f(\zeta)=0$ or else we can find a j such that $\left|\zeta-2^{j}\right| \leqslant 1$ and use (4) for this j. We can therefore apply Theorem 2 to find a $v \in C^{\infty}(\mathbf{C})$ with

$$
\bar{\partial} v=f \quad \text { and } \quad|v(\zeta)| \leqslant C_{3} e^{H(\zeta)} \quad(\zeta \in \mathbf{C})
$$

where C_{3} is a new constant and

$$
\begin{equation*}
H(\zeta)=\sup _{|\theta| \leqslant 1} G(\zeta+\theta)+a \log \left(1+|\zeta|^{2}\right) \leqslant \sup _{1 \theta \mid \leqslant 2} F(\zeta+\theta)+a \log \left(1+|\zeta|^{2}\right) . \tag{5}
\end{equation*}
$$

Now $u=g-h v$ is certainly analytic, and

$$
|u(\zeta)| \leqslant g(\zeta)+|h(\zeta)||v(\zeta)| \leqslant e^{G(\zeta)}+|h(\zeta)| C_{3} e^{H(\zeta)} .
$$

But it is well known that h is of order zero, hence for any $\varepsilon>0$ there are constants A and C_{4} such that

$$
|h(\zeta)| \leqslant C_{4} e^{A|\zeta|^{6}}
$$

($C_{4}=1$ will do.) We finally arrive at the inequality

$$
\begin{equation*}
|u(\zeta)| \leqslant C_{5} e^{H(\zeta)+A|\xi|^{\ell}} . \tag{6}
\end{equation*}
$$

It now follows in view of (5) and the continuity of F that the indicator p_{u} of u satisfies $p_{u} \leqslant F$ provided only $\varepsilon<\varrho$. The proof is complete.

Department of Mathematics, University of Stockholm, Stockholm, Sweden

REfERENCES

1. Bernstein, V., Sur les propriétés caractéristiques des indicatrices de croissance. C. R. Acad. Sci. Paris 202, 108-110 (1936).
2. -_Sulle proprietà caratteristiche delle indicatrici di crescenza delle trascendenti intere d'ordine finito. Mem. R. Acc. d'Italia 7, 131-189 (1936).
3. Hörmander, L., An Introduction to Complex Analysis in Several Variables. Van Nostrand, Inc., Princeton, N.J., 1966.
4. Kiselman, C. O., On entire functions of exponential type and indicators of analytic functionals. Acta Math. 117 (1967), I-35 (1966).
5. Левин, Б. Я., Распределение корней челых функций. Moscow, 1956. (English and German translations.)
6. Martineau, A., Indicatrices de croissance des fonctions entières de N-variables. Inventiones math. 2, 81-86 (1966).
7. -_- Indicatrices de croissance des fonctions entières de N -variables (Corrections et compléments). Inventiones math. 3, 16-19 (1967).
8. Pólya, G., Untersuchungen über Lücken und Singularitäten von Potenzreihen. Math. Z. 29, 549-640 (1929).

Tryckt den 30 augusti 1968

