ARKIV FÖR MATEMATIK Band $7 \mathbf{n r} 36$

1.67152 Communicated 22 November 1967 by Lennart Carleson

Minimization problems for the functional $\sup _{x} F\left(x, f(x), f^{\prime}(x)\right)$
 III

By Gunnar Aronsson

The present paper is a continuation of the papers [l] and [2]. These papers treat the problem of minimizing the functional

$$
H(f)=\sup _{x} F\left(x, f(x), f^{\prime}(x)\right)
$$

over the class \mathcal{F} of all absolutely continuous functions $f(x)$ which satisfy the boundary conditions $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$. The discussion in [1] and [2] is mainly concerned with the existence and the properties of absolutely minimizing functions (defined in [1], p. 45) and unique minimizing functions. The question of the existence of a minimizing function is also treated in [2] and it is shown by an example ([2], p. 429) that a minimizing function in general need not have any of the properties proved for a.s. minimals ([2], Theorem $\left.9^{\prime}\right)$. However, if $F(x, f(x), \omega(x, f(x)))<M_{0}$ holds for a minimizing function $f(x)$, then $f(x)$ is a unique minimizing function (and hence $f(x)$ is smooth and $\left.F\left(x, f(x), f^{\prime}(x)\right)=M_{0}\right)$. This is proved below and a few immediate consequences of this theorem are also discussed.
We assume that $F(x, y, z)$ satisfies the following conditions:

1. $F(x, y, z) \in C^{1}$ for $x_{1} \leqslant x \leqslant x_{2}$ and all y, z.
2. There is a continuous function $\omega(x, y)$ such that

$$
\frac{\partial F(x, y, z)}{\partial z} \text { is }\left\{\begin{array}{lll}
>0 & \text { if } & z>\omega(x, y) \\
=0 & \text { if } & z=\omega(x, y) \\
<0 & \text { if } & z<\omega(x, y)
\end{array}\right.
$$

3. $\lim _{|z| \rightarrow \infty} F(x, y, z)=+\infty$ if x and y are fixed.

A function $f(x)$ is admissible (belongs to \mathcal{F}) if and only if $f(x)$ is absolutely continuous on $\left[x_{1}, x_{2}\right]$ and satisfies $f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}$. Put $M_{0}=\inf _{f \in \mathcal{G}} H(f)$. Thus, a function $f_{0}(x) \in \mathcal{F}$ is a minimizing function if and only if $H\left(f_{0}\right)=M_{0}$.

Theorem. Assume that $f(x)$ is a minimizing function such that

$$
F(x, f(x), \omega(x, f(x)))<M_{0} \quad \text { for } \quad x_{1} \leqslant x \leqslant x_{2} .
$$

Then $f(x)$ is the only minimizing function. Furthermore, $f(x) \in C^{2}\left[x_{1}, x_{2}\right]$ and $F\left(x, f(x), f^{\prime}(x)\right)=M_{0}$ for $x_{1} \leqslant x \leqslant x_{2}$. (Compare Theorem 6' in [2].)

g. aronsson, Minimization problems. III

Proof. 1. Since $G(x, y) \equiv F(x, y, \omega(x, y))$ is continuous, there are numbers $\delta>0$ and $M_{0}^{\prime}<M_{0}$ such that $|y-f(x)| \leqslant \delta$ implies that $G(x, y) \leqslant M_{0}^{\prime}$. Choose M_{1} such that $M_{0}^{\prime}<M_{1}<M_{0}$. Then the functions $\Phi(x, y, M)$ and $\psi(x, y, M)$ (the same notation as in [2]) are defined and continuously differentiable for $x_{1} \leqslant x \leqslant x_{2},|y-f(x)| \leqslant \delta$, $M_{1} \leqslant M \leqslant M_{0}$.

Put $E=\left\{(x, y)\left|x_{1} \leqslant x \leqslant x_{2},|y-f(x)| \leqslant \delta\right\}\right.$. Consider the differential equation

$$
\begin{equation*}
y^{\prime}=\lambda \Phi(x, y, M)+(1-\lambda) \psi(x, y, M) \tag{I}
\end{equation*}
$$

where the parameters λ and M are assumed to satisfy $0 \leqslant \lambda \leqslant 1$ and $M_{1} \leqslant M \leqslant M_{0}$, respectively. The differential equation is considered only in E and with the initial values ($x_{0}, f\left(x_{0}\right)$) for some arbitrary $x_{0} \in\left[x_{1}, x_{2}\right]$. Since $f^{\prime}(x)$ is bounded for $x_{1} \leqslant x \leqslant x_{2}$, and Φ, ψ are bounded in E, there exists a $\delta_{1}>0$, not depending on x_{0}, λ or M, such that (1) has a unique solution on the interval $\left[x_{0}-\delta_{1}, x_{0}+\delta_{1}\right] \cap\left[x_{1}, x_{2}\right]$. Further, the solution, which we write $y\left(x ; x_{0}, \lambda, M\right)$ depends continuously on λ and M.
2. Now we divide the interval $\left[x_{1}, x_{2}\right]$ into N sub-intervals of equal length $<\delta_{1}: x_{1}=X_{1}<X_{2}<X_{3}<\ldots<X_{N+1}=x_{2}$. Next, we define N numbers $\left\{\lambda_{\nu}\right\}_{1}^{N}$ in the following way: Consider a fixed $\nu, 1 \leqslant \nu \leqslant N$. Since $H(f) \leqslant M_{0}$, we must have ${ }^{1}$

$$
y\left(X_{\nu+1} ; X_{\nu}, 0, M_{0}\right) \leqslant f\left(X_{v+1}\right) \leqslant y\left(X_{\nu+1} ; X_{\nu}, 1, M_{0}\right) .
$$

Therefore, there is a uniquely determined number $\lambda_{\nu}, 0 \leqslant \lambda_{\nu} \leqslant 1$, such that $f\left(X_{\nu+1}\right)=$ $y\left(X_{\nu+1} ; X_{v}, \lambda_{\nu}, M_{0}\right)$.
A. If $\lambda_{\nu}=0$, then ${ }^{1} f(x)=y\left(x ; X_{\nu}, 0, M_{0}\right)$ for $X_{\nu} \leqslant x \leqslant X_{\nu+1}$.
B. If $\lambda_{\nu}=1$, then ${ }^{1} f(x)=y\left(x ; X_{\nu}, 1, M_{0}\right)$ for $X_{\nu} \leqslant x \leqslant X_{\nu+1}$.
3. Let η be any number such that

$$
y\left(X_{\nu+1} ; X_{v}, 0, M_{0}\right)<\eta<y\left(X_{\nu+1} ; X_{\nu}, 1, M_{0}\right)
$$

Then there is a number $M^{*}<M_{0}$ such that

$$
y\left(X_{\nu+1} ; X_{\nu}, 0, M^{*}\right) \leqslant \eta \leqslant y\left(X_{\nu+1} ; X_{\nu}, 1, M^{*}\right)
$$

and a corresponding $\lambda^{*}, 0 \leqslant \lambda^{*} \leqslant 1$, such that $y\left(X_{\nu+1} ; X_{\nu}, \lambda^{*}, M^{*}\right)=\eta$.
Put $f_{1}(x)=y\left(x ; X_{\nu}, \lambda^{*}, M^{*}\right)$. Then $F\left(x, f_{1}(x), f_{1}^{\prime}(x)\right) \leqslant M^{*}<M_{0}$ for $X_{\nu} \leqslant x \leqslant X_{\nu+1}$, i.e. $H\left(f_{1} ; X_{v}, X_{v+1}\right)<M_{0}$.

We may also consider the interval $\left[X_{\nu-1}, X_{\nu}\right]$ and formulate analogous statements if $y\left(X_{\nu-1} ; X_{\nu}, 0, M_{0}\right)>\eta>y\left(X_{\nu-1} ; X_{\nu}, 1, M_{0}\right)$. (Note that the inequalitites for η are reversed in this case.)
4. Next, we claim that one of these statements is true:
A. All $\lambda_{\nu}=0$.
B. All $\lambda_{\nu}=1$.

If A or B holds, then the assertions of the theorem follow easily (apply Theorem 6^{\prime} in [2]).

Assume now that neither A nor B holds. We will then construct an admissible func-

[^0]tion $g_{0}(x)$ on $\left[x_{1}, x_{2}\right]$, such that $H\left(g_{0}\right)<M_{0}$. This will give a contradiction to the definition of M_{0}, and thereby prove the theorem.

We use an induction argument.
Assumption. For any system of M consecutive intervals, where $M \geqslant 2$,

$$
\left[X_{v}, X_{\nu+1}\right],\left[X_{\nu+1}, X_{\nu+2}\right], \ldots,\left[X_{\nu+M-1}, X_{\nu+M}\right]
$$

such that $\left(\sum_{k-p}^{p+M-1} \lambda_{k}^{2}\right) \cdot\left(\sum_{k=\nu}^{p+M-1}\left(\lambda_{k}-1\right)^{2}\right) \neq 0$, there is an absolutely continuous function $g(x)$ on [$X_{\nu}, X_{\nu+M}$] satisfying

$$
g\left(X_{\nu}\right)=f\left(X_{\nu}\right), g\left(X_{\nu+M}\right)=f\left(X_{\nu+M}\right) \quad \text { and } \quad H\left(g ; X_{\nu}, X_{\nu+M}\right)<M_{0} .
$$

Consider then the intervals

$$
\left[X_{\mu}, X_{\mu+1}\right],\left[X_{\mu+1}, X_{\mu+2}\right], \ldots,\left[X_{\mu+M}, X_{\mu+M+1}\right]
$$

and assume that $\left(\sum_{k-\mu}^{\mu+M} \lambda_{k}^{2}\right) \cdot\left(\sum_{k-\mu}^{\mu+M}\left(\lambda_{k}-1\right)^{2}\right) \neq 0$. Then the assumption can be applied to at least one of the systems of intervals

$$
\left[X_{\mu}, X_{\mu+1}\right], \ldots,\left[X_{\mu+M-1}, X_{\mu+M}\right] \quad \text { and } \quad\left[X_{\mu+1}, X_{\mu+2}\right], \ldots,\left[X_{\mu+M}, X_{\mu+M+1}\right]
$$

for instance the first. This gives a function $g(x)$ satisfying $g\left(X_{\mu}\right)=f\left(X_{\mu}\right), g\left(X_{\mu+M}\right)=$ $f\left(X_{\mu+M}\right)$ and $H\left(g ; X_{\mu}, X_{\mu+M}\right)<M_{0}$.

Put $g_{\lambda}(x)=g(x)+\lambda\left(x-X_{\mu}\right)$. It is obvious that $H\left(g_{\lambda}\right)<M_{0}$ if $|\lambda| \leqslant \lambda_{0}$.
Now consider the interval [$X_{\mu+M}, X_{\mu+M+1}$]. According to (3) above, there are numbers η, arbitrarily close to $f\left(X_{\mu+M}\right)$, and corresponding functions $f^{*}(x)$ such that $f^{*}\left(X_{\mu+M}\right)=\eta, f^{*}\left(X_{\mu+M+1}\right)=f\left(X_{\mu+M+1}\right)$ and $H\left(f^{*} ; X_{\mu+M}, X_{\mu+M+1}\right)<M_{0}$. If η is fixed, we determine λ by the condition $g_{\lambda}\left(X_{\mu+M}\right)=\eta$.

Now choose η so close to $f\left(X_{\mu+M}\right)$ that $|\lambda| \leqslant \lambda_{0}$, and consider the function

$$
\varphi(x)=\left\{\begin{array}{lll}
g_{\lambda}(x) & \text { if } & X_{\mu} \leqslant x \leqslant X_{\mu+M}, \\
f^{*}(x) & \text { if } & X_{\mu+M} \leqslant x \leqslant X_{\mu+M+1}
\end{array}\right.
$$

It is clear that $\varphi(x)$ is absolutely continuous, $\varphi\left(X_{\mu}\right)=f\left(X_{\mu}\right), \varphi\left(X_{\mu+M+1}\right)=f\left(X_{\mu+M+1}\right)$, and $H\left(p ; X_{\mu}, X_{\mu+M+1}\right)<M_{0}$.

This shows that the validity of the assumption for $M(\geqslant 2)$ intervals implies its validity for $M+1$ intervals.

Finally, the validity of the assumption for $M=1$ and $M=2$ follows easily from (3). This completes the proof.

Next, we illustrate the theorem by means of some simple examples.
Example 1. Assume that $F(x, y, z) \equiv \varphi(x, y)+\psi(x, y) z^{2}$, where $\varphi(x, y)$ and $\psi(x, y)$ are continuously differentiable for $x_{1} \leqslant x \leqslant x_{2},-\infty<y<\infty$. Assume also that there are constants K_{1}, K_{2}, K_{3} such that $K_{1} \geqslant \varphi(x, y) \geqslant K_{2}$, and $\psi(x, y) \geqslant K_{3}>0$. We consider the minimization problem between the points (x_{1}, y_{1}) and (x_{2}, y_{2}).

Put $t=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$.
If $\cdot K_{2}+K_{3} t^{2}>K_{1}$, then there is a unique minimizing function $f(x)$. Further, $f(x) \in C^{2}\left[x_{1}, x_{2}\right], F\left(x, f(x), f^{\prime}(x)\right)=M_{0}$ and $f^{\prime}(x) \neq 0$ for $x_{1} \leqslant x \leqslant x_{2}$.

Proof. Since $\lim _{|z| \rightarrow \infty} F(x, y, z)=+\infty$ uniformly in x and y, there exists a minimizing function $f(x)$ (compare Chapter 1 in [2]). Further, it is obvious that $M_{0} \geqslant K_{2}+K_{3} t^{2}$. Hence, $F(x, f(x), \omega(x, f(x)))=\varphi(x, f(x)) \leqslant K_{1}<M_{0}$, and we can apply the theorem. This proves the above assertion.

Example 2. This shows an application of Theorem 1 to a "converse" problem. We assume as before that $F(x, y, z)$ satisfies the conditions 1,2 and 3 for $x_{1} \leqslant x \leqslant x_{2}$ and all y, z. Let there be given two numbers y_{1}, y_{2}, such that $y_{1} \neq y_{2}$, and a number M. Here, an admissible function $g(x)$ has to be absolutely continuous on an interval $x_{1} \leqslant x \leqslant \xi \leqslant x_{2}$ and satisfy $g\left(x_{1}\right)=y_{1}, g(\xi)=y_{2}$, and $F\left(x, g(x), g^{\prime}(x)\right) \leqslant M$. We assume that the class \mathcal{G} of admissible functions is not empty. For each $g(x) \in \mathcal{G}$, the functional $X(g)=\min \left\{x \mid g(x)=y_{2}\right\}$ is defined. The problem is to minimize $X(g)$ over \mathcal{G}. (This is analogous to time-optimal problems in control theory.) Hence, a minimizing function $g_{0}(x)$ has to satisfy $X\left(g_{0}\right)=\inf _{g \in G} X(g)$.

Assume that $g_{0}(x)$ is a minimizing function such that $F\left(x, g_{0}(x), \omega\left(x, g_{0}(x)\right)\right)<M$ for $x_{1} \leqslant x \leqslant X\left(g_{0}\right)$. Then $g_{0}(x) \in C^{2}$ and $F\left(x, g_{0}(x), g_{0}^{\prime}(x)\right)=M$ for $x_{1} \leqslant x \leqslant X\left(g_{0}\right)$. Further, $g_{0}(x)$ is the only minimizing function.
Proof. Consider the "original" problem, to minimize $H(f)$, between the points $\left(x_{1}, y_{1}\right)$ and $\left(X\left(g_{0}\right), y_{2}\right)$ Let \mp be the class of admissible functions for this problem, and put $M_{0}=\inf _{f \in \mathcal{G}} H(f)$. Since $g_{0} \in \mathcal{F}$, and $H(g) \leqslant M$, we have $M_{0} \leqslant M$. Assume that $M_{0}<M$. Then there must be a function $f_{0}(x) \in \mathcal{F}$ such that $H\left(f_{0}\right)<M$. Put $f_{\lambda}(x)=$ $f_{0}(x)+\lambda\left(x-x_{1}\right)$. If $|\lambda| \leqslant \lambda_{0}$, then $H\left(f_{\lambda}, x_{1}, X\left(g_{0}\right)\right)<M$. Further, if $y_{2}>y_{1}$ and $\lambda>0$, then there is a $\xi<X\left(g_{0}\right)$, such that $f_{\lambda}(\xi)=y_{2}$, and the same holds if $y_{2}<y_{1}$, and $\lambda<0$. Consequently, λ can be chosen such that $f_{\lambda}(x) \in \mathcal{G}$ and $X\left(f_{\lambda}\right)<X\left(g_{0}\right)$. But this contradicts our assumptions regarding $g_{0}(x)$. Hence $M_{0}=M$, and $g_{0}(x)$ is a minimizing function for both problems. Now, the results follows directly from Theorem 1.

Remark. This result can also be proved by transformation of the given problem to a control problem, and application of the Pontryagin maximum principle. It can be shown by means of examples that the result is no longer true if the condition $F\left(x, g_{0}(x), \omega\left(x, g_{0}(x)\right)\right)<M$ is omitted.

Remark. Necessary conditions for minimizing functions for the "original" problem can also be derived by the following approach: ${ }^{1}$ Let $f(x) \in C^{1}$ be a minimizing function and let $\Phi(x) \in C^{1}$ vanish at $x=x_{1}$ and $x=x_{2}$. We also assume that $F(x, y, z) \in C^{1}$, but no other condition on $F(x, y, z)$ is needed. Put $U=\left\{x \mid F\left(x, f(x), f^{\prime}(x)\right)=M_{0}\right\}$. Consider a neighbouring function $f(x)+\lambda \Phi(x)$ where λ is a "small" parameter. By applying the mean-value theorem to $\varphi(t)=F\left(x, f+t \lambda \Phi, f^{\prime}+t \lambda \Phi^{\prime}\right)-F\left(x, f, f^{\prime}\right)$ between $t=1$ and $t=0$ it is not difficult to verify that we must have $\min _{x \in U}\left(a(x) \Phi(x)+b(x) \Phi^{\prime}(x)\right) \leqslant 0$, where $a(x)=F_{y}\left(x, f(x), f^{\prime}(x)\right)$ and $b(x)=F_{z}\left(x, f(x), f^{\prime}(x)\right)$. This leads to various relations between the set U and the zeros of $a(x)$ or $b(x)$. For instance, if $b(x) \neq 0$ on U, then U is the whole interval $x_{1} \leqslant x \leqslant x_{2}$.

Institute of Mathematics, University of Uppsala, Uppsala, Sweden
${ }^{1}$ Compare the results in [3], pp. 14-15.

REFERENCES

1. Aronsson, G., Minimization problems for the functional $\sup _{x} F^{\prime}\left(x, f(x), f^{\prime}(x)\right)$. Arkiv för matematik 6, 33-53 (1965).
2. Aronsson, G., Minimization problems for the functional $\sup _{x} F\left(x, f(x), f^{\prime}(x)\right)$. (II). Arkiv för matematik 6, 409-431 (1966).
3. Meinardus, G., Approximation von Funktionen und ihre numerische Behandlung. SpringerVerlag, Berlin, 1964.

[^0]: ${ }^{1}$ Compare Theorem 6 in [1] and Theorem 6' in [2].

