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Minimization problems for the functional 
SupxF(x,f(x), f'(x)) 

III  

B y  GUNNAR A R o ~ s s o ~  

The present paper is a continuation of the papers [1] and [2]. These papers t reat  
the problem of minimizing the functional 

H(/) = supxF(x, /(x), /'(x)) 

over the class :~ of all absolutely continuous functions/(x) which satisfy the boundary 
conditions/@1) =Yl and ](x~)=Y2. The discussion in [1] and [2] is mainly concerned 
with the existence and the properties of absolutely minimizing functions (defined in 
[1], p. 45) and unique minimizing functions. The question of the existence of a 
minimizing function is also treated in [2] and it is shown by an example ([2], p. 429) 
that  a minimizing function in general need not have any of the properties proved for 
a.s. minimals ([2], Theorem 9'). However, if F(x, /(x), co(x,/(x))) < M  o holds for a 
minimizing function/(x), then/(x)  is a unique minimizing function (and hence/(x) is 
smooth and F(x, /(x), /'(x)) =Mo). This is proved below and a few immediate conse- 
quences.of this theorem are also discussed. 

We assume that  F(x, y, z) satisfies the following conditions: 

1. F(x, y, z)EC 1 for xl<~x<~x 2 and all y, z. 
2. There is a continuous function co(x, y) such that  

>0  if z>co(x,y) ,  

~F(x,y,z) is =0 if z=a)(x,y),  
9z 

< 0  if z<o)(x,y) .  

3. limlzl_~o~F(x, y, z)= +oo if x and y are fixed. 

A function fix) is admissible (belongs to :~) if and only i f / (x)  is absolutely con- 
tinuous on [xl, x2] and satisfies /(xi)=Yl, /(x2)=Y2. Put  Mo=infiE~H(/). Thus, a 
function/o(x) E :~ is a minimizing function if and only if H(/o) = M o. 

Theorem. Assume that/(x) is a minimizing/unction such that 

F(x, /(x), ~o(x,/(x)))<M o /or Xl <X~-x 2. 

Then /(x) is the only minimizing /unction. Furthermore, 
F(x, /(x) , / ' (x))  = M  0/or x I <~x ~ x  2. (Compare Theorem 6' in [2].) 

/(x) E C2[xI, x2] and 
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Proo/. 1. Since G(x, y ) - F ( x , y ,  eo(x,y)) is continuous, there are numbers 8 > 0  
and i o  <Mo such tha t  ] y - / ( x )  l ~< ~ implies tha t  G(x, y)<~Mo. Choose i I such tha t  
Mo <M1 <Mo. Then the functions (I)(x, y, M) and ~(x, y, M) (the same notation as 
in [2]) are defined and continuously differentiable for Xl<~X<~X 2, ]y-/(x)]<~(~, 
MI <~M <~M o. 

Put  E = { (x, Y) l x~ <~ x <~ x2, ] y - / (x)]  ~< 5). Consider the differential equation 

y'  = 2(I)(x, y, M)+(1-2)~v(x ,  y, M), (1) 

where the parameters  ;t and M are assumed to satisfy 0~<2~<1 and M I < ~ M ~ M  o, 
respectively. The differential equation is considered only in E and with the initial 
values (Xo,/(xo)) for some arbi t rary x0E[Xl, x2]. Since/ '(x) is bounded for xl<x<~x 2, 
and (I), ~v are bounded in E, there exists a (~1 >0,  not depending on xo, 2 or M, such tha t  
(1) has a unique solution on the interval [x 0 -~1, x 0 +5~] N [Xl, x2]. Further,  the solu- 
tion, which we write y(x; x o, 4, M) depends continuously on 2 and M. 

2. Now we divide the interval [x 1, x2] into N sub-intervals of equal length 
<(~1:Xl=XI<X2<X3 <... <XN+I=X2" Next,  we define _h r numbers {2v} N in the fol- 
lowing way: Consider a fixed v, 1 ~<v < N .  Since H(/)~<M 0, we must  have 1 

y(X~+ 5 X~, 0, Mo) ~-/(Xv+l) ~<y(X~+~; X~, 1, M0). 

Therefore, there is a uniquely determined number  2r, 0 ~<2 v ~< 1, such that / (Xv+l)  = 
y(X~+ 5 X~,2~, M0). 

A. I f  2~=0, then 1/(x) =y(x; X~, O, Mo) for X~<~x<~Xv+l. 
B. I f  2~=1, then 1/(x) =y(x; X~, 1, Mo) for X,<x<X~+I .  

3. Let  ~ be any number such that  

y(X~+l; X~, 0, M o) <~ <y(Xr+I; Xv, l, Mo). 

Then there is a number  M* < M o such tha t  

y(Xv+l; Xv, O, M*) <~ ~<y(X~+I; X~, 1, M*), 

and a corresponding 2", 0 ~<2" ~< 1, such tha t  y(X~+I; X~, 4*, M*)=~.  
Put  /l(X) =y(x; X v, ~*, i * ) .  Then F(x, /l(X), /l(X)) <~M* < M  0 for Xv <~x ~Xv+l, 

i.e. H(/1; Xv, Xv+l)<Mo- 
We may  also consider the interval [Xv_ 1, X,] and formulate analogous state- 

ments if y(Xv_ 5 Xv, 0, M0) >~ >y(Xv-1; Xv, 1, Mo). (Note tha t  the inequalitites for 
are reversed in this case.) 

4. Next,  we claim tha t  one of these statements is true: 

A. All 2~ =0.  
B. All 2~=1. 

I f  A or B holds, then the assertions of the theorem follow easily (apply Theorem 
6' in [2]). 

Assume now tha t  neither A nor B holds. We will then construct an admissible/unc. 

1 Compare Theorem 6 in [1] and Theorem 6' in [2]. 
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tlon go(x) on [x 1, x2], such that H(go) < M  0. This will give a contradiction to the defini- 
tion of M0, and thereby prove the theorem. 

We use an induction argument.  

Assumption. For any  system of M consecutive intervals, where M ~>2, 

[Xp, Xp+l] , [Xr,+l , Xp+2] . . . . .  [Xv+M_l, X v + M ]  

such tha t  [~v+M-122~ [~v§ 1~2~ ~z~k=~ k/" ~ = ~  t k -  J J #0,  there is an absolutely continuous function 
g(x) on [ X .  X~+M] satisfying 

g(Xr)=/(X~), g(X~+M)=/(X~+M) and H(g; Xv, Xv+M)<Mo. 

Consider then the intervals 

[X~, X~+I], [X~+I, X~+2] .. . . .  [X~+~, X/~+M+i] 

and assume tha t  /~',u+M~2~ [~',u+M[2 1) 3) #0.  Then the assumption can be applied ~A.,k=,u J~k] " ~A.,k=g ~ k - -  
to at  least one of the systems of intervals 

[Xg, Xg+l] ..... [Xg+M-D Xg+M] and [Xg+i, Xg+2] ... . .  [Xg+M, Xg+M+l], 

for instance the first. This gives a function g(x) satisfying g(X~)=/(Xg), g(X~+M)= 
/(Xg+M) and H(g; Xg, Xg+M)<Mo. 

Put  g~(x)=g(x)+i(x-Xg), i t  is obvious tha t  H(g~)<M o if [2] 4X 0. 
Now consider the interval [Xg+M, Xg+M+I]. According to (3) above, there are 

numbers ~, arbitrari ly close to ](Xg+M), and corresponding functions/*(x) such tha t  
]*(Xg+M)=~, /*(Xg+M+X)=/(Xg+M+X) and H(/*; Xg+M, Xg+M+I)<Mo. I f  ~ is fixed, 
we determine ~ by  the condition gz(X/t+M ) =~. 

Now choose ~ so close to/(Xg+M) tha t  ]21 ~<~t0, and consider the function 

I gi(x) if X ,~<x<X,+M,  

q~(x)=[ /*(x) if X,u+M<X<X.+M+I* 

I t  is clear tha t  ~v(x) is absolutely continuous, q(Xg)=/(Xg),  q~(Xg+M+i)=](Xg+M+I), 
and H@; Xg, Xz+M+i)<M 0. 

This shows tha t  the validity of the assumption for M(~>2) intervals implies its 
validity for M + 1 intervals. 

Finally, the validity of the assumption for M = 1 and M = 2 follows easily from (3). 
This completes the proof. 

Next,  we illustrate the theorem by  means of some simple examples. 

Example 1. Assume tha t  F(x, y, z)--q~(x, y) +~o(x, y)z ~, where q(x, y) and ~p(x, y) 
are continuously differentiable for x x ~< x < x 2, - ~ < y < ~ .  Assume also tha t  there 
are constants K1, K2, K a such tha t  K i/> ~0(x, y)/> K2, and ~o(x, y) ~> K a > 0. We consider 
the minimization problem between the points @1, Yl) and (x2, Y2)- 

Pu t  t = (y2 -yl)/(x2 -xi) .  
I f  .K2+Kat2>Ki, then there is a unique minimizing ]unction ](x). Further, 

/(x) E C2[xi, x2], F(x, /(x), /'(x)) = M o and/'(x) #0  /or x i <<- x <~ x 2. 

Proo]. Since liml~l_.~ F(x, y, z) = + cr uniformly in x and y, .there exists a mini- 
mizing function /(x) (compare Chapter 1 in [2]). Further,  it is obvious tha t  
M o >~K2 +K3t 2. Hence, F(x, ](x), co(x, ](x))) =of(x, ](x)) <~ K i < M  0, and we can apply 
the theorem. This proves the above assertion. 
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Example 2. This shows an application of Theorem 1 to a "converse" problem. We 
assume as before tha t  F(x, y, z) satisfies the conditions 1, 2 and 3 for xl<~x~x ~ 
and all y, z. Let  there be given two numbers Yl, Y2, such tha t  yl ~=Y2, and a number  M. 
Here, an admissible function g(x) has to be absolutely continuous on an interval 
Xl <~X<.~ <~x 2 and satisfy g(xl)=yl, g(~)=Y2, and F(x, g(x), g'(x))<~M. We assume 
that  the class 6 of admissible functions is not empty.  For each g(x) E Q, the functional 
X(g) = min {x]g(x)= y~} is defined. The problem is to minimize X(g) over 6. (This is 
analogous to t ime-optimal problems in control theory.) Hence, a minimizing func- 
tion go(Z) has to satisfy X(go)=infg~qX(g). 

Assume that go(X) is a minimizing function such that F(x, go(X), w(x, g0(x))) < M /or 
Xl <~X<~X(go). Then g0(x) e C  2 and F(x, go(x), go(x))=M /or Xl <X<~X(go). Further, 
go(x) is the only minimizing function. 

Proof. Consider the "original" problem, to minimize H(f), between the points 
(xl, Yl) and (X(go) , Y2). Let  :~ be the class of admissible functions for this problem, 
and put  M 0 =inf1~H(/). Since go e :~, and H(g)< M, we have M 0 ~< M. Assume tha t  
Mo<M. Then there must  be a function /o(X)e:~ such tha t  H( fo)<M.  Put  /~(x)= 
fo(X)+2(x-x~). I f  ]2] <20, then H(f~,Xl, X(go))<M. Further,  if y2>Yl and 2 > 0 ,  
then there is a ~ < X(go), such that  f~(~)= Y2, and the same holds if y2 <y~, and 2 < 0. 
Consequently, 2 can be chosen such tha t  f~(x) e 6 and X(/z) <X(go). But  this contra- 
dicts our assumptions regarding go(X). Hence M o = M ,  and go(X) is a minimizing 
function for both problems. Now, the results follows directly from Theorem 1. 

Remark. This result can also be proved by  transformation of the given problem 
to a control problem, and application of the Pontryagin maximum principle. I t  can 
be shown by  means of examples tha t  the result is no longer true if the condition 
F(x, go(x), w(x, go(x))) < M  is omitted. 

Remark. Necessary conditions for minimizing functions for the "original" problem 
can also be derived by  the following approach: 1 Let  ](x) E C 1 be a minimizing function 
and let (I)(x)EC 1 vanish at x = x  I and x = x  2. We also assume that  F(x, y, z)EC ~, but  
no other condition on F(x, y, z) is needed. Pu t  U = {x] F(x, /(x), /'(x)) =Mo}. Consider 
a neighbouring function /(x) +2~P(x) where 2 is a "small" parameter.  By applying 
the mean-value theorem to ~o(t) = F(x, ] § t2~P, f' + t2c~P') - F(x , / , / ' )  between t = 1 and 
t = 0  it is not difficult to verify tha t  we must  have m i n ~  v(a(x)C~(x) §162 ~<0, 
where a(x) = Fy(x, /(x), /'(x)) and b(x) = F~(x, [(x), /'(x)). This leads to various relations 
between the set U and the zeros of a(x) or b(x). For instance, if b(x) =~0 on U, then U 
is the whole interval xl<~x<~x 2. 
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x Compare the results in [3], pp. 14-15. 
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