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Convolutions of  random functions 

By HARALD BERGSTROM 

l.  Introduction 

Let  a probabili ty space [X, B, P] be given and denote the set of real numbers by  
R. Let  12 be the class of all random variables ~ with E]~]P< § ~ ,  p~>l  and the 
norm ]] ~ lip = E1/P ]~['. A random function is said to belong to L p if ~(t) E 12 for 
t E R. We shall consider the topology in L p given by this norm and deal with limits, 
continuity, etc., with respect to it. Then we talk about  limits, continuity (12) or 
LP-limits, LP-continuity, etc. 

A random function ~ is called a.s. non-decreasing if it is real and ~(tl) ~< ~(t2) a.s. 
for any  pair (t, t2), t~ <t2. (Since we do not require tha t  the random functions are 
separable, the sample functions need not be non-decreasing for a.s. all xE X.) The 
L~-limits ~ ( t + )  and ~ ( t - )  exist for such a random function (Theorem 2.1). I f  
~(t) = �89 [~(t - ) + ~(t + )] (12) we say tha t  ~ is 12-mean-continuous a t  tha t  point and 
if such a relation holds for all t we say tha t  ~ is 12-mean-continuous. Let  M p be the 
class of 12-mean-continuous a.s. non-negative, a.s. non-decreasing random functions 
and let V ~' = R(M p) be the linear closure of M Y over R. We shall define a generalized 
convolution ~ @ ~ E V  p for ~ e V  q', ~EV  q', ql>~ 1, q2>~ 1, 1/q~+ 1/q2>~ l i p  and show 
tha t  the commutative and associative laws hold for this convolution. 

Let  MS = {~:~ E M p, ~( - ~ )  = 0 a.s.} and let V~ be the linear closure of MS. The 
L'-FS-transform (F.S. read Fourier-Stieltjes) of ~ E V~ will be defined in section 5 
as an RS-integral in respect to the LV-norm and it will be shown tha t  ~ ( ~  has the 
12-FS-transform $. ~ when ~ E V~' and ~/E Vo q* have the Lql-FS-transform ~ and L q*. 
.FS-transform ~ respectively (1/q~ + 1/q~ <~ 1/p, ql >~ 1, q2 >~ 1, p ~ 1). In  a forthcom- 
ing paper [2] we shall prove a generalized Bochner theorem which gives necessary 
and sufficient conditions for a random function to be the LP-FS-transform of an 
a.s. non-decreasing random function belonging to V~. Then it is also possible to 
define the convolution of random functions with the help of LP-RS-transforms in 
such a way tha t  the two definitions agree. We have also given limit theorems for 
convolution products of random functions [3). 

In  many  cases the generalizations of theorems for functions on the real line to 
corresponding theorems for random functions are quite simple and we can refer to 
[1] for details in the proofs. 

2. The linear space VP 

The following simple lemma will frequently be used. 

Lemma 2.1. I / ~  and ~ are a.s. non-negative random variables belonging to 12 and 
i / ~  >~ ~ a.s. then 
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II # -  lit < Eli - II v ll~] 1% 

Proo/. ~ = (~ + ~ - z/) ~ > / ~  + (~ - ~)~ a.s. Using then  Minkowsky 's  inequal i ty  we 
get  the  desired result.  

Theorem 2.1. I / ~  is an a.s. non-decreasing random/unct ion on ( -  ~ , + ~ ) then 
the limits ~(t - ) and ~(t + ) exist in  thv I.Z-norm/or t E ( - c~, + ~ ). 

Proo/. We m a y  assume t h a t  ~ > 0  a.s. Applying L e m m a  2.1 we get  for tl ~ t  z. 

II  (tz) --  ~ ( t l ) I I ,  < rll - II ~'(tl) PJP~I/P" (2.1) 

Bu t  ll (t=)ll   II (t )ll, and thus  the lef t -hand side of (2.1) tends to 0 as t 1 ~ t o, 
t2 1' t o or t l r  to, tz r to, tl ~< t2. Hence the directed classes (~(t): t <  to} and  {~(t): t >  to} 
are mu tua l ly  convergent  and thus  t h e / / - l i m i t s  ~(t - ) and  ~(t + ) exist. 

Now consider the  class M Y. We call the  point  c an LP-discontinuity point  of 
~ E M "  if I lk(c+ ) - ~ ( c -  )ll, >0 .  Clearly ~ ( c -  ) and  ~(c+ ) a r e / 2 - l i m i t s  of sequences 
( ~ ( c -  an)} and  {~:(c + a,)} respect ively  where a~ ~ 0. Then {an} m a y  be chosen such 
t h a t  ~ ( c - )  and  ~ ( c + )  are a.s. l imits of these sequences ([4], p. 164). Hence  
~(c - )/> 0, ~(c + ) >/0 a.s. P u t  ~c = ~(c + ) - ~(c - ) and let A(~) be the  set  of num-  
bers c for which ~c > 0  a,s. B y  L e m m a  2.1 we find t h a t  cEA(~)  is a d iscont inui ty  
point  of the non-decreasing bounded funct ion II ~llp and  hence A(~) is a countable  
set. Le t  e be the mean-cont inuous  uni t  dis t r ibut ion funct ion (e(t)= 0 for t <  0, = �89 
for t = 0, = 1 for t > 0) and  define e c b y  e c (t) = e(t + c). I t  is easily seen t h a t  ~ - ~c eC 
belongs to M ~ and  is L~-continuous a t  t = c. B y  the help of induct ion we then  get  
(cf. [1), p. 19) also observing t h a t  

Theorem 2.2. A random/unct ion ~ E M Y has the representation 

= ~ + Z ~oe ~ (2.2) 
c e A(D 

where ~oo belongs to M Y and is J~.continuous, O:c > 0  a.s. and • gc is convergent in the 
12-norm. 

Corollary. The representation 2.2 also holds/or ~ E V p and then ~oo belongs to I z~ and 
is I / .continuous and ~ l~c I is convergent in the I / -norm.  

We say t h a t  ~: is uni formly / / - con t i nuous  if there to any  e > 0 belongs a (~ > 0 
such t h a t  [l~(t + h ) -  ~(t)liT< e for  0 <  h <  (~ and  all t. 

Theorem 2.3. I / ~  belongs to V ~ and is L~-continuous then it is uni/ormly L'-con - 
tinuous. 

Proo/. I t  is sufficient to  deal wi th  ~ E M Y. Then  if ~ is continuous we find b y  
Minkowsky 's  inequal i ty  t ha t  H ~[1~ is continuous and  clearly II ~ lip is uni formly  con- 
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t inuous since it is non-decreasing and bounded. B y  (2.1) we then find t h a t  ~ is uni- 
formly LP-continuous. 

We say t h a t  ~ is of bounded  var iat ion in respect to  the L~-norm if 

sup ti) - ~(t~_l < + oo 

(N being any  net  f i t ted on any  interval) and tha t  ~ is o f / 2 - b o u n d e d  variat ion if 

sup Ilk(t,)- + 
N ~=1 

I t  can be shown tha t  V" is the class o f / 2 -m ean -con t i nuous  random functions of 
bounded variat ion in respect to  the L ' -norm.  However  we omit  the proof of this 
s ta tement-  

3. LP.RS-integrals 

Let  N :  a = t o < t, < ... < tn = b be a net  f i t ted on a finite interval [a, b]. We call 
N'  ~ refinement of N and write N '  > N if any  subinterval of N '  belongs to  some 
subinterval  of N.  The set of nets on [a, b] form a direction in respect to refinements 
([4], p. 67). To random functions ~ e V q', ~ e V q' where q~ >~ 1, q2 ~> 1, 1/q I + 1/q2 <- l i p  
we form the RS-sum (RS read Riemann-Stiel t jes) .  

o'~ (~, 7) = i ~(t~-i -k ) [~](t,) - ~](t/-1)]. (3.1] 
i = l  

Definit ion.  A random variable is called the le/t L~-RS.integral o[ ~ in respect to 
on [a, b] and is denoted by 

a= ["~(t) d~(t) 
Ja 

i] there to any s > 0 belongs a net N~ such that 

for N > N e .  

I t  is easily seen tha t  a is uniquely determined b y  this definition. Left  L~-RS in- 
tegrals on infinite intervals are defined as LP-limits of corresponding left integrals 
on finite intervals which tend nondeereasing to  the infinite interval. Fur ther  we pu t  

Right  integrals are defined in the same way. 1 

1 Stochastic integrals as limits in probability of sums have been studied by K. Ito [5], [6]. 
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Theorem 3.1. I / ~  and ~ satis/y the conditions given above, then ~ has left and right 
/F.RS-integrals with respect to ~1. I /  /urthermore ~ is o/LV-bounded variation, then the 
left Lv-RS-integral is equal to the corresponding right integral. 

Proo/. Clearly it is sufficient to prove the theorem for ~ E M q', ~ E M% Let [a, b] 
be any finite interval. Since 

0<af(~,~)<af'(~,~)<~(+ ~)n(+ ~) a.s. 

for N'  > N :  we get by H61der's inequality 

(3.2) 

Applying Lemma 2.1 we further obtain 

II ~ '  (~, 7) - ~ff (~, 7)I1~ < { II ~ '  (~, 7)IIg - II (~ff (~, 7)I1~} ~'~, (3.3) 

When N and N'  are infinitely refined and N'  > N  the right-hand side of (3.3) tends 
to 0, according to (3.2). Hence the class aN (~, ~), directed in respect to refinements, 
is mutually convergent and thus convergent. The corresponding/F-limit is the left 
/F-integral on [a, b]. I t  belongs t o / F  according to (3.3). The existence of the ~F- 
integral on any infinite interval then easily follows. The existence of right integrals 
is obtained in the same way. 

Let  now ~/be of Lq*-bounded variation. By HSlder's inequality we get 

(3.4) 

We may choose the net N on [a, b] such that  

for any ~ > 0 and for all i (since l[ ~llq0 is of bounded variation). Then 

n 

Hence the left and r ight/F-integrals  on [a, b] are equal (LV). 

Remark 1. When the left LV-integral is equal (/2 ~) to the right LP-integral it is 
also the LV-limit of any RS-sum of the form 3.1 where ~(t~ + ) is changed into ~(T~), 
T~ being any point on the open interval (t~-l, t~). 

Remark 2. Since the left (right) LV-integral can be given as the LP-limit of a 
sequence of RS-sum it is also the a.s. limit of such a sequence. 

A random variable ~ is called a.s. uniformly continuous in respect to a random 
variable ~o E L v if there to any positive number e >0  exists a positive number 
h(s) >~ 0 such ihat 

]~(t+h)-~(t)l<e~o a.s. for Ihl<h(e) .  
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Theorem 3.2. I / ~ E  Vq'), ~ ~ vq~), ql >~ 1, q2 ~ 1, 1/q~ + l/q2 ~ lip,  p >1 1 and i/ $ 
is uni/ormly continuous in respect to a random variable ~o E i q~, then the left and right 
I2.integrale el ~ in respect to ~ are equal. 

Proo/. For  any  e > 0 we m a y  choose the net  N such tha t  

n 

A sequence (z]~} of r andom functions is said to  converge L~-completely to a r andom 
function ~ on an interval [a, b / i f  lI ~ - ~ ]]~ tends to o(n-+ § ~ ) at  t = a, t -- b and 
all other  points on [a, b / e x c e p t  a t  mos t  a countable set. We shall state a general- 
ized Helly 's  theorem as follows. 

Theorem 3.3. Let / be a continuous/unction and ~% E M ~ /or n = 1, 2, ... I/~n--> 
I2-completely on [a, b ], then 

f~  /(t) d ' , ( t ) -  f~  /(t)gV(t)lL -~~ + ~)" 

Remark, I f  ~ is L~-continuons and belnngs to  M ~ and G~ is a sequence of r andom 
functions tending to G at  all finite points and a t . a  and b, then 

f2,( t)dGn(t)~ f :  ,(t)dG(t) (L~). 

The proof follows as in [1], section 2.7. 

4. Convolutions 

For  ~EV q', ~ EV q• where 1/q 1 + 1/qa <~ 1/p, ql/> 1, q2 ~ 1. p/> 1 we define left and 
right L ' -convolut ions  ~ ~e ~ and ~ ~e ~ by  

l r 

7 ~ = f~(t - 3) dz~ (~), ~ = f~ ( t -  ~)dr~(~) (L~). 

I f  these convolutions are equal (L ~) we write 

~ = ~ = ~ .  

Denote by  ~(" + c) t ha t  funct ion which is equal to  ~(t + c) at  the point  c (Hence 
~(" + c) = ~ ~ e~ 

Theorem 4.1. 1/~ and ~ have the representations 

c �9 A ( D  
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d �9 A(,~) 

according to Theorem 2.2, then 

+ ~ ~ active ~§ (/?), (4.1) 
ceA(~)  d EA(~) 

where the series are absolutely and uni/ormly convergent in the I / -norm.  

The corresponding relation holds for right convolutions. 
The proof follows immediately (cf. [1], p. 44). 

Theorem 4.2. The relations 

ho/d. 

Proo/. Clearly we may consider the ease ~E M q', ~ E M  q' and by Theorem 4.1 we 
find that  it is also sufficient to deal with that  ease when ~ is Zq~-continuons and 
is Lq'-continuons. Further we may consider the convolution at the point t = 0. Then 

~ ~(0) can be approximated arbitrarily closely in t he /2 -no rm by a RS-sum 

i = - n + l  

By an Abelian transformation we can write this sum 

n - 1  

~(tn) ~ ( -  t.) + Z 
l I~--n 

v ( t , )  [~( - t , )  - ~ (  - t_~§ 

and it approximates ~ ~-~(0) arbitrarily closely in t he /2 -no rm for suitable choice 
of the net. r 

Lemma 4.1. I]  ~ belongs to M ~ and is Lq'-continuous and ~? belongs to M ~, then 
~el ~ is I / -cont inuous to the right and ~ ~ ~ is L2-continuaus to the le/t. 

Proo/. Let t E ( -  oo, + oo) and let [ - a ,  a] be a finite interval and N : -  a =  
to < tl < ... < tn = a some net fitted on [ - a, a] such that  

(4.2) 

for a given number 8 > 0. We observe that  the RS-sum is a.s. not larger than the 
integral since the RS-sums are a.s. non-decreasing in the direction of refinements 
of nets. Now ~ is L~-continuous at t and hence we can determine h > 0 such that  

532 



ARKXV FSR ~TEMATIK. B d  7 nr 39 

,~l~(t-t,)[~(,,)-~(t,_l) ] :-I[ ,~l~(t-h-t ,)[~(t ,)-~(t ,_l)]  : < � 8 9  (4.3) 

But  the second sums is a RS-sum belonging to the r ight /2-RS-integral  and hence 

Il fa-o ~(t- h- v)d'v(3) ,>~ l ,~1 ~(t-  h -  t')~(t')-~(t'-l) ." (4.4) 

Combining (4 .2)-  (4.4) we obtain 

O< ~(t-3)d,v(3) :- f_~,(t-3-h)drv(3) :<e', 
Applying Lemma 2.1 we then get 

f a  , ( t - 3 )  dr~(3)- f a a , ( t - h - v ) d ~ t ( 3 )  <~. 

Also observing that  

we find that  

}" r 

The/2-cont inu i ty  of ~ ~-~/to the right follows in the same way. 
l 

Lcmma 4.2. Let ~ E M q~, i = 1, 2, 3, and let ~1 be a.s. uni/ormly continuous in re- 
spect to the random variable aEL q', where q~ >7 1, ~=1 1/q~ <~ 1/p ~ 1. 

Then 
(~  ~ ~ )  ~ ~ = ~1 ~ (~  ~ ~ )  = ~1 ~ (~  ~ ~ )  (L~). 

r 

Proo/. The convolution ~1 ~ ~2 exists according to Theorem 3.2. Further  to any 
> 0 we can find (h)e > 0 such that  

0 ~ ~1 (t § h )  - ~1 (t) < ~a  a . s .  
for 0 < h < h(e). Then 

~ ~ ~ (t + h) - ~1 ~ ~ (t) = f +~[~1 (t + h - 3) - ~1 (t - 3)] d ~  (3) < e a ~ (  + oo ) a.S.  

and thus ~l~e~ is a.s. uniformly continuous in respect to the random variable 
a ~  ( § c~). Hence (~1 ~e ~)  ~- ~a exists. In the same way we conclude that  ~l-)e (~  ~- ~a) 
and ~ ~- (~-'X- ~a) exist. 

Now choose the positive number a and a net N fitted on 

533 



H~ BEllGSTROM, Convolutions of random functions 

( - a . a ) , - - a = t o < t l <  ... >t~=a~ 
such that  

II ~1( -  a )"  r  ~)lip, <~, II ~I(+ ~ )  - ~l(a)I1~, <~, (4.1) 

~ l ( t i ) -  ~ l ( t i - 1 )  < e ~  a . s .  ( 4 . 2 )  

Using the definition of the I2-RS integrals and the fact that  these are a.s. limits of 
sequences of RS-sums, we get the inequalities 

~(  + ~ ) ~1( - ~ )  + ~ ~ ( t -  t,) [~l(t,) - ~1 (t,-1)] -<<~  ~l(t) 
t = 1  

~<~2(+  ~ ) [ ~ 1 ( - a ) + ~ 1 ( +  ~ ) - ~ 1 ( a ) ] +  ~. ~(t-ti-1)[~l(t~)-~2(t~-~)] a.s. (4.3) 
i = 1  

Forming the left convolution by ~3 we then get from (4.3) 

~ ( +  ~ )  ~1(-  ~ )  ~ ( +  ~ )  + ~ ~ ~ ( t -  t,) [~ (t,) - $~ (t~_~)] 
i = l  l 

~< (~e 2 * ~,) ~ ~e a (t) ~< ~2 ( + ~ ) [~1 ( - a) + ~1 ( + ~ ) -- ~1 (a)] ~a ( + c~ ) 

+ ~ (~z ~- ~s)(t - t,_~)i[~l (t,) - el (t,-1)] a . s .  (4.4) 
i = l  l 

Now it is easily seen that  this inequality also holds if we change (~2 ~e ~el)~-~3 into 
(~2 ~- ~3) ~- ~1. Hence we get regarding the inequalities (4.1) and (4.2) 

l 

< I1~(+ ~)I1~o "11 r + ~)114. {11 e l ( -  a ) -  ~1(-  ~)I1., + I1~( + ~ ) -  ~1(.)I1~,} 

t p 

Since e is arbitrary we conclude 

l 

In the same way we obtain the corresponding relation for the right convolution. 

Theorem 4.3. Let ~ and ~? satis[y the conditions in Theorem 4.1. Then ~ ~? and 
l 

~ ~r ~? have the same L~.discontinuity laoints and their lumps are equal (L u) at given 

L~-discontinuity points. 

Proo]. Clearly it is sufficient to consider the case ~ ~ M a', ~ ~ M a~ and, according 
to Theorem 4.1 it is also sufficient to deal with an L~-eontinuous ~ and an L a~- 
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continuous 7" Since ~-x-~/ and ~ e ~  are LV-continuous to the right and left re- 

spectively, they have representations (according to Theorem 2.3 and the remark on 
this theorem.) 

~ = 5 +  7. ~e~ (L~) (4.5) 
1 

and ~ + ~ = ~ +  ~ fi~e~ (L'), (4.6) 
~" d e A ( ~ - ~ )  

r 

respectively, where ~ and ~ ard LV-continuous, 

(~ for t < c ,  0 for t ~c ,  
e~(t) = el= 

for t/>c, 1 for t > c .  

Let G be a symmetrical continuous distribution function and let G(' /a)  denote 
that  function which takes the value G(t/a) at  t(a > 0). Applying Lemma 4.2 with 
~1 = G(" /(~) we get 

l r 

Letting a->0 q- and applying Helly's generalized (Theorem 3.3 and the remark on 
this theorem) we obtain 

C,+ ~ a~e ~=C~+ ~ ~ e  ~ (L~) 
c eA(r  ~ )  c eA(~ ~ ~) 

l r 

and from this relation the proposition follows. 
~Tow we define a generalized convolution ~ ~ ~ by putting 

~ | 1 6 2 1 6 2  

The generalized convolution is a commutative operation according to Theorem 4.2 
and by Theorem 4.3 ~ |  belongs to V ~ if ~EV q', ~EV qz where 1/q~+ 1/q2<~l/p, 
q~ >~ l,q~>~ l, p>~ l. 

Theorem 4.4. The generalized convolution is an associative operation in the following 
sense. Let ~ e V q', q~ >~ 1/or  i = 1, 2, 3, where ~=~ 1/q~ <~ l /p ,  p >~ 1. Then 

(~1|174 = ~1|174 (L~). 

Proof. Clearly it is sufficient to deal with the case ~ E M% According to Lemma 
4.2 this relation holds if furthermore ~1 is a.s. uniformly continuous in respect to a 
random variable ~ E L ql. Hence observing that  ~1*G('/(~) is a.s. uniformly contin- 
uous in respect to ~1(+ co), weget  
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o o (;) 

Since G(./a) is uniformly continuous we also have 

Combining (4.7)-(4.9) we obtain 

Letting a J~ 0 we get 

(e,|174 = el|174 

(/2). 

(4.7) 

(4.8) 

(4.9) 

5. LP-Fouriertransforms 

I f  e E V~ then the LV-RS.integral 

$(s) = f + ~  exp its de(t) 

exists. I t  is called the LP-Fourierintegral of e a t  the point s. 

Theorem 5.1. Let ee Vg', ~e Vg', ~e Vg" where 1/ql+ l / q ~  l /p ,  q~>~l, q~>~l, 
p >/1. Then 

e ~ = $ . r  (L~). 

Proo/. I t  is sufficient to consider e E M q~, ~ E M q'. I f  G is a continuous distribu- 
tion we have 

O ~ ( e |  = ( G ~ e ) ~  (L ~) (5.1) 

(c.f. Lemma 4.2). However then this relation also holds for any continuous func- 
tion G of bounded variation since G is the difference between two continuous bounded 
and non-decreasing functions. Since e ~ z/( - c~) = 7( - co) = 0 a.s. it then also follows 
tha t  (5.1) remains true for any  bounded continuous function which is of bounded 
variation on any  finite interval. Thus particularly (5.1) holds for G(- t )=  sin ts, 
G(t) = cos ts and hence also for exp-its. Choosing G(t) = exp its we get successively 

a ~  e(t) = f ~  exp its ( t -  v) de(v) = $(s) exp its (Lq'), 
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(a~-~(t))~-v(t)--~(8)~(8) exp it8 (L'), 
J ~  

G ~- (~(~}) (t) = ~| exp  its (L'), 

and thus according to  (5.1) 
f ~  ~| 
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