Convolutions of random functions

By HARALD BERGSTRÖM

1. Introduction

Let a probability space [X, B, P] be given and denote the set of real numbers by *R*. Let L^p be the class of all random variables ξ with $E|\xi|^p < +\infty$, $p \ge 1$ and the norm $\|\xi\|_p = E^{1/p} |\xi|^p$. A random function is said to belong to L^p if $\xi(t) \in L^p$ for $t \in R$. We shall consider the topology in L^p given by this norm and deal with limits, continuity, etc., with respect to it. Then we talk about limits, continuity (L^p) or L^p -limits, L^p -continuity, etc.

A random function ξ is called a.s. non-decreasing if it is real and $\xi(t_1) \leq \xi(t_2)$ a.s. for any pair (t, t_2) , $t_1 \leq t_2$. (Since we do not require that the random functions are separable, the sample functions need not be non-decreasing for a.s. all $x \in X$.) The L^p -limits $\xi(t+)$ and $\xi(t-)$ exist for such a random function (Theorem 2.1). If $\xi(t) = \frac{1}{2} [\xi(t-) + \xi(t+)] (L^p)$ we say that ξ is L^p -mean-continuous at that point and if such a relation holds for all t we say that ξ is L^p -mean-continuous. Let M^p be the class of L^p -mean-continuous a.s. non-negative, a.s. non-decreasing random functions and let $V^p = R(M^p)$ be the linear closure of M^p over R. We shall define a generalized convolution $\xi \circledast \eta \in V^p$ for $\xi \in V^{q_1}$, $\eta \in V^{q_2}$, $q_1 \ge 1$, $q_2 \ge 1$, $1/q_1 + 1/q_2 \ge 1/p$ and show that the commutative and associative laws hold for this convolution.

Let $M_0^p = \{\xi: \xi \in M^p, \xi(-\infty) = 0 \text{ a.s.}\}$ and let V_0^p be the linear closure of M_0^p . The L^p -FS-transform (F.S. read Fourier-Stieltjes) of $\xi \in V_0^p$ will be defined in section 5 as an RS-integral in respect to the L^p -norm and it will be shown that $\xi \circledast \eta$ has the L^p -FS-transform $\hat{\xi} \cdot \hat{\eta}$ when $\xi \in V_0^{q_1}$ and $\eta \in V_0^{q_2}$ have the L^{q_1} -FS-transform $\hat{\xi}$ and L^{q_2} -FS-transform $\hat{\eta}$ respectively $(1/q_1 + 1/q_2 \le 1/p, q_1 \ge 1, q_2 \ge 1, p \ge 1)$. In a forthcoming paper [2] we shall prove a generalized Bochner theorem which gives necessary and sufficient conditions for a random function to be the L^p -FS-transform of an a.s. non-decreasing random function belonging to V_0^p . Then it is also possible to define the convolution of random functions with the help of L^p -RS-transforms in such a way that the two definitions agree. We have also given limit theorems for convolution products of random functions [3).

In many cases the generalizations of theorems for functions on the real line to corresponding theorems for random functions are quite simple and we can refer to [1] for details in the proofs.

2. The linear space V^p

The following simple lemma will frequently be used.

Lemma 2.1. If ξ and η are a.s. non-negative random variables belonging to L^p and if $\xi \ge \eta$ a.s. then

н. вексатком, Convolutions of random functions

$$\|\xi - \eta\|_p \leq [\|\xi\|_p^p - \|\eta\|_p^p]^{1/p}.$$

Proof. $\xi^p = (\eta + \xi - \eta)^p \ge \eta^p + (\xi - \eta)^p$ a.s. Using then Minkowsky's inequality we get the desired result.

Theorem 2.1. If ξ is an a.s. non-decreasing random function on $(-\infty, +\infty)$ then the limits $\xi(t-)$ and $\xi(t+)$ exist in the L^p -norm for $t \in (-\infty, +\infty)$.

Proof. We may assume that $\xi \ge 0$ a.s. Applying Lemma 2.1 we get for $t_1 \le t_2$.

$$\|\xi(\mathbf{t}_{2}) - \xi(t_{1})\|_{p} \leq [\|\xi(t_{2})\|_{p}^{p} - \|\xi(t_{1})\|_{p}^{p}]^{1/p}.$$
(2.1)

But $\|\xi(t_2)\|_p \ge \|\xi(t_1)\|_p$ and thus the left-hand side of (2.1) tends to 0 as $t_1 \uparrow t_0$, $t_2 \uparrow t_0$ or $t_1 \downarrow t_0$, $t_2 \downarrow t_0$, $t_1 \le t_2$. Hence the directed classes $\{\xi(t): t < t_0\}$ and $\{\xi(t): t > t_0\}$ are mutually convergent and thus the L^p -limits $\xi(t-)$ and $\xi(t+)$ exist.

Now consider the class M^p . We call the point c an L^p -discontinuity point of $\xi \in M^p$ if $||\xi(c+)-\xi(c-)||_p > 0$. Clearly $\xi(c-)$ and $\xi(c+)$ are L^p -limits of sequences $\{\xi(c-a_n)\}$ and $\{\xi(c+a_n)\}$ respectively where $a_n \neq 0$. Then $\{a_n\}$ may be chosen such that $\xi(c-)$ and $\xi(c+)$ are a.s. limits of these sequences ([4], p. 164). Hence $\xi(c-) \ge 0$, $\xi(c+) \ge 0$ a.s. Put $\alpha_c = \xi(c+) - \xi(c-)$ and let $\Lambda(\xi)$ be the set of numbers c for which $\alpha_c > 0$ a.s. By Lemma 2.1 we find that $c \in \Lambda(\xi)$ is a discontinuity point of the non-decreasing bounded function $||\xi||_p$ and hence $\Lambda(\xi)$ is a countable set. Let e be the mean-continuous unit distribution function (e(t) = 0 for $t < 0, = \frac{1}{2}$ for t=0, =1 for t>0) and define e^c by $e^c(t) = e(t+c)$. It is easily seen that $\xi - \alpha_c e^c$ belongs to M^p and is L^p -continuous at t=c. By the help of induction we then get (cf. [1), p. 19) also observing that

$$\left\|\sum_{c \in \Lambda(\xi)} \alpha_c\right\|_p \leq \left\|\xi(+\infty)\right\|_p.$$

Theorem 2.2. A random function $\xi \in M^p$ has the representation

$$\boldsymbol{\xi} = \boldsymbol{\xi}_{\infty} + \sum_{c \in \Lambda(\boldsymbol{\xi})} \boldsymbol{\alpha}_{c} e^{c}, \qquad (2.2)$$

where ξ_{∞} belongs to M^p and is L^p -continuous, $\alpha_c > 0$ a.s. and $\sum \alpha_c$ is convergent in the L^p -norm.

Corollary. The representation 2.2 also holds for $\xi \in V^p$ and then ξ_{∞} belongs to V^p and is L^p -continuous and $\Sigma |\alpha_c|$ is convergent in the L^p -norm.

We say that ξ is uniformly L^p -continuous if there to any $\varepsilon > 0$ belongs a $\delta > 0$ such that $\|\xi(t+h) - \xi(t)\|_{\varepsilon} < \varepsilon$ for $0 < h < \delta$ and all t.

Theorem 2.3. If ξ belongs to V^p and is L^p -continuous then it is uniformly L^p -continuous.

Proof. It is sufficient to deal with $\xi \in M^p$. Then if ξ is continuous we find by Minkowsky's inequality that $\|\xi\|_p$ is continuous and clearly $\|\xi\|_p$ is uniformly con-

tinuous since it is non-decreasing and bounded. By (2.1) we then find that ξ is uniformly L^{p} -continuous.

We say that ξ is of bounded variation in respect to the L^{p} -norm if

$$\sup_{N} \left\| \sum_{i=1}^{n} \left| \xi(t_{i}) - \xi(t_{i-1}) \right| \right\| < +\infty$$

(N being any net fitted on any interval) and that ξ is of L^p -bounded variation if

$$\sup_{N} \sum_{i=1}^{n} \|\xi(t_{i}) - \xi(t_{i-1})\|_{p} < +\infty.$$

It can be shown that V^p is the class of L^p -mean-continuous random functions of bounded variation in respect to the L^p -norm. However we omit the proof of this statement-

3. L^p-RS-integrals

Let $N:a=t_0 < t, < ... < t_n = b$ be a net fitted on a finite interval [a, b]. We call N' a refinement of N and write N' > N if any subinterval of N' belongs to some subinterval of N. The set of nets on [a, b] form a direction in respect to refinements ([4], p. 67). To random functions $\xi \in V^{q_1}$, $\eta \in V^{q_2}$ where $q_1 \ge 1$, $q_2 \ge 1$, $1/q_1 + 1/q_2 \le 1/p$ we form the RS-sum (RS read Riemann-Stieltjes).

$$\sigma_l^N(\xi,\eta) = \sum_{i=1}^n \xi(t_{i-1}+) [\eta(t_i) - \eta(t_{i-1})].$$
(3.1)

Definition. A random variable is called the left L^p -RS-integral of ξ in respect to η on [a, b] and is denoted by

$$\sigma = \int_a^b \xi(t) \, d_l \eta(t)$$

if there to any $\varepsilon > 0$ belongs a net N_{ε} such that

$$\|\sigma_l^N(\xi,\eta) - \sigma\|_p < \varepsilon \quad for \quad N > N_{\varepsilon}.$$

It is easily seen that σ is uniquely determined by this definition. Left L^p -RS integrals on infinite intervals are defined as L^p -limits of corresponding left integrals on finite intervals which tend nondecreasing to the infinite interval. Further we put

$$\int \xi(t) d_i \eta(t) = \xi(-\infty) \eta(-\infty) + \int_{-\infty}^{+\infty} \xi(t) d_i \eta(t).$$

Right integrals are defined in the same way.¹

¹ Stochastic integrals as limits in probability of sums have been studied by K. Ito [5], [6].

н. BERGSTRÖM, Convolutions of random functions

Theorem 3.1. If ξ and η satisfy the conditions given above, then ξ has left and right L^p -RS-integrals with respect to η . If furthermore η is of L^p -bounded variation, then the left L^p -RS-integral is equal to the corresponding right integral.

Proof. Clearly it is sufficient to prove the theorem for $\xi \in M^{q_1}$, $\eta \in M^{q_2}$. Let [a, b] be any finite interval. Since

$$0 \leqslant \sigma_l^N(\xi,\eta) \leqslant \sigma_l^{N'}(\xi,\eta) \leqslant \xi(+\infty) \eta(+\infty) ext{ a.s.}$$

for N' > N: we get by Hölder's inequality

$$\|\sigma_{l}^{N'}(\xi,\eta)\|_{p} \leq \|\sigma_{l}^{N}(\xi,\eta)\|_{p} \leq \|\xi(+\infty)\|_{q_{1}} \|\eta(+\infty)\|_{q_{2}}.$$
(3.2)

Applying Lemma 2.1 we further obtain

$$\|\sigma_{l}^{N'}(\xi,\eta) - \sigma_{l}^{N}(\xi,\eta)\|_{p} \leq \{\|\sigma_{l}^{N'}(\xi,\eta)\|_{p}^{p} - \|\sigma_{l}^{N}(\xi,\eta)\|_{p}\}^{1/p}.$$
(3.3)

When N and N' are infinitely refined and N' > N the right-hand side of (3.3) tends to 0, according to (3.2). Hence the class $\sigma_1^N(\xi,\eta)$, directed in respect to refinements, is mutually convergent and thus convergent. The corresponding L^p -limit is the left L^p -integral on [a, b]. It belongs to L^p according to (3.3). The existence of the L^p integral on any infinite interval then easily follows. The existence of right integrals is obtained in the same way.

Let now η be of L^{q_2} -bounded variation. By Hölder's inequality we get

$$\|\sigma_{r}^{N}(\xi,\eta)-\sigma_{l}^{N}(\xi,\eta)\|_{p} \leq \sum_{i=1}^{n} \|\xi(t_{i}-)-\xi(t_{i-1}+)\|_{q_{1}} \|\eta(t_{i})-\eta(t_{i-1})\|_{q_{2}}.$$
 (3.4)

We may choose the net N on [a, b] such that

$$\|\xi(t_{i}-)-\xi(t_{i-1}+)\|_{q_{1}} < \varepsilon$$

for any $\varepsilon > 0$ and for all i (since $\|\xi\|_{q_2}$ is of bounded variation). Then

$$\left\|\sigma_r^N(\xi,\eta)-\sigma_1^N(\xi,\eta)\right\| \leq \varepsilon \sum_{i=1}^n \left\|\eta(t_i)-\eta(t_{i-1})\right\|_{q_2}.$$

Hence the left and right L^p -integrals on [a, b] are equal (L^p) .

Remark 1. When the left L^p -integral is equal (L^p) to the right L^p -integral it is also the L^p -limit of any RS-sum of the form 3.1 where $\xi(t_i +)$ is changed into $\xi(\tau_i)$, τ_i being any point on the open interval (t_{i-1}, t_i) .

Remark 2. Since the left (right) L^p -integral can be given as the L^p -limit of a sequence of RS-sum it is also the a.s. limit of such a sequence.

A random variable ξ is called a.s. uniformly continuous in respect to a random variable $\xi_0 \in L^p$ if there to any positive number $\varepsilon > 0$ exists a positive number $h(\varepsilon) \ge 0$ such that

$$|\xi(t+h) - \xi(t)| \leq \varepsilon \xi_0$$
 a.s. for $|h| \leq h(\varepsilon)$.

ARKIV FÖR MATEMATIK. Bd 7 nr 39

Theorem 3.2. If $\xi \in V^{q_1}$, $\eta \in V^{q_2}$, $q_1 \ge 1$, $q_2 \ge 1$, $1/q_1 + 1/q_2 \le 1/p$, $p \ge 1$ and if ξ is uniformly continuous in respect to a random variable $\xi_0 \in L^{q_1}$, then the left and right L^p -integrals of ξ in respect to η are equal.

Proof. For any $\varepsilon > 0$ we may choose the net N such that

$$\left|\sigma_r^N(\xi,\eta) - \sigma_l^N(\xi,\eta)
ight| \leqslant arepsilon \xi_{0} \sum\limits_{i=1}^n \left|\eta(t_i) - \eta(t_{i-1})
ight| ext{ a.s.}$$

A sequence $\{\eta_n\}$ of random functions is said to converge L^p -completely to a random function η on an interval [a, b] if $\|\eta_n - \eta\|_p$ tends to $o(n \to +\infty)$ at t=a, t=b and all other points on [a, b] except at most a countable set. We shall state a generalized Helly's theorem as follows.

Theorem 3.3. Let f be a continuous function and $\eta_n \in M^p$ for n = 1, 2, ... If $\eta_n \rightarrow \eta$ L^p -completely on [a, b], then

$$\left\|\int_a^b f(t) \, d\eta_n(t) - \int_a^b f(t) \, d\eta(t)\right\|_p \to o(n \to +\infty).$$

Remark. If η is L^p -continuous and belongs to M^p and G_n is a sequence of random functions tending to G at all finite points and at a and b, then

$$\int_a^b \eta(t) \, dG_n(t) \to \int_a^b \eta(t) \, dG(t) \quad (L^p).$$

The proof follows as in [1], section 2.7.

4. Convolutions

For $\xi \in V^{q_1}$, $\eta \in V^{q_2}$ where $1/q_1 + 1/q_2 \leq 1/p$, $q_1 \geq 1$, $q_2 \geq 1$. $p \geq 1$ we define left and right L^p -convolutions $\xi \neq \eta$ and $\xi \neq \eta$ by

$$\xi \underset{l}{\star} \eta = \int \xi(\mathbf{t} - \tau) \, d_l \eta(\tau), \qquad \xi \underset{r}{\star} \eta = \int \xi(t - \tau) \, d_r \eta(\tau) \quad (L^p).$$

If these convolutions are equal (L^p) we write

$$\xi \mathop{\times}_{l} \eta = \xi \mathop{\times}_{l} \eta = \xi \mathop{\times}_{r} \eta.$$

Denote by $\xi(\cdot + c)$ that function which is equal to $\xi(t+c)$ at the point c (Hence $\xi(\cdot + c) = \xi \times e^{c}$).

Theorem 4.1. If ξ and η have the representations

$$\xi = \xi_{\infty} + \sum_{c \in \Lambda(\xi)} \alpha_c e^c \quad (L^{q_1}),$$

H. BERGSTRÖM, Convolutions of random functions

$$\eta = \eta_{\infty} + \sum_{d \in \Lambda(\eta)} \beta_d e^d \quad (L^{q_2})$$

according to Theorem 2.2, then

$$\xi \underset{l}{\times} \eta = \xi_{\infty} \underset{l}{\times} \eta_{\infty} + \sum_{c \in \Lambda(\xi)} \alpha_{c} \eta(\cdot + c) + \sum_{d \in \Lambda(\eta)} \beta_{d} \xi(\cdot + d)$$
$$+ \sum_{c \in \Lambda(\xi)} \sum_{d \in \Lambda(\eta)} \alpha_{c} \beta_{d} e^{c+d} \quad (L^{p}),$$
(4.1)

where the series are absolutely and uniformly convergent in the L^{p} -norm.

The corresponding relation holds for right convolutions. The proof follows immediately (cf. [1], p. 44).

Theorem 4.2. The relations

$$\xi \underset{l}{\star} \eta = \eta \underset{l}{\star} \xi, \xi \underset{r}{\star} \eta = \eta \underset{r}{\star} \xi$$

hold.

Proof. Clearly we may consider the case $\xi \in M^{q_1}$, $\tau \in M^{q_2}$ and by Theorem 4.1 we find that it is also sufficient to deal with that case when ξ is L^{q_1} -continuous and η is L^{q_2} -continuous. Further we may consider the convolution at the point t = 0. Then $\xi \times \eta(0)$ can be approximated arbitrarily closely in the L^p -norm by a RS-sum

$$\xi(-t_{-n})\eta(t_{-n}) + \sum_{i=-n+1}^{n} \xi(-t_{i}) [\eta(t_{i}) - \eta(t_{i-1})].$$

By an Abelian transformation we can write this sum

$$\eta(t_n)\,\xi(-t_n) + \sum_{i=-n}^{n-1} \eta(t_i)\,[\xi(-t_i) - \xi(-t_{-i+1})],$$

and it approximates $\eta \neq \xi(0)$ arbitrarily closely in the L^p -norm for suitable choice of the net.

Lemma 4.1. If ξ belongs to M^{q_1} and is L^{q_1} -continuous and η belongs to M^{q_2} , then $\xi \times \eta$ is L^p -continuous to the right and $\xi \times \eta$ is L^p -continuous to the left.

Proof. Let $t \in (-\infty, +\infty)$ and let [-a, a] be a finite interval and $N: -a = t_0 < t_1 < \ldots < t_n = a$ some net fitted on [-a, a] such that

$$0 \leq \left\| \int_{-a}^{a} \xi(t-\tau) d_{i} \eta(\tau) \right\|_{p}^{p} - \left\| \sum \xi(t-t_{i}) \left[\eta(t_{i}) - \eta(t_{i-1}) \right] \right\|_{p}^{p} \leq \frac{1}{2} \varepsilon^{p}$$
(4.2)

for a given number $\varepsilon > 0$. We observe that the RS-sum is a.s. not larger than the integral since the RS-sums are a.s. non-decreasing in the direction of refinements of nets. Now ξ is L^{p} -continuous at t and hence we can determine h > 0 such that

ARKIV FÖR MATEMATIK. Bd 7 nr 39

$$\left\|\sum_{i=1}^{n} \xi(t-t_{i}) \left[\eta(t_{i})-\eta(t_{i-1})\right]\right\|_{p}^{p} - \left\|\sum_{i=1}^{n} \xi(t-h-t_{i}) \left[\eta(t_{i})-\eta(t_{i-1})\right]\right\|_{p}^{p} < \frac{1}{2} \varepsilon^{p}.$$
(4.3)

But the second sums is a RS-sum belonging to the right L^{p} -RS-integral and hence

$$\left\|\int_{-a}^{a}\xi(t-h-\tau)\,d_{\tau}\eta(\tau)\right\|_{p} \geq \left\|\sum_{i=1}^{n}\xi(t-h-t_{i})\,\eta(t_{i})-\eta(t_{i-1})\right\|_{p}.$$
(4.4)

Combining (4.2) - (4.4) we obtain

$$0 \leq \left\| \int_{-a}^{a} \xi(t-\tau) d_{\tau} \eta(\tau) \right\|_{p}^{p} - \left\| \int_{-a}^{a} \xi(t-\tau-h) d_{\tau} \eta(\tau) \right\|_{p}^{p} < \varepsilon^{p},$$

Applying Lemma 2.1 we then get

$$\left\|\int_{-a}^{a}\xi(t-\tau)\,d_{r}\,\eta(\tau)-\int_{-a}^{a}\xi(t-h-\tau)\,d\eta_{r}(\tau)\,\right\|_{p}<\varepsilon.$$

Also observing that

$$\left\|\int_{-\infty}^{-a}+\int_{a}^{+\infty}\xi(t-\tau)\,d_{r}\,\eta(\tau)\,\right\|_{p}\leq \left\|\xi(+\infty)\right\|_{q_{1}}\left\|\int_{-\infty}^{-a}+\int_{a}^{+\infty}d_{r}\,\eta(\tau)\,\right\|_{q_{2}}$$

we find that

$$\|\xi \underset{r}{\star} \eta(t) - \xi \underset{r}{\star} \eta(t-h)\|_{p} \to 0 \quad \text{as} \quad h \downarrow 0.$$

The L^p -continuity of $\xi \times \eta$ to the right follows in the same way.

Lemma 4.2. Let $\xi_i \in M^{q_i}$, i = 1, 2, 3, and let ξ_1 be a.s. uniformly continuous in respect to the random variable $\alpha \in L^{q_1}$, where $q_i \ge 1$, $\sum_{i=1}^3 1/q_i \le 1/p \le 1$.

Then

$$(\xi_1 \times \xi_2) \times \xi_3 = \xi_1 \times (\xi_2 \times \xi_3) = \xi_1 \times (\xi_2 \times \xi_3) \quad (L^p).$$

Proof. The convolution $\xi_1 \times \xi_2$ exists according to Theorem 3.2. Further to any $\varepsilon > 0$ we can find $(h)\varepsilon > 0$ such that

$$0 \leq \xi_1(t+h) - \xi_1(t) < \varepsilon \alpha$$
 a.s.

for $0 < h < h(\varepsilon)$. Then

$$\xi_1 \times \xi_2(t+h) - \xi_1 \times \xi_2(t) = \int_{-\infty}^{+\infty} [\xi_1(t+h-\tau) - \xi_1(t-\tau)] d\xi_2(\tau) \leq \varepsilon \alpha \xi_2(+\infty) \quad \text{a.s.}$$

and thus $\xi_1 \times \xi_2$ is a.s. uniformly continuous in respect to the random variable $\alpha \xi_2 (+\infty)$. Hence $(\xi_1 \times \xi_2) \times \xi_3$ exists. In the same way we conclude that $\xi_1 \times (\xi_2 \times \xi_3)$ and $\xi_1 \times (\xi_2 \times \xi_3)$ exist.

Now choose the positive number a and a net N fitted on

H. BERGSTRÖM, Convolutions of random functions

$$(-a.a), -a = t_0 < t_1 < \ldots > t_n = a,$$

such that

$$\|\xi_{1}(-a) - \xi_{1}(-\infty)\|_{q_{1}} \leq \varepsilon, \|\xi_{1}(+\infty) - \xi_{1}(a)\|_{q_{1}} \leq \varepsilon,$$
(4.1)

$$\xi_1(t_i) - \xi_1(t_{i-1}) \leq \varepsilon \alpha \quad \text{a.s.}$$

$$(4.2)$$

Using the definition of the L^{p} -RS integrals and the fact that these are a.s. limits of sequences of RS-sums, we get the inequalities

$$\begin{aligned} \xi_{2}(+\infty) \ \xi_{1}(-\infty) + \sum_{i=1}^{n} \xi_{2}(t-t_{i}) \left[\xi_{1}(t_{i}) - \xi_{1}(t_{i-1})\right] &\leq \xi_{2} \times \xi_{1}(t) \\ &\leq \xi_{2}(+\infty) \left[\xi_{1}(-a) + \xi_{1}(+\infty) - \xi_{1}(a)\right] + \sum_{i=1}^{n} \xi_{2}(t-t_{i-1}) \left[\xi_{1}(t_{i}) - \xi_{2}(t_{i-1})\right] \text{ a.s.} \end{aligned}$$
(4.3)

Forming the left convolution by ξ_3 we then get from (4.3)

$$\begin{aligned} \xi_{2}(+\infty)\,\xi_{1}(-\infty)\,\xi_{3}(+\infty) + \sum_{i=1}^{n} \xi_{2} \underset{l}{\times} \xi_{3}(t-t_{i})\,[\xi_{1}(t_{i}) - \xi_{1}(t_{i-1})] \\ &\leq (\xi_{2} \times \xi_{1}) \times \xi_{3}(t) \leq \xi_{2}(+\infty)\,[\xi_{1}(-a) + \xi_{1}(+\infty) - \xi_{1}(a)]\,\xi_{3}(+\infty) \\ &+ \sum_{i=1}^{n} (\xi_{2} \underset{l}{\times} \xi_{3})(t-t_{i-1})[\xi_{1}(t_{i}) - \varepsilon_{1}(t_{i-1})] \quad \text{a.s.} \end{aligned}$$
(4.4)

Now it is easily seen that this inequality also holds if we change $(\xi_2 \times \xi_1) \times \xi_3$ into $(\xi_2 \times \xi_3) \times \xi_1$. Hence we get regarding the inequalities (4.1) and (4.2)

$$\begin{split} \| (\xi_{2} \times \xi_{1}) \times \xi_{3}(t) - (\xi_{2} \times \xi_{3}) \times \xi_{1}(t) \|_{p} \\ \leq \| \xi_{2}(+\infty) \|_{q_{2}} \cdot \| \xi_{3}(+\infty) \|_{q_{3}} \{ \| \xi_{1}(-a) - \xi_{1}(-\infty) \|_{q_{1}} + \| \xi_{1}(+\infty) - \xi_{1}(a) \|_{q_{1}} \} \\ + \varepsilon \| \sum_{i=1}^{n} [\xi_{2}(t - t_{i-1}) - \xi_{2}(t - t_{i})] \|_{p} \\ \leq \varepsilon \{ 2 \| \xi_{2}(+\infty) \|_{q_{2}} \| \xi_{3}(+\infty) \|_{q_{3}} + \| \alpha \|_{q_{1}} \| \xi_{2}(+\infty) \|_{q_{2}} \| \xi_{3}(+\infty) \|_{q_{3}}. \end{split}$$

Since ε is arbitrary we conclude

$$(\xi_2 \times \xi_1) \times \xi_3 = (\xi_2 \times \xi_3) \times \xi_1 \quad (L^p).$$

In the same way we obtain the corresponding relation for the right convolution.

Theorem 4.3. Let ξ and η satisfy the conditions in Theorem 4.1. Then $\xi \times \eta$ and $\xi \times \eta$ have the same L^p -discontinuity points and their jumps are equal (L^p) at given L^p -discontinuity points.

Proof. Clearly it is sufficient to consider the case $\xi \in M^{q_1}$, $\eta \in M^{q_2}$ and, according to Theorem 4.1 it is also sufficient to deal with an L^{q_1} -continuous ξ and an L^{q_2} -

ARKIV FÖR MATEMATIK. Bd 7 nr 39

continuous η . Since $\xi \approx \eta$ and $\xi \approx \eta$ are L^p -continuous to the right and left respectively, they have representations (according to Theorem 2.3 and the remark on this theorem.)

$$\xi \underset{l}{\not\leftarrow} \eta = \zeta_r + \sum_{c \in \Lambda(\xi \not\leftarrow \eta)} \alpha_c e_r^c \quad (L^p)$$
(4.5)

and

$$\xi \underset{r}{\star} \eta = \zeta_l + \sum_{\substack{d \in \Lambda(\xi \times \eta) \\ r}} \beta_d e_1^d \quad (L^p),$$
(4.6)

respectively, where ζ_l and ζ_r and L^p -continuous,

$$e_r^c(t) = \begin{cases} 0 \quad \text{for} \quad t < c, \\ 1 \quad \text{for} \quad t \ge c, \end{cases} \qquad e_l^c = \begin{matrix} 0 \quad \text{for} \quad t \le c, \\ 1 \quad \text{for} \quad t > c. \end{cases}$$

Let G be a symmetrical continuous distribution function and let $G(\cdot/\sigma)$ denote that function which takes the value $G(t/\sigma)$ at $t(\sigma > 0)$. Applying Lemma 4.2 with $\xi_1 = G(\cdot/\sigma)$ we get

$$\xi_{\tau} \times G\left(\frac{\cdot}{\sigma}\right) + \sum_{\substack{c \in \Lambda(\xi \times \eta) \\ l}} \alpha_{c} G\left(\frac{\cdot + c}{\sigma}\right) = \xi_{\frac{1}{l}} G\left(\frac{\cdot}{\sigma}\right) + \sum_{\substack{d \in \Lambda(\xi \times \eta) \\ r}} \beta_{d} G\left(\frac{\cdot + d}{\sigma}\right) \quad (L^{p})$$

Letting $\sigma \rightarrow 0+$ and applying Helly's generalized (Theorem 3.3 and the remark on this theorem) we obtain

$$\zeta_r + \sum_{\substack{c \in \Lambda(\xi \neq \eta) \\ l}} \alpha_c e^c = \zeta_l + \sum_{\substack{c \in \Lambda(\xi \neq \eta) \\ r}} \beta_d e^d \quad (L^p)$$

and from this relation the proposition follows.

Now we define a generalized convolution $\zeta \circledast \eta$ by putting

$$\xi \circledast \eta = \frac{1}{2} \left[\xi + \eta + \xi + \eta \right].$$

The generalized convolution is a commutative operation according to Theorem 4.2 and by Theorem 4.3 $\xi \circledast \eta$ belongs to V^p if $\xi \in V^{q_1}$, $\eta \in V^{q_2}$ where $1/q_1 + 1/q_2 \leq 1/p$, $q_1 \geq 1, q_2 \geq 1, p \geq 1$.

Theorem 4.4. The generalized convolution is an associative operation in the following sense. Let $\xi_i \in V^{q_i}$, $q_i \ge 1$ for i = 1, 2, 3, where $\sum_{i=1}^3 1/q_i \le 1/p$, $p \ge 1$. Then

$$(\xi_1 \circledast \xi_2) \circledast \xi_3 = \xi_1 \circledast (\xi_2 \circledast \xi_3) \quad (L^p).$$

Proof. Clearly it is sufficient to deal with the case $\xi_i \in M^{q_i}$. According to Lemma 4.2 this relation holds if furthermore ξ_1 is a.s. uniformly continuous in respect to a random variable $\alpha \in L^{q_i}$. Hence observing that $\xi_1 \times G(\cdot/\sigma)$ is a.s. uniformly continuous in respect to $\xi_1(+\infty)$, we get

H. BERGSTRÖM, Convolutions of random functions

$$\left[\left(\xi_1 \times G\left(\frac{\cdot}{\sigma}\right)\right) \circledast \xi_2\right] \circledast \xi_3 = \left(\xi_1 \times G\left(\frac{\cdot}{\sigma}\right)\right) \circledast \left[\xi_2 \circledast \xi_3\right] = G\left(\frac{\cdot}{\sigma}\right) \times \left[\xi_1 \circledast \left(\xi_2 \circledast \xi_3\right)\right] \quad (L^p).$$
(4.7)

Since $G(./\sigma)$ is uniformly continuous we also have

$$\left(\xi_1 \star G\left(\frac{\cdot}{\sigma}\right)\right) \circledast \xi_2 = G\left(\frac{\cdot}{\sigma}\right) \star (\xi_1 \circledast \xi_2) \quad (L^p)$$
(4.8)

and

 $\left[G\left(\frac{\cdot}{\sigma}\right) \times (\xi_1 \circledast \xi_2)\right] \circledast \xi_3 = G\left(\frac{\cdot}{\sigma}\right) \times \left[(\xi_1 \circledast \xi_2) \circledast \xi_3 \quad (L^p).$ (4.9)

Combining (4.7)-(4.9) we obtain

$$G\left(\frac{\cdot}{\sigma}\right) \times \left[(\xi_1 \circledast \xi_2) \circledast \xi_3\right] = G\left(\frac{\cdot}{\sigma}\right) \times \left[\xi_1 \circledast (\xi_2 \circledast \xi_3)\right] \quad (L^p).$$

Letting $\sigma \downarrow 0$ we get

$$(\xi_1 \circledast \xi_2) \circledast \xi_3 = \xi_1 \circledast (\xi_2 \circledast \xi_3).$$

5. L^p-Fouriertransforms

If $\xi \in V_0^p$ then the L^p -RS-integral

$$\hat{\xi}(s) = \int_{-\infty}^{+\infty} \exp its \ d\xi(t)$$

exists. It is called the L^{p} -Fourierintegral of ξ at the point s.

Theorem 5.1. Let $\xi \in V_0^{q_1}$, $\eta \in V_0^{q_2}$, $\eta \in V_0^{q_2}$ where $1/q_1 + 1/q_2 \ge 1/p$, $q_1 \ge 1$, $q_2 \ge 1$, $p \ge 1$. Then

$$\hat{\boldsymbol{\xi}} \times \boldsymbol{\eta} = \hat{\boldsymbol{\xi}} \cdot \boldsymbol{\hat{\eta}} \quad (L^p).$$

Proof. It is sufficient to consider $\xi \in M^{q_1}$, $\eta \in M^{q_2}$. If G is a continuous distribution we have

$$G \star (\xi \circledast \eta) = (G \star \xi) \star \eta \quad (L^p) \tag{5.1}$$

(c.f. Lemma 4.2). However then this relation also holds for any continuous function G of bounded variation since G is the difference between two continuous bounded and non-decreasing functions. Since $\xi \times \eta(-\infty) = \eta(-\infty) = 0$ a.s. it then also follows that (5.1) remains true for any bounded continuous function which is of bounded variation on any finite interval. Thus particularly (5.1) holds for $G(-t) = \sin ts$, $G(t) = \cos ts$ and hence also for exp-*its*. Choosing $G(t) = \exp its$ we get successively

$$G \times \xi(t) = \int_{-\infty}^{+\infty} \exp its \ (t-\tau) \ d\xi(\tau) = \hat{\xi}(s) \ \exp its \ (L^{q_1}),$$

 $\mathbf{536}$

$$(G \times \xi(t)) \times \eta(t) = \hat{\xi}(s) \hat{\eta}(s) \exp its \quad (L^p),$$

$$G \star (\xi \circledast \eta) (t) = \xi \circledast \eta(s) \exp its (L^p),$$

and thus according to (5.1)

$$\widehat{\boldsymbol{\xi} \circledast \boldsymbol{\eta}} = \hat{\boldsymbol{\xi}} \cdot \hat{\boldsymbol{\eta}}$$

Department of Mathematics, Chalmers University of Technology, Gothenberg, Sweden

REFERENCES

- I. BERGSTRÖM, H., Limit Theorems for Convolutions. Almquist & Wiksell, Stockholm.
- 2. BEEGSTRÖM, H., A generalization of Bochner's theorem and conditional Covariance Stationarity. Zeitschrift für Wahrscheinlichkeitstheorie 1968.
- 3. BERGSTRÖM, H., Limit Theorems for Convolution Powers of Random Functions. The Florida State University Report No. M 117. Tallahassee, 1966. 4. LOEVE, M., Probability Theorey, 3rd ed. van Nostrand, Princeton, 1963.
- 5. ITO, K., On stochastic differential equations. Mem. Amer. Math. Soc. No. 4 (1951).
- 6. Ito, K., On the stochastic integral. Sugaku 1, 172-177 (1948).

Uppsala 1968. Almqvist & Wiksells Boktryckeri AB