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Some r e mar ks  about  the limit point and limit circle theory 

By J~kKE PLEIJEL 

ABSTRACT 

Let L be a formally selfadjoint differential operator and p a real-valued function, both on 
a ~<x< co. The deficiency indices are the numbers of solutions of Lu =~pu for Im ~t >0 and for 
Im ),< 0 which have a certain regularity at x = c~. (A) If p(x) >~ 0 this regularity means that the 
integral of p(x) [u] ~ converges at infinity. (B) If p changes its sign for arbitrarily large values of 
x but L has a positive definite Dirichlet integral it is natural to relate the regularity to this 
integral. Weyl's classical study of the deficiency indices is reviewed for (A) with the help of 
elementary theory of quadratic forms. Individual bounds are found for the deficiency indices 
also when L is of odd order. It  is then indicated how the method carries over to (B). 

O. Introduct ion  

If q is a cont inuous  real-valued funct ion on a ~<x< co and  ~ a non-real  para- 
meter,  then  

- u "  + q u =  ;~u (0.1) 

has at  least one solut ion which is square- integrable on a < ~ x <  ~ .  This result  
was deduced by  H. Weyl  in  his fundamen ta l  treatise [3] on spectral properties 
of ord inary  differential equations.  If  the equa t ion  is replaced by  

- u "  + q u  = ,~ p u ,  (0.2) 

where p and  q are real-valued functions,  Weyl ' s  method  can be applied even if 
p takes both  positive and  negat ive values bu t  has a definite sign for sufficiently 
large values of x. If  the last  assumpt ion  is abandoned,  b u t  q is non-negat ive ,  i t  
seems na tu ra l  to relate the behaviour  a t  inf in i ty  of the solutions to the Dirichlet  
integral  

f[l  'l +ql 5 

As a base for such considerations we shall present  Weyl ' s  method  in its de- 
pendence on quadrat ic  b o u n d a r y  forms. For  (0.1) Weyl  proved tha t  given a n y  
solution ~p one can f ind another  one, v, sa t is fying a bounda ry  condi t ion a t  x =  a 
(for instance v ( a ) =  0) such tha t  y ~ - v  becomes square- integrable over a < ~ x <  ~ .  
This result  can be generalized to any  formally selfadjoint equa t ion  of even order 
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(Everit t  [1]). But  for equations of odd order a set of solutions satisfying a 
boundary condition at  x= a is generally too small for the purpose. However, 
according to the elementary theory of quadratic forms one can instead use a 
linear set of solutions determined by  a quadratic boundary inequality at  x= a. 
In  this way Weyl 's  result can be generalized to formally selfadjoint equations 
of arbi trary order. 

The numbers of square-integrable solutions of L u =  ~u on 0 ~<x< co for Im~t > 0  
and for I m  ~t< 0 are the deficiency numbers of the selfadjoint operator/5.  A com- 
plete hilbert space t reatment  of real selfadjoint differential operators of arbi trary 
(even) order was first given by  I. M. Glazman [2]. In  a footnote Glazman ob- 
served tha t  the order (even or odd) of a differential operator is a lower bound 
for the sum of its deficiency numbers but  gave no individual estimates. 

After the presentation of Weyl 's  method we indicate how it carries over to 
L u =  ,~pu when the integral 

p u  g 
g 

is indefinite in an essential way but  the differential operator has a positive de- 
finite Dirichlet integral. 

1. The differential operator 

Let  the linear differential operator 

M 1 d 
L = ~ A j ( x )  D j, D =  

j~o ~ - -  ~ dx 

be defined on an open interval I containing a<~x< c~. The coefficients At(x ) 
are assumed continuous and so regular tha t  the adjoint 

M 

L*= ~ DJAj(x) 
1 = 0  

can be formed. Let  L be formally selfadjoint i.e. let L and L* coincide. Then 
Green's formula reads 

I ~ / ~ -  uLv  = i [k(u, v)]. (1.1) 

Here the "boundary  form" k(u, v) is linear in u and hermitean. Thus ]r is a 
quadratic form with coefficients depending on x. By  computation 

m--1  

k(u, v) = ~ (DJvBju + D~uBjv)-  A2,n+ID'~vDmu (1.2) 
iffiO 

when M = 2 m  or M = 2 m +  1, where m is an integer. In  the case M =  2m it is 
understood that  A2m+l=0 in (1.2). The Bju (?'= 0, 1, ..., ( m - 1 ) ) ,  are linear in u. 
The expression for k(u, u) can be written 
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m - 1  m - 1  

k(u, u)= j~01 I D]u + B]ul2_j~=o �89 [DJu _ Btu[2_ A2m+i ]Dmu] 2 (1.3) 

with A2m+l=0  if M = 2 m .  
On a finite dimensional linear set of functions the quadrat ic  form k has a 

certain signature [~r, v] or [z, ,  v,] for every x. This means tha t  on the linear set 
k(u, u) can be wri t ten as a sum of x squares (of absolute values) minus v squares 
of altogether ~r + v linearly independent  linear forms. F rom (1.3) we conclude tha t  

where 
m + = m - = m  

~z<~m +, v ~ m - ,  (1.4) 

if M = 2 m /  (1.5) 

m + = m + l ,  m - = m  if M = 2 m + l  and  A2m+l(x)<O, (1.6) 

m + = m ,  m - = m + l  if M = 2 m + l  and  A2m+l(x)>O. (1.7) 

Observe tha t  in all cases m + + m - =  M. 

2. Solution space 

We shall s tudy  solutions of the differential equat ion 

L u =  ~ pu (2.1) 

on a<~x< 0r Here p denotes a real-valued funct ion which for instance is con- 
tinuous. I t  should not  vanish identically. In  our presentat ion of Weyl ' s  me thod  
(w167 2-5) we suppose 

p(x)>~O for a<<.x< ~ .  (2.2) 

I n  (2.1) ~ is a non-real  parameter .  To fix the ideas we assume in general t h a t  

I m  2 > 0. (2.3) 

The highest order coefficient of a formally selfadjoint differential operator is always 
real. We assume AM(X)mO for all x in a<~x< ~ .  Because of this the equat ion 
(2.1) has M linearly independent  solutions on a<~x< ~ which form the  solu- 
tion space 

= {u  I L u  = ~ p u }  

of dimension M.  A solution cannot vanish on an interval without  being 0 every- 
where. 

3. Signature of  the boundary form 

If  u E l  i.e. if u satisfies L u = ~ p u  and if we pu t  v = u  in the Green's formula 
(1.1), we obtain 

k~(u, u) - k~(u, u) = ~ -  j~ p lu] ~. (3.1) 
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Let  us assume tha t  the interval ~ ~< x ~< fl is so large tha t  p does not  vanish iden- 
tically on this interval. Because of (2.3) the factor  ( ~ - ~ ) / i  is positive. Thus the 
r ight-hand side of (3.1) is positive definite. 

The signatures of k~ and k n on l are [7t~, ~ ] ,  [ze~, v~]. The left-hand side of (3.1) 
can be wri t ten as a sum of ztz + v~ squares minus ze~ + v~ squares. We shall first 
prove tha t  M<~zn+v~. Assume ztn+v~<M. I f  we equate to 0 the ~r~+ v~ squares 
in k~(u ,u ) -k~(u ,u ) ,  we obtain  a linear subspace of l which because of ~ +  
v~< M has a positive dimension. But  this is contradicted by  the fact  tha t  (3.1) 
implies u =  0 for every u belonging to the subspace. Thus M ~<Te~+ v~. 

But  according to (1.4), our last inequali ty can be completed to M ~<:t~ + v~< 
m + + m - =  M. Hence, zt~= m + and  v~= m- .  This is t rue for arbi t rary  values of 
~r and fl in the interval I ,  where L is defined. This shows that the signature [~, v] 
o/ k on l is independent o/ x and that 

~1~+~ ~ m - ~  

where m + and m-  are defined in (1.5)-(1.7). 

4. Weyl's method 

Let  a ~<x ~< b be a finite interval. The signature of ka on t is [m +, m-] .  According 
to the theory  of quadratic forms there exist linear subspaces of 1 of dimension 
m +, bu t  of no higher dimension, on which ka is positive definite. Let  l~ + be such 
a subspace 

d i m l + = m  +, k~(u,u)>~O on 1 +, equali ty only if u = 0 .  (4.1) 

Similarly, since the signature of kb on 1 is [m+,m -]  we can chose a linear sub. 
space l ;  of 1 such tha t  

dim l~ = m - ,  k~ (u, u) ~< 0 on l~, equali ty only if u = 0. (4.2) 

For  a=a ,  f l=b the formula (3.1) takes the form 

kb(u,u)_ka(u,u)=~_ ~ fb vlul (4.3) 

I f  u E l ;  N l + the left-hand side of (4.3) is non-positive according to (4.1) and 
(4.2). Since the r ight -hand side of (4.3) is non-negat ive this gives u =  0. Thus  
l ;  N 1 + = {0}. But  dim l ;  + dim 1 + = m-  + m + = M which is the dimension of I. I t  so 
follows tha t  the solution space equals the direct sum 

l =  l ;  41  +. (4.4) 

Let  yJ E I. On account  of (4.4) we write yj = u § v, where u E l~ and  v E 1 +. Inser t  
u = ~ - v  in (4.3). Since kb(u,u)~<0 it follows tha t  

ka(~V-v,v-v)+ ~-~ f~plv-v[~<O. (4.5) 
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Let  ~1, 9)2, " ' ' ,  Cfm + be a base in la + and write v as a linear combinat ion 

m + 

v =  ~ tj~j. 
j= l  

For  all v in l~ + we have/ca(v , v)/> 0 with equali ty only if v =  0. Thus, when ~[m~t >0 ,  
the par t  of the left-hand side of (4.5) which is quadratic in T =  t 1, t2, ..., tin§ is 
positive definite on la +. 

Geometrically (4.5) tells us t ha t  T belongs to the interior or the boundary  
of a m +-dimensional uni ta ry  ellipsoid Eb. Our reasoning shows tha t  the ellipsoid 
defined by  (4.5) is not  emp ty  since there exists a function v for which (4.5) is 
satisfied. I f  b' > b the definition by  (4.5) of the ellipsoids E~ shows tha t  E b, ~ Eb. 
Thus there is at  least one point  T which belongs to all the compact  sets Eb. 
Let  v = tlq~l + t2~2 § ... + tm+~Prn + be the funct ion in 1 + which corresponds to such 
a T. For  this v the inequali ty (4.5) is satisfied for all values of b. Consequently 

[' plw-vl <o. 
* Ja  

I t  follows tha t  J p l y ~ - v [ 2 <  

i.e. tha t  ~ p - v E s  ~ ; p ) .  We have proved tha t  every solution ~p o/ L u = 2 p u  
can be "compensated" by a solution v in l + so that 

~* = ~ - v ~ s (a, ~ ; p). 

Let  Yh,~2 . . . .  ,yJm- be a completion of ~1,~2 . . . . .  era§ to a base of I. Then the 
compensated functions 

~ =  ~0j- v je  1:2 (a, ~ ; p )  

( j =  1, 2, . . . , m - ) ,  also form a base together  with ~1, q2 . . . . .  q,n+. 
Thus,  L u = X T u  has at least m -  linearly independent solutions in ~2(a, ~ ; p ) .  

Under the condition I m  ~t > 0 we have m - =  m i/ the order o/ L is M =  2m, or i/  
M = 2 m + l  and A2m+l(x)<0,  while m - = m + l  i /  M = 2 m + l  and A2m+l(x)>0.  
I /  I m ) ~ < 0  the inequalities /or A2m+l(x) should be reversed. 

5. Compensating functions and boundary conditions 

The signature of k a o n  l is [m+,m-],  where m + + m - = d i m l .  According to the 
theory  of quadratic forms there exist linear subspaees of I of dimension min (m +, m-) ,  
but  of no higher dimension, such tha t  ka(u , v)=  0 for every u and v belonging 
to  the subspace. Let  la ~ be such a maximal  nullspace with respect to k a. Thus 
k ~ ( u , u ) = O  if uEl~ If  u E l ~  N l ~ (compare (4.2)) the relation (4.3) proves tha t  
u = 0 .  

The dimension of l~ is m- .  I f  M is even, or if M = 2 m + l  and A2m +l (X) > 0, 
then m + ~< m-  and dim I ~ = m + (provided I m  ~t > 0). I n  these cases 

1 = l ;  4 l~ ~ (5.1) 
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But  if (5.1) holds true we can (as Weyl actual ly did) use l ~ instead of 1 + in the 
reasoning of section 4 (after formula (4.4)). Thus if M = 2m, or if M = 2m + 1 and 
A2m+l(x) >0 ,  we can compensate any  solution ~v of L u =  ~tpu by  means of a solu- 
t ion v in l ~ so tha t  ~ o - v  becomes square-integrable with respect to p. 

If  M = 2 m + l  and A2m+l(X)<O the relation (5.1) is not  valid and a set la ~ is 
generally not  sufficient to compensate every solution ~0 to square-integrabili ty 
over a ~< x < c~, 

A boundary  condition for L on a ~<x ~< b can be defined as a maximal  null- 
space of the quadratic form 

k b(u, v) - k a(u, v). 

If  M is even, any  two subspaces of l which are maximal  nullspaces l ~ and l ~ with 
respect to ka and k~ determine a boundary  condition. This is not  t rue when M 
is odd but  it seems anyhow fit to  call a maximal  nullspace with respect to ]Ca 
a boundary condition at x =  a both  when M is even and odd. Under  this agree- 
ment  the result of the present section can be formulated as follows. 

I /  M =  2m or i/ M =  2 m +  1 and A2m+l(x) >0 ,  we can use solutions which satis/y 
a boundary condition at x =  a to compensate any 8olution o/ L u =  ~pu  to square. 
integrability on a <~x< ~ with respect to p. I /  M = 2 m + l  and A2m+l(X)< O this 
is not generally possible. These statements are true when I m  ~ >0 .  The changes 
when I m  ~t< 0 are obvious. 

Remark I .  One might  want  wider possibilities to find spaces of restricted dimen- 
sion which are sufficient to compensate any  solution to square-integrability. For  
this we can note tha t  the maximal  dimension of subspaces of l on which ka is 
positive (not necessarily definite) is also m +. A space l~ +'~ of this type  is suffi- 
cient for the compensation. 

Remark I I .  For  M = 2 the ellipsoids Ea are one-dimensional i.e. of the form 

It -  c(b) l -<< ~(b). 

They are circles in the complex t-plane and coincide with the classical Weyl  
circles. I f  b' > b  the circle I t -c(b ' )]  <e(b') is contained in the circle [t-c(b)[  <e(b). 
I f  for b-+ oo the circles shrink to a single point  we are in Weyl ' s  limit point 
case. I f  they  shrink to a limit circle we are in the limit circle case and all solu- 
tions are square-integrable. If  M > 2 the classification is similar but  more elaborate. 

6. Weyrs method for operators with positive Dirichlet integrals 

A real, formally selfadjoint linear differential operator can be wri t ten 

L = ~ DJaj (x) D j 
t=0 

with real-valued functions aj(x). As in w 1, let L be given and  sufficiently regular 
on an open interval I containing a ~<x< c~. B y  partial integrations 

f: f: ~Lu  = i [B(u, v)] + D(u, v), (6.1) 
~t 
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where D(u, v) = ~ aj(x) D J u ~ v  (6.2) 
1=0 

m L l _ _  

and B(u, v)= ~ DJvBju. 
i=0 

The expressions Bju are linear in u. The Dirichlet form (6.2) is evidently her- 
mitean. I f  for instance aj(x)>~ 0 (]= 0, 1 . . . .  , m), the integral of D(u, u) from 
to fi is non-negative and increases when the interval :r ~<x <fl  increases. We 
assume tha t  this is so and also that  if the interval ~ ~<x ~<fl is sufficiently large, 
then 

f~ D ( u ,  u )  = O 

holds true for a "regular" u only if u(x)= 0 in a subinterval of g ~<x <ft. If  
these conditions are fulfilled we say tha t  L has a positive definite Dirichlet 
integral. 

Interchanging u and v in (6.1) and taking the complex conjugate we obtain 

uL-v = - i [B(v, u)] + D(u, v). (6.3) 

Let Lu=,~pu and take v=u .  Then (6.1) and (6.3) give 

(6.4) 

p[ul 2= - i [B(u, u)] + D(u, u). (6.5) 

From (6.4), (6.5) it follows that  

h~(u, u) - h~(u, u) = 4 -  ~ -['~D(u, u), 

m--1 

where h(u, v) = ~. (Bju ,~DJv + ~DJu Bjv). 
t=0  

(6.6) 

(6.7) 

For the signature [z, v] of the evidently quadratic form h, considered on any 
finite dimensional linear set, it follows from (6.7) (see w 1) that  

xc~m, v ~ m .  

I f  I m  ~ >0,  the equality (6.6) shows tha t  h~(u, u) - h:~(u, u) is positive definite on 
the solution space 

z= {ul Lu=  pu}. 

A reasoning similar to the one performed in w 3 proves that  the signature of h 
on 1 is independent of x and always equals [m, m]. 
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Repeating,  bu t  with (6.6) instead of (4.3), what  was done in  w167 4 and  5 we 
arrive a t  the result  that every solution ~f of L u =  2 pu on a <~ x <  c~ can be com- 
pensated by a solution v belonging to a maximal  nullspace /or ha, so that u = y ~ - v  
gives a /inite value to 

j ' ~  D(u,  u). 
c$ 

Tha t  v belongs to a maximal  nullspace for ha can be considered as a k ind  of 
bounda ry  condit ion for v a t  x =  a. Bu t  in  general the boundary  condit ions at  
x = a determined by  ha do not  coincide with the bounda ry  condit ions of w 5 which 
are related to ka. Dirichlet 's  bounda ry  condit ion at  a(DJu(a)= O, j =  O, 1 . . . . .  ( m -  1)) 
is a boundary  condit ion a t  a, both  with respect to ka and  ha. Observe tha t  a 
maximal  nullspace in  1 with respect to ha has dimension m. I /  ~ denotes a hil- 
bert spa~e with norm 

it follows that L u =  2 pu  has at least m solutions in ~ .  This is true i / L  is real 
/ormally sel/adjoint of order 2m and has a positive de/inite Dirichlet integral. The 
result is essentially independent of p. 

7. Conclus ions  

Clearly questions related to Weyl ' s  result  have their  similarities in  a theory 
about  differential operators with positive Dirichlet integrals. Some of these ques- 
t ions are easily settled, others give rise to certain difficulties. I t  is the in ten t ion  
to discuss some of them in  a forthcoming paper  from the Depar tment .  

Mathematics Department, Uppsala University, Uppsala, Sweden 
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