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On the Laplace transform o f  functionals on  classes o f  
infinitely differentiable functions 

By MATS NEYMARK 

The purpose of this note is to s tudy  funetionals on quasi-analytic and non- 
quasi-analytic classes of infinitely differentiable functions, equipped with suit- 
able topologies, and in part icular  to prove theorems of the Pay ley-Wiener  type  
connecting properties of functionals with the behaviour  of their Laplace trans- 
forms. This has been done in the non-quasi-anMytic case by  Roumieu [10], who 
has studied so called ultra-distributions.  For  a related (and part ial ly equivalent) 
definition of generalised distributions, see e.g. BjSrck [2]. 

I n  this note the interest lies in the quasi-analytic case, a l though the theorems 
do not  exclude non-quasi-analytic classes. After  some elementary definitions and  
properties of the spaces and functionals to be considered we state two "Pay -  
lay-Wiener  theorems"  in section 1. These theorems are proved in section 2 es- 
sentially with methods taken  from t t6 rmander  [4]. I n  section 3 we prove some 
approximat ion theorems, which are used to guarantee tha t  a functional is 
uniquely determined by  its Laplace transform. 

1. Functionals  on CL and CL 

Let  ~ be an open set in R a. Then  C~r denotes the space of complex- 
valued functions with continuous derivatives of every  order in ~ .  If  a = (a l , . . . ,  
aa) is a multi- index ( % = 0 ,  1 . . . .  ), we write D~=D~ ~...D~ d where Dj=~/~x s. 
Similarly ~ = $ ~ . . . $ ~ d  if $=(~1 . . . . .  ~d) 6Ca- We shall also write [ z c ] = ~ l +  
�9 .. + ~a and r = ~1! ... c~a! 

Let  L =  (L~)~ be a family of positive real numbers  defined for all multi-indi- 
ces a =  (al . . . . .  aa). Then CL(~) denotes the set of ]E C~(fl),  such tha t  for every  
compact  set K in t~ there are constants a > 0  and C such tha t  

u162 sup IDYll <~Cal~tL~. (1.1) 
K 

CL(~) denotes the set of /EC~r such tha t  for every compact  set K in 
and every  a > 0  there is a constant  C such tha t  (1.1) is valid. 

I t  is clear t ha t  CL(~) and CL(~) are complex linear spaces. 
A natural  topology on CL(~) is defined by  the set of all semi-norms 
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hl~l 
/-~ sup sup I D~/I - - ,  

K i g  
(1.2) 

where K is a compact  set in g2 and where h >0 .  We shall use the equivalent  
set of semi-norms 

h t~l 
I ~  IItlIL.,~.~ = ~ so 7 I D / I ~ .  (1.3) 

I t  is easy to see tha t  cL(~) is a Frdchet  space with this topology. 
On CL(~2) we use the topology which is defined by  all semi-norms p on 

CL(f2), such tha t  there is a compact  set K in ~ and for every h > 0  a constant  
C such tha t  

v/ec~(~): p(/)<cll/ll=.~,~. (L4) 

(Of course we can here use the semi-norms in (1.2) instead of ]]/IIL.~...) 
Given two families L=(L~)~ and M=(M~)~  we write L.~M, if there are con- 

stants  a > 0  and C such tha t  

V~: L~<~Cai~fM~. (1.5) 

We write L - (  < M  if for every  a > 0  there is a constant  C such tha t  (1.5) is 
valid. 

I t  is clear t ha t  L'~M implies tha t  CL(~)CCM(f2) and CL(~)CCM(~)and t ha t  
L <  < M  implies t ha t  CL(~2)CCM(~). We also see tha t  the corresponding inclusion 
maps are continous. The converse implications are true, when the family L is 
logarithmically convex, i.e. when log L~ is a convex function of :r which is 
equivalent  to 

r ~ 
Va: L~ = sup inf ~ L p ,  (A) 

r fl 

where r runs over all r = ( r l ,  ..., rd) with r e > 0  (cf. Bang [1], w 3). 
I f  L satisfies 

V~: L~+~<<.bl~l+lL~ if I~l=l (B) 

with some b >0 ,  then  CL(~2) and  CL(~) are closed under  differentiation. (B) is 
also a necessary condition when L satisfies (A) (cf. Bang [1], w 4). 

CL(~2 ) and CL(~2 ) are closed under  multiplication, if L satisfies 

Y~, u L~L~<~CcI~I+I~iL~+~ (C) 

with some constants  C and c >0 .  For  then  it follows by  means of Leibniz '  for- 
mula for differentiation tha t  

II/gll~.~.~ ~ cl l / l l~.K.~ II gll~.K.~. (1.6) 

578 



ARKIV fOR MATEMATIK. B d  7 nr  44  

I n  the part icular  case when L ~ =  ll~ I for all ~, where (ln) ~ is a sequence of 
positive real numbers,  the condition (C) is a consequence of (A). For  then (l=)~' 
is logari thmically convex, and this implies Imln~lolm+ n. However ,  in general (C) 
does not  follow from (A) (a counter-example can be found in Roumieu [10], 
p. 159). 

We recall the theorem of Denjoy-Car leman in the following general form 
proved by  Lelong [7]. See also l~oumieu [10], Th. 1. 

CL(~) does not contain any /unction with compact support contained in ~ (ex- 
cept the zero /unction), i/ and only i/ 

Ln/Ln+ 1 = -~- o o ,  ( D )  
n = l  

where the sequence L = (L~)~ is the largest logarithmically convex minorant sequence 
o/ (infl~l= ~ L ~ ~)n=o, i.e. L is given by 

L n = sup in/t~-I~lL~. 
t>O 

The s ta tement  is t rue also when CL(~) is replaced by  %(~). 
Cr.(~) and CL(~) are called quasi-analytic when L satisfies (D). 
A linear form u on cL(~ ) is continuous if and  only if there are a compact  

set K in f~ and constants h > 0  and C such tha t  

lu(/)l < c (1.7)  

for all /E%(f~). A linear form u on Cr.(f~) is continuous if and only if there are 
a compact  set K in s and for every  h > 0  a constant  C such tha t  (1.7) is valid 
for all / 6 CL(~). 

We denote by  c [ (~)  and C~.(f~) the topological dual spaces of cL(f2)and 
CL(f~) resp. 

I t  is clear tha t  %(f~)cCL(f~)cC~(f~)  with continuous inclusion maps, if we 
give C~(~)  the usual topology defined by  all semi-norms /->~N<m sup ID ]I 
where K is a compact  subset of f2 and m a non-negat ive integer. Therefore 
the restriction to c~.(f~) or Cr.(~) of a distr ibution with compact  support  in f~ 
is a continuous linear form on c~.(f~) and Cr.(~)) rasp. However,  the formula 

u(/) = ~ D~/~(/) = ~ ( - 1)l~/#~(D~/) (1.8) 

defines a continuous linear form u on %(f~), whenever  all /~  are measures with 
.< I~1 support  in some compact  set K in f~ and with total  mass I l l ,  l i n C h  /L~ (K, 

C and h independent  of ~). Therefore there are functionals on CL(f~) and on 
Cr.(f2), which can not  be extended to distributions. 

Using the H a h n - B a n a e h  theorem one can see tha t  every  uEc'L(f~) has the 
form (1.8). 

We say tha t  a compact  set K 0 in f~ is a carrier of or carries a functional 
uEc'L(f~), if for every  compact  neighbourhood K c f ~  of K 0 there are constants 
h > 0  and  C such tha t  (1.7) is valid for all /6%(f~).  Similarly K 0 carries uE 

579 



M. NEYMARK, Laplace transform of functionals 

C'~(~), if for every compact neighbourhood K c ~  of K 0 and every h > O  there 
is a constant C such that  (1.7) is valid for all /EC~(~).  

In  the non-quasi-analytic case there is also the concept of support  of a func- 
tional u on c~(~) or C~(~): At least if L also satisfies (C) we can define supp u 
as the smallest compact subset K of ~ ,  such that  u(/)=O when / = 0  in some 
neighbourhood of K. I t  is clear that  supp u is contained in every carrier of u. 
Conversely, supp u is a carrier of u, because for every compact neighbourhood 
K of supp u one can find ~ c ~ ( ~ )  with supp ~ K  and ~0= 1 in a neighbour- 
hood of supp u. Then 

I u(/)l = I < c'll 

with some constant C' follows from (1.7) anp (1.6). 
We define the Laplace transform ~ of a functional u on CL(R ~) or C~(R ~) by  

u  ~($)=u(x~e<X'r (1.9) 

where <x, ~> = x i ~1 + --. + xa ~a. When u E CL(R d) we must require tha t  inf~ al~lL~ > 0 
for some a > 0 ,  so that  / ( x )= e  <~'~> belongs to CL(R d) for all ~EC a. If  UECL(R d) 
we must  require that  inf~al~lL~>0 for all a > 0 .  Then it is clear tha t  fi is an 
entire function in C d, because the Taylor series of e <z' ~> is convergent in CL(R d) 
and in cL(R d) resp. 

The inequality (1.7) implies (with ~ = ~ + i ~ )  

la($) I < c ~ sup ID%<~'r I'o~l~l = C ~ hl~ i ~ I I  I sup e <x'~> = CqL(h~)e "~(~), (1.10) 
K L ~  ~ i ~  g 

q~(~)=): I~[- and HK(~)=sup<x,~>.  (1.11) where 
ir  x~ K 

HK is the supporting function of (the closed convex huh of) K and is con- 
tinuous, convex and positively homogeneous of degree 1. 

If  uEc~(R d) is carried by  K, we know that  for every ~ > 0  there are con- 
stants h > O  and C such tha t  (1.7) is valid for all /EcL(R ~) with K replaced by 
K~ = {xER~: d(x, K) <~ e}. If  uE C~(tV) is carried by K, there is a constant C for 
every e > 0  and h > O  such tha t  (1.7) is valid for all /ECL(R ~) with K replaced 
by  K~. Therefore, if we replace K by K,  in (1.10) and use the equality HK~(~)= 
HK(~)+e]~] we have proved the first parts of the following two theorems. 

Theorem 1. Suppose that inf~al~lL~ > 0  /or all a >0.  I /  u Ec'L(R d) is carried by 
a compact set K in R ~, then /or every ~ > 0  there are constants h > 0  and C such 
that U = ~ satis/ies 

u E Ca: ] U(~)I ~< CqL(h~) e H~(~)+~E~I. (1.12) 

Conversely, i / L  also satis/ies (A) and (B) and i/ U i8 an entire /unction in 
C a such that (1.12) is /ul/illed /or all s > O  with a convex compact set K in R ~ 
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(C and h > 0  depending on s), then there is a unique /unctional u~c~,(R a) such 
t~at ~t= U and u is carried by K. Here L ' = ( L : ) ~  is de/ined by L~,=L~+d ..... ~). 

Theorem 2. Suppose that inf~ al~lL~ > 0 /or all a > O. I /  u E CL(It d) is carried by 
a compact set K in R a, then /or every ~ > 0  and h > 0  there is a constant C such 
that U=~t satis]ies (1.12). 

Conversely, i/ L also satis/ies (A) and (B) and i/ U is an entire /u~ction in 
Cd such that (1.12) is /ul/iUed /or all e > 0  and h > 0  with a convex compact set 
K in R ~ (C depending on s and h), then there is a unique /unctional u~  C~,(R a) 
such that ~t= U. u is carried by K at least i[ L also satis/ies (C) and (r 

Remark 1. From (B) follows that  cL,(R a) ~ %(R ~) and Q, (R ~) ~ CL(R a) with con- 
tinuous inclusion maps. Equali ty holds if L also satisfies L-<L' and then the 
topologies coincide too. This means that  we can replace L '  by  L everywhere 
in Theorems 1 and 2, if we add the condition L-<L'. When d = 1 or L~ depends 
only on ]:r L ~ L '  follows from (A). 

If  L depends only on I zr say L~=l= when ] a ] = n ,  then we can replace 
qL(h~) in (1.12) by q~(hl~]), where qz( t )=~_ot~/ l~ ,  because 

q,(l l/Vd) < q,.( O < Cq,(I 
with C depending only on d. 

Remark 2. When L satisfies only (A) and (B), we can see tha t  u in Theo- 
rem 2 is carried by K if K is a closed rectangle in R ~ with sides parallel to 
the coordinate planes. See the proof of Theorem 2. The stronger conditions on 
L for arbi trary convex compact sets K are used when we approximate by  means 
of Theorem 4 but they should not be the best possible. 

However, our notion of carrier does not seem to be very interesting for func- 
tionals on %(~) or CL(~), when these spaces are contained in c(~!)(~). I t  is 
weU-known that  C(~)(~) is the space of real analytic functions in ~,  and when 

is connected, c(~)(~2) is the space of restrictions to ~ of entire functions in 
C a. The restriction mapping is an isomorphism of the space A(C d) of entire 
functions in C d onto c(~!)(~). I t  is also an homeomorphism, if A(C d) has the 
usual topology, which is defined by all norms /-+]I/]]K=supKI/[,  where g is a 
compact set in C a. In  fact, it follows from Cauchy's inequalities and Taylor 's  
formula that  

IIIII .,,., . < cIIIIIK. and Illll  <clllll,.,).,.,, (1.13) 

for all /EA(C~). In  the first inequality C and the compact set K '  in C a depend 
on h > 0  and the compact set K in ~ ,  and in the second inequality C and h > 0  
depend on x E ~  and the compact set K in C a. (1.13) also shows tha t  every 
u Ec[~!)(~) is carried by  every non-empty compact set in ~ ,  if ~ is connected. 
The same statement is true for CL(~), when L ~ ( z r  and for c~(~), when 
L~(~!)~, at  least if L also satisfies L~+~<~al~l+lt3J+l~!Lt~ with some a > 0 .  

These properties of a functional u on cL(~), when L~(~!)~, or on CL(~), 
when L~(-< (~!)~, are also reflected in the estimate (1.12). For if L~ <~ Cal~lod then 
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qL($)>~C l e x p ( Z ~ = ~ l ~ j l / a ) ,  so tha t  (1.12) can not  tell any th ing  precise about  
the carrier of u. 

On the other hand, no estimate I]/IIL, K.h<<.CII/IIL.K.k with K d ; K '  can hold in 
CL(f2) when ( a ! ) ~ ( - < L  or in CL(~ ) when (~!)~-<L. To see this we can choose 
a E K ~ K '  and define /(x) = (I x - a 12 + i~) -~, where (~ > 0 can be chosen arbitrarily. 

For  functionals on c<~!)(~) one should instead use carriers defined by  means 
of the norms on A(Cd), i.e. carriers of analyt ic  functionals. Such carriers have 
been studied e.g. by  Mart ineau [8] and Kiselman [5] and [6]. 

2. Proofs of Theorems 1 and 2 

The main  step is the following lemma. 

Lemma 1. Suppose that L satis/ies (B), that K is a convex compact set in R a and 
that U is an entire/unction in C a, such that 

u E Ca: I U($)I <~ CqL(h$) e HK<r (2.1) 

/or some h > 0 and C. Then there is an entire/unction W in C ~a = Ca • C a such that 

and V(~', ~') E C2a: 

VSe Ca: W(~, ~) = U(~) (2.2) 

C'  IW(r162162162 (2.3) 

where C' depends on C, h, L, K and d and a on L and d. 

Let  us first see how we can use Lemma 1. 
The function W which we get in the lemma can be developped in a Taylor  

series 

cr V P W(~, ( )  = Y ~ ~(~ ), 

where all Us are entire functions in C d. B y  Cauchy 's  inequalities and (2.3) 
we get  

I u .C) I<  sup I w(r ( )  

~< C'(1 + I~' ])3deHK<~'>qL(ahr) 1 
r% 1 ... r a 

3d HK(~') p , (2.4) ~< 2aC'( 1 § ] ~' I) e st~ (2ahr)~ 1 
Lfl r~rl.., r d 

where r = (r 1 . . . .  , ra) with rj >0 .  Now if L satisfies (A) we get f rom (2.4) 
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v$ ec~: ] u~($)l <2dC'(2ah)~+~e'<(~)( 1 ~-I~1) ~. (2.5) 
L~+(1 ..... 1) 

We shall now use the Payley-Wiener  theorem for distributions (see e.g. HSr- 
mander  [3], Th. 1.7.7). Thereby  we get for every  a a distr ibution u~ with com- 
pact  support  contained in K and with ~ =  U~. (Observe tha t  ~ ( $ ) = ~ = ( - i ~ ) . )  
I f  we choose ? E C~(R d) with compact  support  contained in K,  and with ~ = 1 
in a neighbourhood of K, then we get  f rom (2.5) 

<= ~e,(2~h) ~+~  l+l~l)~.l(Pl(~.)ld~: 
L :  

(2ah)' ~ ' 
< e I ~ ~. sup I D s/1, (2.6) 

Ifll<~N K~ 

where C 1 depends only on C', h, a and  d and where N = 4 d +  1. 
I f  L satisfies (B), so does L '  with some b~> 1. Then we can define 

u(/) = ~ u~(D~/) (2.7) 

with absolute convergence for all / E C ~ ( R  d) such tha t  

where h' =2bNah. For  by  (2.6) we get  

7,I~(D~I)I<-<C~ 7, V(2~h)~suplD~+ell 

(2.8) 

~<C~,~,<N '~" (2ah)-'~' 7,sup lD~]l K~ 0211 ] llz'.K~.h" (2.9) 

where U 2 depends on C1, h and d. 
I t  is clear tha t  

~(~) = u(x ~ e <x' % = 7, u~(x-+ $%<x, % = ~ ~ ( ~ )  = E ~ u~(~) = W(~, ~) = U($) 

(2.10) 
by  means of (2.2). 

Proo/ o/ Theorem 1. Suppose tha t  U satisfies the hypothesis  in the second 
par t  of Theorem 1. Then we can use Lemma 1 and the procedure described 
after it wi th K replaced by  K~ (we remember  tha t  HK~(~)=HK(~)§ I f  
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we change C 2 to C and h' to h in (2.9), we get for every s > 0  a functional 
u~, defined and satisfying 

I l < (2.11) 

for all /E%,(It~); C and h depend on s. Furthermore ~ =  U for all s. However 
we do not know from the construction described above that the functionals 
u~ are all identical. We need to know that  a functional u EC'L,(R ~) is uniquely 
determined by its Laplace transform 4. Now we can see that u(/) is uniquely 
determined by �9 <z ~> ~, when / is a polynomial, because the Taylor series of e ' is 
convergent in c~,(Rd). By the Hahn-Banach Theorem it is then necessary and 
sufficient to know that  the polynomials are dense in cr:(Rd). Therefore when 
we have proved Corollary 3a in the following section, we can conclude that all 
u~ are identical. Denoting the common value by u we get a unique u E c/,(R ~) 
such that 4 =  U. From (2.11) also follows that u is carried by K. 

Proo/ o/ Theorem 2. Suppose that U satisfies the hypothesis in the second 
part of Theorem 2. Then using Theorem 1 we get a unique functional u E CL,(R ~) 
such that  ~ =  U. The proof also shows that  

f u(t) I (2.12) 

for all /EcL,(R ~) and all e > 0  and h > 0 .  Using (2.12) and approximation by 
means of Theorem 3 in section 3, we can then extend u uniquely to a con- 
tinuous linear form on CL,(R~), which we denote by u too. More precisely l u(/)l <~ 
C~.h ]l/I]L',i.h if /E CL,(R d) and I is a rectangle (with sides parallel to the coor- 
dinate planes) such that K2~c I.  Hence u is carried by the smallest such rec- 
tangle containing K. 

If L also satisfies (C) and ( ~ ! ) ~ L  then so does L'.  Therefore c(~!)(R a) ccL,(R d) 
and we can use Theorem 4 in section 3 with L replaced by L'.  Let K '  be a compact 
neighbourhood of K such that  Theorem 4 is applicable (with K '  instead of K). 
Then uK,(/) = lim~_~+~cu(TK, s/) exists and satisfies 

(2.13) 

for all /E  Q,(Rd), if Ka~cK '  and k ~< h is sufficiently small (depending on h, L' 
and e). Therefore UK, ECL,(R ~) and so uK,= u, because it is clear that  uK,=u on 
CL,(R d) and the extension of u to a continuous linear form on CL,(R a) is unique. 
Hence (2.13) shows that u is carried by K. The proof of Theorem 2 is con- 
cluded. 

Remark. If L-<L', i.e. if L~<~CtI~JL~ for some constants C and t>O, then we 
can replace L~ by L~ in (2.6), if we also replace C 1 by C1C and h by th. After 
that  the proofs of Theorems 1 and 2 work with L instead of L'. 

Proo/ o] Lemma 1. The idea is taken from HSrmander [4], 4.5 and the proof 
in based on the following lemma, which is Theorem 4.4.3 in H6rmander's book. 
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Lemma 2. Let S and S' be complementary complex linear subspaces o/ C ~ and 
let ~o be a pluri,subharmonic /unction in C n such that 

IqJ(z+z ' ) -q~(z) i~B i/ zECn, z ' E S  ' and Iz'I<~l (2.14) 

/or some constant B. Then i/ V is an analyti~ /unction in S such that 

fs] V] 2e-~da < ~ , + (2.15) 

where a is the Lebesgue measure in S, there is an entire /unction W in C ~ such 
that W = V  in S and 

fl w 12e-~(1 § I~1 ~) ~dm~A f l VI2e-~d~, (2.16) 

where m is the Lebesgue measure in C ~, k is the complex dimension o/ S' and A 
depends on B, S and S'. 

For the definition and properties of of pluri-subharmonic functions we refer 
to H6rmander [4], 2.6 (and 1.6). The condition (2.14) on ~0 is weaker than the 
condition (4.4.9) in H6rmander's book, but an examination of the proof there 
shows that  our condition is sufficient. However, our constant A is not (6zeB) ~ 
when S and S' are not orthogonal. 

In Lemma 1 we suppose that  L satisfies (B) for some b/> 1. Therefore 

I ~1 q~(r = ~ I ~L--+ ~1 < ~] (b'~'r ~ q~(b'~'r 
L~+~ 

and from this follows 

(1 + I $ I)nqL(~) ~< Clqz,(bn~), (2.17) 

where C1 depends only on n and d. 
Now suppose that  U satisfies the hypothesis in Lemma 1. Let  S be the 

subspaee {($, $): SEC ~} of C 2d and define an analytic function V in S by V(~, $)= 
U($) for all S EC ~. 

Using (2.1) and (2.17) (with n = d + l )  we obtain 

f s  I V(~, ~) ]2qL(ba+lh~)-2e-21~(~)da 

<~ C~ f s  I V(~, ~)i2qT. (h~)-2e-~'K(~)(1 + hi ~ ])-2a-2da 

< ~1~c2 f s  (1 + h l $ I) -2~ 2d~ = V2 < + ~ ,  (2.1s) 

where a is the Lebesgue measure in S. 
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We shall now use L e m m a  2 with  n = 2d, S '  = {(0, ~): ~ E C a} and  ~v defined in 
C 2d by  

~v(~, ~') = 2 log qL(ba+lh~) + 2 H~(~'). 

B y  means  of the rules in H 6 r m a n d e r  [4], 1.6 and  2.6, we can see t ha t  ~v is 
p lur i -subharmonic  in C ca, because 

logqL(ba+~h~)=sup log ~ ](bd+lM):l 
N [ar L:  ' 

where each log[(ba+'h~)=l/L~ is p lur i -subharmonic ,  and  HK is convex.  Fur ther -  
more  ~ satisfies (2.14) for some B since qL(ba+lh~) does not  depond on ~' and 
HK is uni formly  continuous. 

(2.18) means  t h a t  V satisfies (2.15) and  so L e m m a  2 gives an entire funct ion 
W in C 2a such t ha t  W ( ~ , ~ ) = V ( ~ , ~ ) = U ( ~ )  when ~EC a and  

f l  W(~, ~')12qL(ba+lh~) 2e-2HK+~')(1 + 1~12+1~ ' 12) ~adm 

f 
< A Js I V(~, ~) 12qL(ba+lh~)-2e 2"K<*)da < AC2 

in view of (2.16) and  (2.18). Here  m is the Lebesgue measure  in C 2a. 
Repea ted  use of the inequal i ty  

I u(0) I ~< (~r ~) 1 ,J~lz[~r lu(z) ldxdy' 

(2.19) 

which is valid when u is analyt ic  for ]zl~< r in C, then  gives 

I w(~, ~')I~<~:~ I ~. . .  ~[ ~f  I w(~, ~')l:dm 
z j -~ j l< l~ j l  

Izf ~fl~<l 

~'~ AC2:7~-2d ] -~1 """ ~d I-=(1 + 21~ I)6dqL(2bd+lh~) 2 s u p  e2HK(x')( 1 + I~' I) ~ 
I z f - ~ S l < l  

(2.20) 

in view of (2.19) and  the inequal i ty  1 + + ~ 2 + # 2 < ( 1 + A ) 2 ( 1 + # )  e for A~>0 and 
#~>0. Using (2.17) (with n =  3d) and  the uniform cont inui ty  of HK and log (1 + 
[z']) we can f rom (2.20) conclude t ha t  

I W(~, ~')[ < C']~I... ~a [-lqL(2b4d+lh~)eHK(~')(1 + [~' I) 3a, 

where C' depends on A, C2, L ,d ,h  and K.  So if we pu t  a = 2 b  4a+1, we have  
proved  (2.3) in L e m m a  1. 
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3. Approximation theorems 

If  ] is defined in the closed intervall  [a, b], the Bernstein polynomials  
P ~ / ( n  = 1, 2, ...), are defined by  

p n / ( x ) = k ~ o ( ; ) / ( a '  k ( b - a ) ~ ( x - a ~ k ~ b - x ~  n-k 
t n } \ b - a ]  \ b - a ]  " 

(3.1) 

I t  is well-known tha t  PJ--->/ uniformly in [a, b] when n-~ ~ ,  if / is continu- 
ous in [a, b] (see e.g. Meinardus [9], 2.2.). A simple calculation shows tha t  

(x_ff t _xi. 
n, :~o ( n ; ~ ) A J / ( a _ t _ l C ( b n a ) ) \ ~ - a ]  \ b - a ]  D J P J ( x )  (b _ a)J ( n _  i)! 

where AJ/ is defined recursively by  A ~  and 

(3.2) 

AJ/ (x )=  AJ-1/ (X + ~ n  a)  - N - 1 / ( x  ). 

When /E C~([a, b]) we have 

(l"" f n / Jo d t  1 . . . .  , d t j .  (3.3) 

When  / is defined in a rectangle I = [al, bl] • ... • [a~, ba] c R a and ~ = (Yl ,  - ' ' ,  ~d)  

(vj = 1, 2 . . . .  for ?" = 1 . . . .  , d), we define 

P ~ / ( x ) =  ~ / a §  (3.4) 
o<~<, v ] ( b -  a y  ' 

where a = (al, . . . ,  aa) , b = (b 1 . . . .  , ba) , 

fl(b - a) 
-- (t~1(bl - -  a l ) / ~ 1 ,  . . .  , t~a(ba - aa)/va) , 

(;)=(;:) (;:) 
and O<~fl<~v means tha t  O<f i r  for j = l ,  . . . ,d .  P , /  is constructed by  suc- 
cessive applications of formula (3.1) with respect to the variables x 1 . . . . .  xa and 
with n = v 1 .... va, a = a 1 . . . . .  a,~ and b = b 1 . . . .  b d resp. 

I f  / is contiuhous in I ,  it follows tha t  P~/-. ' . /  uniformly in I when v-+ ~ (in 
the sense tha t  min (vl . . . .  , va)-." oo). This is proved by  the same methods as in 
the one-dimensional case and should be well-known. 

When  /EC:r  we get by  combining (3.1)-(3.4) 
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v! ~ v - ~  /~ (a+f l (b ;a) ) (x -a )~(b-x )~-~  ~ 
D~P~/(x) v~(v-zC)'o<~<~_~( fl ) (b -a)  . . . .  (3.5) 

where /~(x)= Fo"" FoD~/(x+Z(b~a))  dht "'" dtl,~, ... dta~ ... dta.~a (3.6) 

with T(b--a) [ b l - a l ~  bn-aa~ta:)" 
v - ~ - ~ t , :  . . . .  ' va 

and 

I t  follows from (3.6) that  

sup I D~/(y) - D~/(z) [ = c .... 
l Y j - z j l < ~ t ( b j - a t ) / v  j 

y , z ~ I  

(3.7) 

(3.8) 

when 0~<fl<~v-~. From (3.5), (3.6) and (3.7) follows 

v' : ( v - ~ )  ( x - a ) ~ ( b - x )  ~-~-~ 
]n~P'/(x)l~<v~(v-a)!sup[D~/Io<~<~_~\ fl : (b -a )  ~-~ 

v~ :(~,_.,~vsup[D=ll<suplD=/I if x e I  
e I �9 ~ I 

(3.9) 

and from (3.5), (3.6) and (3.8) follows 

I D~P, / (x)  - D~/(x) l 

v~ 
S ( v - -  ac'~ ( x  - -  a ) ~  (b  - x) ~-~-~ 

fi ] (b--a) ~-~ 

~(v_~)~lP,_~O~/(x)-D~/(x)l+ 1 : ( i : - . ) !  ID~/(x)[ if xEI 

and from this follows 

sup[D~PJz - D~/] <~ c~., + sup[P,_~D~/, - D~/[ + (1 

(3.10) 

Here c~,~-+0 when v ~ c ~  with :r fixed because of (3.8) and the uniform con- 
timlity of D~/ In I.  The continuity of D ~/ in I also implies that  P~_~,D~/~D~'/ 
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uni fo rmly  in I when v--> ~ with  a fixed, as we have  a l r e a d y  observed.  F ina l l y  
v!/v~(v-a)!-+ 1 when v-+ ~ wi th  ~ fixed. Therefore  we can  conclude f rom (3.10) 
t h a t  for f ixed 

suplD~ when v - + ~ .  (3 .11)  
I 

I n  sect ion 2 we use the  following a p p r o x i m a t i o n  theorem.  

Theorem 3. I] L = ( L ~ ) ~  and h > 0  are given and i/ ]EC~(I)  ~atis/ies 

lllll .,.  < + (3.12) 
the,~ IIP~I-IIL,,~-~o when v - + ~  (3.13) 

(i.e. when min(vl,  ..., vd)~ c~). Here I is a rectangle in R ~ and P,/  is de/ined 
by (3.4). 

Proo/. F r o m  (3.9) follows t h a t  

h I~1 ~ h I~1 
JIP~/--/JlL,I,h<~ ~ s u p [ D ~ P ~ / - D ~ / J ~ - + 2  ~ s u p l D / l ~ .  

Iocl~<N 1 /.Jar r > N  I 
(3.14) 

The second sum is i ndependen t  of v and  tends  to  0 when N - +  ~ because of 
(3.12). The f i rs t  stun t ends  to  0 when v-~ ~ and  N is f ixed  because of (3.11). 
Hence  (3,13) follows f rom (3.14). 

Corollary 3 a. The polynomials lorm a dense subspace ol CL(Ra). 

Corollary 3b .  The polynomials lorm a dense subspace o/ CL(R~). 

I n  sect ion 2 we also use an  a p p r o x i m a t i o n  theorem,  which works  for more  
genera l  compac t  sets t h a n  rec tangles  in R a. Therefore  le t  K be a compac t  set 
in R d and  le t  

~(x) = (2~r)-dl2e-I x Iv2. 

We have  def ined ~ so t h a t  

fq dx= 1. (3.15) 

Then  if / is a cont inuous  funct ion  in K, we can define 

TJ(x )  TK,~/(x) = J ~ /(y)q~(s(x - y))s~dy (3.16) 

for all  s >  0. Ts/  is the  res t r i c t ion  to  R ~ of an  ent i re  funct ion  in C a because  ~v 
is such a funct ion  and  we in tegra te  over  a compac t  subset  of R ~. 
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From (3.15) and (3.16) follows immediately 

sup I T j  I < sup I/I. (3.17) 
Rd K 

:Now suppose that  K 0 is a compact subset of the interior of K and that  
6=d(Ko, CK). Then we get from (3.15) and (3.16) 

fl ~(u)du+ 2suplll f cf(u)du < sup I I(x- u/s)-/(x)l ut~, 
l u l • r  I>~r 

sup ]/(y)-/(x)l+2sup[/I [ ~(u)du (3.18) 
l y - x l < ~ r / s  " " , I L K  u l ~ r  

if x e K  o and r/s<~6. If we choose r =  l/s, it follows from (3.18) that  

suplTs/-/I-',O when s - > §  (3.19) 
K0 

for every compact subset K 0 of the interior of K, because / is uniformly 
continuous in K and Slul>~rep(u)du-->O when r-> + oo. 

Now we suppose that  / E C  ~ in a neighbourhood of K and that K is so 
regular that  we can use Stokes' formula for K and its boundary ~K (oriented 
with the normal pointing outwards). For our purposes it is sufficient that  K is 
the union of a finite number of a rectangles. From (3.16) we then obtain by 
Stokes' formula 

DjTs/(x) = f /(y)Dfff(s(x- y))sa+ldy 

=fKDJ/(Y)q~(s(x-y))sady--fKo~(/(Y)Cf(s(x-Y)))sady 

= TsDj/(x)+ ( -  1)Jsa foK/(y) q~(s(x- y))d?)j, (3.20) 

where d!)j = dyl A ... A dyj 1 A dyj+l A ... A dya. The interpretation of (3.20) when 
the dimension is 1 is obvious. We also get 

~xk~- fo K/(Y)Cf(8(x-y))d!)s=sfo K/(Y)Dkcf(s(x-y))d~)J" (3.21) 

Using (3.20) and (3.21) we see by induction that 
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D~T~ l(x) = T~D~I(x) 

d ~j 1 f 0  + Z Z ( -  1) ~s~+l~;l+a n~fD~J-k-a/(y)n~fD~cf(s(x -y))d?)j, (3.22) 
1=1 k=0 K 

�9 # 

where ~j = (~1 . . . .  , I1_1, 0, . . . ,  0) and  ~j = (0, . . . ,  0, ~j+l, ' ' ' ,  1d)" I f  aj  = 0 then  the  
corresponding sum over  over  k in (3.22) shall  be 0. 

Now let  K o be a compac t  subse t  of the  in ter ior  of K and  p u t  ~ = d(K o, OK). 
Then  i t  follows from (3.22) t h a t  

I D ~ T J ( x ) -  D~/(x)[ <~ I T~D~I(x) - D~l(x) [ 

d ~ j l  

+ ~. ~ sk+l~Fl+asupln~/D]J ~-~1[ sup n~fn~cf(u) lA(~K) 
J=l  k=0 K u [~sO 

if x e K  o, (3.23) 

where A(~K) is the  ( d - 1 ) - d i m e n s i o n a l  measure  of ~K. 
F r o m  (3.19) and  (3.23) follows t h a t  

suplD~Td-D~ll-~O when s - + + ~  
Ko 

(3.24) 

for eve ry  f ixed ~, because  

r" sup I o 
lu l~r  

when r-+ c~ 

if n>~ 0 and  fi is a mul t i - index.  

Theorem 4. Suppose that /E C ~ in a neighbourhood o/ a compact subset K o/ 
R ~, which is so regular that Stokes' /ormula is applicable, and suppose that 

II/IIL.=. < § (3.25) 

where h> 0 and L =  (L~)~ satisfies (C) and (~!)~-<L, which implies that there are 
constants C and a > 0 such that I ~ I ! <~ Cal ~1L~ /or all ~. Then 

IITA--IIIL. .,  c O when s ~ +  co (3.26) 

i/ T~/ is de/ined by (3.16), K o is a compact subset o~ the interior o/ K and 
h<(5a)-ld(Ko, CK). c is the constant in (C); here we suppose that c>~l. 

I n  the  proof  we need  the  following es t imate  of the  de r iva t ives  of ~0. 

L e m m a  3. I1 ~(u)=(2~)-al2e -lulv~ (uERa) ,  then /or every m there is a constant 
C such that 

r sup (3.27) 
I u l>~r 
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Proof. q~ is also defined b y  

~(u) (2~) 

I t  follows tha t  

r'~'+m,D%f(u),=r'~'+'n(2u)-dl f (i~)%'(u'~)e-'~'~ 

= (2~)-art~lem I f(ie-V)%'<=">-<=">e '"'/~+'~'"~-~<~">de 

(2=)-%l~'+m e-<U'n>+l'Tl'12 f (] ~ ] +IV ]) '~'e-l ~l'/2d~ 

< Cr,~,+.,e-~',2 f:~(t + r),~,e-t'/2td-ldt 

r f :~ ~,+m+~ le-,.12dt ) <~ 21elC(r21~,+m+a-le-r.le f oe-t.l~.dt + e-.r ~el 

if l u l  >~r" (3.28) 

Here  we have  m o v e d  the in tegra t ion to the hyperp lane  R~+ i v in C ~, where 
V is the vector  in R d which has the same direction as u and  length r. I t  is 
obvious t ha t  this is possible b y  Cauchy 's  integral  theorem.  

Using the inequal i ty  

~'2k+ne r~/2 < V(2k § n)! ~ 2kk! U(2k + 1 ) . . .  (2k + n) 

and  the  equal i ty  

f~t~k+'e-t~dt=2k+('-~)~2f~~247 ( d §  1)/2) 

we obta in  (3.27) f rom (3.28) wi th  a new constant  C. 

Progf o/ Theorem 4. I f  (~ = d(Ko, ~K), we get  f rom (3.23), (3.17) and  L e m m a  3 

Ko K i = 1  k = 0  K 

(3.29) 

with a new constant  C 1 not  depending on :r or s. 
Now suppose t h a t  f satisfies (3.25). Then  using the  condit ion (C) wi th  c ~ 1 

and  l a I! <~Cal~lL~ we see t h a t  (3.29) implies tha t  
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suplD~Td-D~/l~<2 ~ sup]DVI (h/c)l~ 
I~r Ko I~r K i a  

d ~r 1 ~ . . . .  I 

~ = l l ~ l > N k = O  K (cq,...,:r i 1,~) k - l , O  ..... O) 

<2 ~ suplD~'/l~L~-+ ~: suplDa/[ , 
l a l > N  K a \ ~i ] I ,~I>N-I:r  ,r La 

(3.30) 

where the new constant C 2 is independent of N and s. In  the last sum we 
have changed (~q . . . .  , :r ~ i -  k -  1, 0, ..., 0) to ft. Suppose t h a t  h < ~/5a. Then 
(3.30) implies tha t  

[[T~/--/][L, Ko, h/C <~ ~ suplD~TJ-D~/l(h/c)m~l 

( (Sah~"m~ I h m'm : (5ah) m'' 7 suplD / +c  II/11   
-[- 2-[-C21~r ~" \ ~ ] ]l~r g I~ l>~m\  ~ / .h. 

(3.31) 

Here the middle and the last term tend to 0 when m-+ + c~ and N - m - +  + ~ .  
They are both independent of s. The first term tends to 0 when s-+ + ~ for 
fixed h r. Therefore (3.26) follows from (3.31) and Theorem 4 is proved. 

Corollary 4a.  I /  L satis/ies (C) and (~!)~-<-<L, then the entire /unctions in 
R n are dense in cL(~), i/ E2 is an open set in R a. 

Corollary 4b. I / L  satis/ies (C) and (~r then the entire/unctions in R d are 
dense in CL(~), i/ El is an open set in R ~. 

Corollary 4 a  shows that  the image of cL(R a) (under the restriction mapping 
cL(Rg)-~cL(E~)) is dense in cL(EI), if L satisfies (C) and ( ~ d ) ~ ( L .  By Corollary 
4 b  the same statement  is true for Q ,  if L satisfies (C) and ( a ! ) ~ L .  On the 
other hand it is not true for cL(~) if L~(cr or for CL(~) if L ~ ( : r  and 
g~ is not connected. 

I f  uEc~(R d) is carried by  a compact subset of ~ c R  d, then u(/)=u(g) when 
[ and g E cL(R a) and / = g  in ~.  Hence we can identify the space of all such u 
with the space of continuous linear forms on the image of cL(R ~) in cL(gl), and 
all these linear forms can be uniquely extended to cL(~) if and only if the 
image of cL(R d) is dense in cL(~). Therefore we can identify c~(~) with the 
space of all uEc~(R ~) which are carried by  compact subsets of ~ ,  at  least if 
L satisfies (C) and ( : r  This s tatement  is not true when L~(~!)~ and 
is not connected. 

Similarly C~(s can be identified with the space of all u eC~(R d) which are 
carried by  compact subsets of ~ ,  at  least if L satisfies (C) and ( c d ) ~ L .  I t  is 
not true when L ~  ~(:r and ~ is not connected. 
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