On the Laplace transform of functionals on classes of infinitely differentiable functions

By Mats Neymark

The purpose of this note is to study functionals on quasi-analytic and non-quasi-analytic classes of infinitely differentiable functions, equipped with suitable topologies, and in particular to prove theorems of the Payley-Wiener type connecting properties of functionals with the behaviour of their Laplace transforms. This has been done in the non-quasi-analytic case by Roumieu [10], who has studied so called ultra-distributions. For a related (and partially equivalent) definition of generalised distributions, see e.g. Björck [2].

In this note the interest lies in the quasi-analytic case, although the theorems do not exclude non-quasi-analytic classes. After some elementary definitions and properties of the spaces and functionals to be considered we state two "Pay-ley-Wiener theorems" in section 1. These theorems are proved in section 2 essentially with methods taken from Hörmander [4]. In section 3 we prove some approximation theorems, which are used to guarantee that a functional is uniquely determined by its Laplace transform.

1. Functionals on $\boldsymbol{c}_{\boldsymbol{L}}$ and \boldsymbol{C}_{L}

Let Ω be an open set in \mathbf{R}^{d}. Then $C^{\infty}(\Omega)$ denotes the space of complexvalued functions with continuous derivatives of every order in Ω. If $\alpha=\left(\alpha_{1}, \ldots\right.$, α_{d}) is a multi-index ($\alpha_{1}=0,1, \ldots$), we write $D^{\alpha}=D_{1}^{\alpha_{\AA}} \ldots D_{d}^{\alpha_{d}}$ where $D_{j}=\partial / \partial x_{j}$. Similarly $\zeta^{\alpha}=\zeta_{1}^{\alpha_{1}} \ldots \zeta_{d}^{\alpha_{d}}$ if $\zeta=\left(\zeta_{1}, \ldots, \zeta_{d}\right) \in \mathbf{C}^{d}$. We shall also write $|\alpha|=\alpha_{1}+$ $\ldots+\alpha_{d}$ and $\alpha!=\alpha_{1}!\ldots \alpha_{d}!$

Let $L=\left(L_{\alpha}\right)_{\alpha}$ be a family of positive real numbers defined for all multi-indices $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right)$. Then $C_{L}(\Omega)$ denotes the set of $f \in C^{\infty}(\Omega)$, such that for every compact set K in Ω there are constants $a>0$ and C such that

$$
\begin{equation*}
\forall \alpha: \quad \sup _{K}\left|D^{\alpha} f\right| \leqslant C a^{|\alpha|} L_{\alpha} . \tag{1.1}
\end{equation*}
$$

$c_{L}(\Omega)$ denotes the set of $f \in C^{\infty}(\Omega)$, such that for every compact set K in Ω and every $a>0$ there is a constant C such that (1.1) is valid.

It is clear that $C_{L}(\Omega)$ and $c_{L}(\Omega)$ are complex linear spaces.
A natural topology on $c_{L}(\Omega)$ is defined by the set of all semi-norms

m. neymare, Laplace transform of functionals

$$
\begin{equation*}
f \rightarrow \sup _{\alpha} \sup _{K}\left|D^{\alpha} f\right| \frac{\hbar^{|\alpha|}}{L_{\alpha}} \tag{1.2}
\end{equation*}
$$

where K is a compact set in Ω and where $h>0$. We shall use the equivalent set of semi-norms

$$
\begin{equation*}
f \rightarrow\|f\|_{L, K, h}=\sum_{\alpha} \sup _{K}\left|D^{\alpha} f\right| \frac{h^{|\alpha|}}{L_{\alpha}} . \tag{1.3}
\end{equation*}
$$

It is easy to see that $c_{L}(\Omega)$ is a Fréchet space with this topology.
On $C_{L}(\Omega)$ we use the topology which is defined by all semi-norms p on $C_{L}(\Omega)$, such that there is a compact set K in Ω and for every $h>0$ a constant C such that

$$
\begin{equation*}
\forall f \in C_{L}(\Omega): \quad p(f) \leqslant C\|f\|_{L, K, h} . \tag{1.4}
\end{equation*}
$$

(Of course we can here use the semi-norms in (1.2) instead of $\|f\|_{L, K, h}$.)
Given two families $L=\left(L_{\alpha}\right)_{\alpha}$ and $M=\left(M_{\alpha}\right)_{\alpha}$ we write $L \prec M$, if there are constants $a>0$ and C such that

$$
\begin{equation*}
\forall \alpha: \quad L_{\alpha} \leqslant C a^{|\alpha|} M_{\alpha} . \tag{1.5}
\end{equation*}
$$

We write $L \prec \prec M$ if for every $a>0$ there is a constant C such that (1.5) is valid.

It is clear that $L \prec M$ implies that $c_{L}(\Omega) \subset c_{M}(\Omega)$ and $C_{L}(\Omega) \subset C_{M}(\Omega)$ and that $L \prec \prec M$ implies that $C_{L}(\Omega) \subset c_{M}(\Omega)$. We also see that the corresponding inclusion maps are continous. The converse implications are true, when the family L is logarithmically convex, i.e. when $\log L_{\alpha}$ is a convex function of α, which is equivalent to

$$
\begin{equation*}
\forall \alpha: \quad L_{\alpha}=\sup _{r} \inf _{\beta} \frac{r^{\alpha}}{r^{\beta}} L_{\beta}, \tag{A}
\end{equation*}
$$

where r runs over all $r=\left(r_{1}, \ldots, r_{d}\right)$ with $r_{j}>0$ (cf. Bang [1], §3).
If L satisfies

$$
\begin{equation*}
\forall \alpha: \quad L_{\alpha+\beta} \leqslant b^{|\alpha|+1} L_{\alpha} \quad \text { if } \quad|\beta|=1 \tag{B}
\end{equation*}
$$

with some $b>0$, then $c_{L}(\Omega)$ and $C_{L}(\Omega)$ are closed under differentiation. (B) is also a necessary condition when L satisfies (A) (cf. Bang [1], §4).
$c_{L}(\Omega)$ and $C_{L}(\Omega)$ are closed under multiplication, if L satisfies

$$
\begin{equation*}
\forall \alpha, \forall \beta: \quad L_{\alpha} L_{\beta} \leqslant C c^{|\alpha|+|\beta|} L_{\alpha+\beta} \tag{C}
\end{equation*}
$$

with some constants C and $c>0$. For then it follows by means of Leibniz' formula for differentiation that

$$
\begin{equation*}
\|f g\|_{L, K, h} \leqslant C\|f\|_{L, K, 2 c h}\|g\|_{L, K, 2 c h} \tag{1.6}
\end{equation*}
$$

In the particular case when $L_{\alpha}=l_{|\alpha|}$ for all α, where $\left(l_{n}\right)_{0}^{\infty}$ is a sequence of positive real numbers, the condition (C) is a consequence of (A). For then $\left(l_{n}\right)_{0}^{\infty}$ is logarithmically convex, and this implies $l_{m} l_{n} \leqslant l_{0} l_{m+n}$. However, in general (C) does not follow from (A) (a counter-example can be found in Roumieu [10], p. 159).

We recall the theorem of Denjoy-Carleman in the following general form proved by Lelong [7]. See also Roumieu [10], Th. 1.
$C_{L}(\Omega)$ does not contain any function with compact support contained in Ω (except the zero function), if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \bar{L}_{n} / \bar{L}_{n+1}=+\infty \tag{D}
\end{equation*}
$$

where the sequence $L=\left(\bar{L}_{n}\right)_{0}^{\infty}$ is the largest logarithmically convex minorant sequence of $\left(\inf _{|\alpha|=n} L_{\alpha}\right)_{n=0}^{\infty}$, i.e. \bar{L} is given by

$$
L_{n}=\sup _{t>0} \inf _{\alpha} t^{n-|\alpha|} L_{\alpha} .
$$

The statement is true also when $C_{L}(\Omega)$ is replaced by $c_{L}(\Omega)$.
$C_{L}(\Omega)$ and $c_{L}(\Omega)$ are called quasi-analytic when L satisfies (D).
A linear form u on $c_{L}(\Omega)$ is continuous if and only if there are a compact set K in Ω and constants $h>0$ and C such that

$$
\begin{equation*}
|u(f)| \leqslant C\|f\|_{L, K, h} \tag{1.7}
\end{equation*}
$$

for all $f \in c_{L}(\Omega)$. A linear form u on $C_{L}(\Omega)$ is continuous if and only if there are a compact set K in Ω and for every $h>0$ a constant C such that (1.7) is valid for all $f \in C_{L}(\Omega)$.

We denote by $c_{L}^{\prime}(\Omega)$ and $C_{L}^{\prime}(\Omega)$ the topological dual spaces of $c_{L}(\Omega)$ and $C_{L}(\Omega)$ resp.

It is clear that $c_{L}(\Omega) \subset C_{L}(\Omega) \subset C^{\infty}(\Omega)$ with continuous inclusion maps, if we give $C^{\infty}(\Omega)$ the usual topology defined by all semi-norms $f \rightarrow \sum_{|x| \leqslant m} \sup _{K}\left|D^{\alpha} f\right|$ where K is a compact subset of Ω and m a non-negative integer. Therefore the restriction to $c_{L}(\Omega)$ or $C_{L}(\Omega)$ of a distribution with compact support in Ω is a continuous linear form on $c_{L}(\Omega)$ and $C_{L}(\Omega)$ resp. However, the formula

$$
\begin{equation*}
u(f)=\sum_{\alpha} D^{\alpha} \mu_{\alpha}(f)=\sum_{\alpha}(-1)^{|\alpha|} \mu_{\alpha}\left(D^{\alpha} f\right) \tag{1.8}
\end{equation*}
$$

defines a continuous linear form u on $c_{L}(\Omega)$, whenever all μ_{α} are measures with support in some compact set K in Ω and with total mass $\left\|\mu_{\alpha}\right\| \leqslant C h^{|\alpha|} / L_{\alpha}(K$, C and h independent of α). Therefore there are functionals on $c_{L}(\Omega)$ and on $C_{L}(\Omega)$, which can not be extended to distributions.

Using the Hahn-Banach theorem one can see that every $u \in c_{L}^{\prime}(\Omega)$ has the form (1.8).

We say that a compact set K_{0} in Ω is a carrier of or carries a functional $u \in c_{L}^{\prime}(\Omega)$, if for every compact neighbourhood $K \subset \Omega$ of K_{0} there are constants $h>0$ and C such that (1.7) is valid for all $f \in c_{L}(\Omega)$. Similarly K_{0} carries $u \in$
$C_{L}^{\prime}(\Omega)$, if for every compact neighbourhood $K \subset \Omega$ of K_{0} and every $h>0$ there is a constant C such that (1.7) is valid for all $f \in C_{L}(\Omega)$.

In the non-quasi-analytic case there is also the concept of support of a functional u on $c_{L}(\Omega)$ or $C_{L}(\Omega)$: At least if L also satisfies (C) we can define supp u as the smallest compact subset K of Ω, such that $u(f)=0$ when $f=0$ in some neighbourhood of K. It is clear that supp u is contained in every carrier of u. Conversely, supp u is a carrier of u, because for every compact neighbourhood K of $\operatorname{supp} u$ one can find $\varphi \in c_{L}(\Omega)$ with $\operatorname{supp} \varphi \subset K$ and $\varphi=1$ in a neighbourhood of supp u. Then

$$
|u(f)|=|u(\varphi f)| \leqslant C^{\prime}\|\varphi\|_{L, K, 2 c h}\|f\|_{L, K .2 c h}
$$

with some constant C^{\prime} follows from (1.7) anp (1.6).
We define the Laplace transform \tilde{u} of a functional u on $c_{L}\left(\mathbf{R}^{d}\right)$ or $C_{L}\left(\mathbf{R}^{d}\right)$ by

$$
\begin{equation*}
\forall \zeta \in \mathbf{C}^{d}: \quad \tilde{u}(\zeta)=u\left(x \rightarrow e^{\langle x, \zeta\rangle}\right), \tag{1.9}
\end{equation*}
$$

where $\langle x, \zeta\rangle=x_{1} \zeta_{1}+\ldots+x_{a} \zeta_{d}$. When $u \in C_{L}^{\prime}\left(\mathbf{R}^{d}\right)$ we must require that $\inf _{\alpha} a^{|\alpha|} L_{\alpha}>0$ for some $a>0$, so that $f(x)=e^{\langle x, \zeta\rangle}$ belongs to $C_{L}\left(\mathbf{R}^{d}\right)$ for all $\zeta \in \mathbf{C}^{d}$. If $u \in c_{L}^{\prime}\left(\mathbf{R}^{d}\right)$ we must require that $\inf _{\alpha} a^{|\alpha|} L_{\alpha}>0$ for all $a>0$. Then it is clear that \tilde{u} is an entire function in \mathbf{C}^{d}, because the Taylor series of $e^{\langle x, 5\rangle}$ is convergent in $C_{L}\left(\mathbf{R}^{d}\right)$ and in $c_{L}\left(\mathbf{R}^{d}\right)$ resp.

The inequality (1.7) implies (with $\zeta=\xi+i \eta$)

$$
\begin{equation*}
|\tilde{u}(\zeta)| \leqslant C \sum_{\alpha} \sup _{K}\left|D^{\alpha} e^{\langle x, \zeta\rangle}\right| \frac{h^{|\alpha|}}{L_{\alpha}}=C \sum_{\alpha} \frac{h^{|\alpha|}\left|\zeta^{\alpha}\right|}{L_{\alpha}} \sup _{K} e^{\langle x, \xi\rangle}=C q_{L}(h \zeta) e^{H_{K}(\xi)}, \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
q_{L}(\zeta)=\sum_{\alpha} \frac{\left|\zeta^{\alpha}\right|}{L_{\alpha}} \quad \text { and } \quad H_{K}(\xi)=\sup _{x \in K}\langle x, \xi\rangle . \tag{1.11}
\end{equation*}
$$

H_{K} is the supporting function of (the closed convex hull of) K and is continuous, convex and positively homogeneous of degree 1 .

If $u \in c_{L}^{\prime}\left(\mathbf{R}^{d}\right)$ is carried by K, we know that for every $\varepsilon>0$ there are constants $h>0$ and C such that (1.7) is valid for all $f \in c_{L}\left(\mathbf{R}^{d}\right)$ with K replaced by $K_{\varepsilon}=\left\{x \in \mathbf{R}^{d}: d(x, K) \leqslant \varepsilon\right\}$. If $u \in C_{L}^{\prime}\left(\mathbf{R}^{d}\right)$ is carried by K, there is a constant C for every $\varepsilon>0$ and $h>0$ such that (1.7) is valid for all $f \in C_{L}\left(\mathbf{R}^{d}\right)$ with K replaced by K_{ε}. Therefore, if we replace K by K_{ε} in (1.10) and use the equality $H_{K_{\varepsilon}}(\xi)=$ $H_{K}(\xi)+\varepsilon|\xi|$ we have proved the first parts of the following two theorems.

Theorem 1. Suppose that $\inf _{\alpha} a^{|\alpha|} L_{\alpha}>0$ for all $a>0$. If $u \in c_{L}^{\prime}\left(\mathbf{R}^{d}\right)$ is carried by a compact set K in \mathbf{R}^{d}, then for every $\varepsilon>0$ there are constants $h>0$ and C such that $U=\tilde{u}$ satisfies

$$
\begin{equation*}
\forall \zeta \in \mathbf{C}^{d}: \quad|U(\zeta)| \leqslant C q_{L}(h \zeta) e^{H_{K}(\xi)+\varepsilon|\xi|} . \tag{1.12}
\end{equation*}
$$

Conversely, if L also satisfies (A) and (B) and if U is an entire function in \mathbf{C}^{d} such that (1.12) is fulfilled for all $\varepsilon>0$ with a convex compact set K in \mathbf{R}^{d}
(C and $h>0$ depending on ε), then there is a unique functional $u \in c_{L}^{\prime}\left(\mathbf{R}^{d}\right)$ such that $\tilde{u}=U$ and u is carried by K. Here $L^{\prime}=\left(L_{\alpha}^{\prime}\right)_{\alpha}$ is defined by $L_{\alpha^{\prime}}^{\prime}=L_{\alpha+(1, \ldots, 1)}$.

Theorem 2. Suppose that $\inf _{\alpha} a^{|\alpha|} L_{\alpha}>0$ for all $a>0$. If $u \in C_{L}^{\prime}\left(\mathbf{R}^{d}\right)$ is carried by a compact set K in \mathbf{R}^{d}, then for every $\varepsilon>0$ and $h>0$ there is a constant C such that $U=\tilde{u}$ satisfies (1.12).

Conversely, if L also satisfies (A) and (B) and if U is an entire function in C^{d} such that (1.12) is fulfilled for all $\varepsilon>0$ and $h>0$ with a convex compact set K in $\mathbf{R}^{d}(C$ depending on ε and $h)$, then there is a unique functional $u \in C_{L}^{\prime}\left(\mathbf{R}^{d}\right)$ such that $\tilde{u}=U . u$ is carried by K at least if L also satisfies (C) and $(\alpha!)_{\alpha}<L$.

Remark 1. From (B) follows that $c_{L^{\prime}}\left(\mathbf{R}^{d}\right) \subset c_{L}\left(\mathbf{R}^{d}\right)$ and $C_{L^{\prime}}\left(\mathbf{R}^{d}\right) \subset C_{L}\left(\mathbf{R}^{d}\right)$ with continuous inclusion maps. Equality holds if L also satisfies $L<L^{\prime}$ and then the topologies coincide too. This means that we can replace L^{\prime} by L everywhere in Theorems 1 and 2, if we add the condition $L \prec L^{\prime}$. When $d=1$ or L_{α} depends only on $|\alpha|, L<L^{\prime}$ follows from (A).

If L depends only on $|\alpha|$, say $L_{\alpha}=l_{n}$ when $|\alpha|=n$, then we can replace $q_{L}(h \zeta)$ in (1.12) by $q_{l}(h|\zeta|)$, where $q_{l}(t)=\sum_{n=0}^{\infty} t^{n} / l_{n}$, because

$$
q_{l}(|\zeta| / \sqrt{d}) \leqslant q_{L}(\zeta) \leqslant C q_{l}(|\zeta|)
$$

with C depending only on d.
Remark 2. When L satisfies only (A) and (B), we can see that u in Theorem 2 is carried by K if K is a closed rectangle in \mathbf{R}^{d} with sides parallel to the coordinate planes. See the proof of Theorem 2. The stronger conditions on L for arbitrary convex compact sets K are used when we approximate by means of Theorem 4 but they should not be the best possible.

However, our notion of carrier does not seem to be very interesting for functionals on $c_{L}(\Omega)$ or $C_{L}(\Omega)$, when these spaces are contained in $c_{\left.(\alpha)^{\prime}\right)}(\Omega)$. It is well-known that $C_{(x))}(\Omega)$ is the space of real analytic functions in Ω, and when Ω is connected, $c_{(x) 1}(\Omega)$ is the space of restrictions to Ω of entire functions in \mathbf{C}^{d}. The restriction mapping is an isomorphism of the space $A\left(\mathbf{C}^{d}\right)$ of entire functions in \mathbf{C}^{d} onto $c_{(a!)}(\Omega)$. It is also an homeomorphism, if $A\left(\mathbf{C}^{d}\right)$ has the usual topology, which is defined by all norms $f \rightarrow\|f\|_{K}=\sup _{K}|f|$, where K is a compact set in \mathbf{C}^{d}. In fact, it follows from Cauchy's inequalities and Taylor's formula that

$$
\begin{equation*}
\|f\|_{(\alpha), K, h} \leqslant C\|f\|_{R^{\prime}} \quad \text { and } \quad\|f\|_{R} \leqslant C\|f\|_{(\alpha \mid, x, h} \tag{1.13}
\end{equation*}
$$

for all $f \in A\left(\mathbf{C}^{d}\right)$. In the first inequality C and the compact set K^{\prime} in \mathbf{C}^{d} depend on $h>0$ and the compact set K in Ω, and in the second inequality C and $h>0$ depend on $x \in \Omega$ and the compact set K in \mathbf{C}^{d}. (1.13) also shows that every $u \in c_{\text {(a!) }}^{\prime}(\Omega)$ is carried by every non-empty compact set in Ω, if Ω is connected. The same statement is true for $C_{L}^{\prime}(\Omega)$, when $L \prec \prec(\alpha!)_{\alpha}$, and for $c_{L}^{\prime}(\Omega)$, when $L \prec(\alpha!)_{\alpha}$, at least if L also satisfies $L_{\alpha+\beta} \leqslant a^{|\alpha|+|\beta|+1} \alpha!L_{\beta}$ with some $a>0$.

These properties of a functional u on $c_{L}(\Omega)$, when $L \prec(\alpha!)_{\alpha}$, or on $C_{L}(\Omega)$, when $L \prec \prec(\alpha!)_{\alpha}$, are also reflected in the estimate (1.12). For if $L_{\alpha} \leqslant C a^{|\alpha|} \alpha$! then

M. NEYMARK, Laplace transform of functionals

$q_{L}(\zeta) \geqslant C^{-1} \exp \left(\sum_{j=1}^{d}\left|\zeta_{j}\right| / a\right)$, so that (1.12) can not tell anything precise about the carrier of u.

On the other hand, no estimate $\|f\|_{L, K, h} \leqslant C\|f\|_{L, K^{\prime}, k}$ with $K \notin K^{\prime}$ can hold in $c_{L}(\Omega)$ when $(\alpha!)_{\alpha} \ll L$ or in $C_{L}(\Omega)$ when $(\alpha!)_{\alpha}<L$. To see this we can choose $a \in K \backslash K^{\prime}$ and define $f(x)=\left(|x-a|^{2}+i \delta\right)^{-1}$, where $\delta>0$ can be chosen arbitrarily.

For functionals on $c_{(a!)}(\Omega)$ one should instead use carriers defined by means of the norms on $A\left(C^{d}\right)$, i.e. carriers of analytic functionals. Such carriers have been studied e.g. by Martineau [8] and Kiselman [5] and [6].

2. Proofs of Theorems 1 and 2

The main step is the following lemma.
Lemma 1. Suppose that L satisfies (B), that K is a convex compact set in R^{d} and that U is an entire function in \mathbf{C}^{d}, such that

$$
\begin{equation*}
\forall \zeta \in \mathbf{C}^{d}: \quad|U(\zeta)| \leqslant C q_{L}(h \zeta) e^{H_{K^{\prime}}(\xi)} \tag{2.1}
\end{equation*}
$$

for some $h>0$ and C. Then there is an entire function W in $\mathbf{C}^{2 d}=\mathbf{C}^{d} \times \mathbf{C}^{d}$ such that

$$
\begin{equation*}
\forall \zeta \in \mathbb{C}^{d}: \quad W(\zeta, \zeta)=U(\zeta) \tag{2.2}
\end{equation*}
$$

and $\quad \forall\left(\zeta, \zeta^{\prime}\right) \in \mathbf{C}^{2 d}: \quad\left|W\left(\zeta, \zeta^{\prime}\right)\right| \leqslant \frac{C^{\prime}}{\left|\zeta_{1} \ldots \zeta_{d}\right|} q_{L}(a h \zeta) e^{H_{K}\left(\xi^{\prime}\right)}\left(1+\left|\zeta^{\prime}\right|\right)^{3 d}$,
where C^{\prime} depends on C, h, L, K and d and a on L and d.
Let us first see how we can use Lemma 1.
The function W which we get in the lemma can be developped in a Taylor series

$$
W\left(\zeta, \zeta^{\prime}\right)=\sum_{\alpha} \zeta^{\alpha} U_{\alpha}\left(\zeta^{\prime}\right)
$$

where all U_{α} are entire functions in \mathbf{C}^{d}. By Cauchy's inequalities and (2.3) we get

$$
\begin{align*}
\left|U_{\alpha}\left(\zeta^{\prime}\right)\right| & \leqslant \sup _{|\zeta j| \leqslant r_{j}}\left|W\left(\zeta, \zeta^{\prime}\right)\right| \frac{1}{r^{\alpha}} \\
& \leqslant C^{\prime}\left(1+\left|\zeta^{\prime}\right|\right)^{3 d} e^{H_{K}\left(\xi^{\prime}\right)} q_{L}(a h r) \frac{1}{r^{\alpha} r_{1} \ldots r_{d}} \\
& \leqslant 2^{d} C^{\prime}\left(1+\left|\zeta^{\prime}\right|\right)^{3 d} e^{H_{K}\left(\xi^{\prime}\right)} \sup _{\beta} \frac{(2 a h r)^{\beta}}{L_{\beta}} \frac{1}{r^{\alpha} r_{1} \ldots r_{d}} \tag{2.4}
\end{align*}
$$

where $r=\left(r_{1}, \ldots, r_{d}\right)$ with $r_{j}>0$. Now if L satisfies (A) we get from (2.4)

$$
\begin{equation*}
\forall \zeta \in \mathbf{C}^{d}: \quad\left|U_{\alpha}(\zeta)\right| \leqslant 2^{d} C^{\prime} \frac{(2 a h)^{|\alpha|+d}}{L_{\alpha+(1, \ldots, 1)}} e^{H_{K^{\prime}}(\xi)}(1+|\zeta|)^{3 d} . \tag{2.5}
\end{equation*}
$$

We shall now use the Payley-Wiener theorem for distributions (see e.g. Hörmander [3], Th. 1.7.7). Thereby we get for every α a distribution u_{α} with compact support contained in K and with $\tilde{u}_{\alpha}=U_{\alpha}$. (Observe that $\hat{u}_{\alpha}(\zeta)=\tilde{u}_{\alpha}(-i \zeta)$.) If we choose $\varphi \in C^{\infty}\left(\mathbf{R}^{d}\right)$ with compact support contained in K_{ε} and with $\varphi=1$ in a neighbourhood of K, then we get from (2.5)

$$
\begin{align*}
\left|u_{\alpha}(f)\right| & =\left|u_{\alpha}(\varphi f)\right|=(2 \pi)^{-d}\left|\int \hat{u}_{\alpha}(-\xi) \hat{\varphi f}(\xi) d \xi\right| \\
& \leqslant \pi^{-d} C^{\prime} \frac{(2 a h)^{|\alpha|+d}}{L_{\alpha}^{\prime}} \int(1+|\xi|)^{3 d}|\hat{\varphi f}(\xi)| d \xi \\
& \leqslant C_{\mathbf{1}} \frac{(2 a h)^{|\alpha|}}{L_{\alpha}^{\prime}} \sum_{|\beta| \leqslant N} \sup _{K_{\varepsilon}}\left|D^{\beta} f\right|, \tag{2.6}
\end{align*}
$$

where C_{1} depends only on C^{\prime}, h, a and d and where $N=4 d+1$.
If L satisfies (B), so does L^{\prime} with some $b \geqslant 1$. Then we can define

$$
\begin{equation*}
u(f)=\sum_{\alpha} u_{\alpha}\left(D^{\alpha} f\right) \tag{2.7}
\end{equation*}
$$

with absolute convergence for all $f \in C^{\infty}\left(\mathbf{R}^{d}\right)$ such that

$$
\begin{equation*}
\|f\|_{L^{\prime}, K_{\varepsilon}, h^{\prime}}<+\infty, \tag{2.8}
\end{equation*}
$$

where $h^{\prime}=2 b^{N} a h$. For by (2.6) we get

$$
\begin{align*}
\sum_{\alpha}\left|u_{\alpha}\left(D^{\alpha} f\right)\right| & \leqslant C_{1} \sum_{|\beta| \leqslant N} \sum_{\alpha} \frac{(2 a h)^{|\alpha|}}{L_{\alpha}^{\prime}} \sup _{K_{\varepsilon}}\left|D^{\alpha+\beta} f\right| \\
& \leqslant C_{1} \sum_{\mid \beta \leqslant N}(2 a h)^{-|\beta|} \sum_{\alpha} \sup _{K_{\varepsilon}}\left|D^{\alpha} f\right| \frac{\left(2 b^{N} a h\right)^{|\alpha|}}{L_{\alpha}^{\prime}}=C_{2}\|f\|_{L^{\prime}, K_{\varepsilon}, h^{\prime}} \tag{2.9}
\end{align*}
$$

where C_{2} depends on C_{1}, h and d.
It is clear that

$$
\begin{equation*}
\tilde{u}(\zeta)=u\left(x \rightarrow e^{\langle x, \zeta\rangle}\right)=\sum_{\alpha} u_{\alpha}\left(x \rightarrow \zeta^{\alpha} e^{\langle x, \zeta\rangle}\right)=\sum_{\alpha} \zeta^{\alpha} \tilde{u}_{\alpha}(\zeta)=\sum_{\alpha} \zeta^{\alpha} U_{\alpha}(\zeta)=W(\zeta, \zeta)=U(\zeta) \tag{2.10}
\end{equation*}
$$

by means of (2.2).
Proof of Theorem 1. Suppose that U satisfies the hypothesis in the second part of Theorem 1. Then we can use Lemma 1 and the procedure described after it with K replaced by K_{ε} (we remember that $H_{K_{\varepsilon}}(\xi)=H_{K}(\xi)+\varepsilon|\xi|$). If
we change C_{2} to C and h^{\prime} to h in (2.9), we get for every $\varepsilon>0$ a functional u_{ε}, defined and satisfying

$$
\begin{equation*}
\left|u_{\varepsilon}(f)\right| \leqslant C\|f\|_{L^{\prime}, K_{2 \varepsilon}, h} \tag{2.11}
\end{equation*}
$$

for all $f \in c_{L}\left(\mathbf{R}^{d}\right) ; C$ and h depend on ε. Furthermore $\tilde{u}_{\varepsilon}=U$ for all ε. However we do not know from the construction described above that the functionals u_{ε} are all identical. We need to know that a functional $u \in c^{\prime}{ }_{L^{\prime}}\left(\mathbf{R}^{d}\right)$ is uniquely determined by its Laplace transform \tilde{u}. Now we can see that $u(f)$ is uniquely determined by \tilde{u}, when f is a polynomial, because the Taylor series of $e^{\langle x, \zeta\rangle}$ is convergent in $c_{L}\left(\mathbf{R}^{d}\right)$. By the Hahn-Banach Theorem it is then necessary and sufficient to know that the polynomials are dense in $c_{L^{\prime}}\left(\mathbf{R}^{d}\right)$. Therefore when we have proved Corollary 3 a in the following section, we can conclude that all u_{ε} are identical. Denoting the common value by u we get a unique $u \in c_{L^{\prime}}^{\prime}\left(\mathbf{R}^{d}\right)$ such that $\tilde{u}=U$. From (2.11) also follows that u is carried by K.

Proof of Theorem 2. Suppose that U satisfies the hypothesis in the second part of Theorem 2. Then using Theorem 1 we get a unique functional $u \in c_{L^{\prime}}^{\prime}\left(\mathbf{R}^{d}\right)$ such that $\tilde{u}=U$. The proof also shows that

$$
\begin{equation*}
|u(f)| \leqslant C_{\varepsilon, h}\|f\|_{L^{\prime}, K_{2 \varepsilon}, h} \tag{2.12}
\end{equation*}
$$

for all $f \in c_{L}\left(\mathbf{R}^{d}\right)$ and all $\varepsilon>0$ and $h>0$. Using (2.12) and approximation by means of Theorem 3 in section 3, we can then extend u uniquely to a continuous linear form on $C_{L^{\prime}}\left(\mathbf{R}^{d}\right)$, which we denote by u too. More precisely $|u(f)| \leqslant$ $C_{\varepsilon, h}\|f\|_{L^{\prime}, I, h}$ if $f \in C_{L^{\prime}}\left(\mathbf{R}^{d}\right)$ and I is a rectangle (with sides parallel to the coordinate planes) such that $K_{2 \varepsilon} \subset I$. Hence u is carried by the smallest such rectangle containing K.

If L also satisfies (C) and $(\alpha!)_{\alpha} \prec L$ then so does L^{\prime}. Therefore $c_{(\alpha,)}\left(\mathbf{R}^{d}\right) \subset c_{L^{\prime}}\left(\mathbf{R}^{d}\right)$ and we can use Theorem 4 in section 3 with L replaced by L^{\prime}. Let K^{\prime} be a compact neighbourhood of K such that Theorem 4 is applicable (with K^{\prime} instead of K). Then $u_{K^{\prime}}(f)=\lim _{s \rightarrow+\infty} u\left(T_{K^{\prime}, s} f\right)$ exists and satisfies

$$
\begin{equation*}
\left|u_{K^{\prime}}(f)\right| \leqslant C_{\varepsilon, k}\|f\|_{L^{\prime}, K_{2 \varepsilon,}, k} \leqslant C_{\varepsilon, k}\|f\|_{L^{\prime}, K^{\prime}, h} \tag{2.13}
\end{equation*}
$$

for all $f \in C_{L^{\prime}}\left(\mathbf{R}^{d}\right)$, if $K_{3 \varepsilon} \subset K^{\prime}$ and $k \leqslant h$ is sufficiently small (depending on h, L^{\prime} and $\varepsilon)$. Therefore $u_{K^{\prime}} \in C_{L^{\prime}}^{\prime}\left(\mathbf{R}^{d}\right)$ and so $u_{K^{\prime}}=u$, because it is clear that $u_{K^{\prime}}=u$ on $c_{L}\left(\mathbf{R}^{d}\right)$ and the extension of u to a continuous linear form on $C_{L^{\prime}}\left(\mathbf{R}^{d}\right)$ is unique. Hence (2.13) shows that u is carried by K. The proof of Theorem 2 is concluded.

Remark. If $L<L^{\prime}$, i.e. if $L_{\alpha} \leqslant C t^{|\alpha|} L_{\alpha}^{\prime}$ for some constants C and $t>0$, then we can replace L_{α}^{\prime} by L_{α} in (2.6), if we also replace C_{1} by $C_{1} C$ and h by $t h$. After that the proofs of Theorems 1 and 2 work with L instead of L^{\prime}.

Proof of Lemma 1. The idea is taken from Hörmander [4], 4.5 and the proof in based on the following lemma, which is Theorem 4.4.3 in Hörmander's book.

Lemma 2. Let S and S^{\prime} be complementary complex linear subspaces of \mathbf{C}^{n} and let φ be a pluri-subharmonic function in \mathbf{C}^{n} such that

$$
\begin{equation*}
\left|\varphi\left(z+z^{\prime}\right)-\varphi(z)\right| \leqslant B \quad \text { if } \quad z \in \mathbf{C}^{n}, z^{\prime} \in S^{\prime} \quad \text { and } \quad\left|z^{\prime}\right| \leqslant 1 \tag{2.14}
\end{equation*}
$$

for some constant B. Then if V is an analytic function in S such that

$$
\begin{equation*}
\int_{S}|V|^{2} e^{-\varphi} d \sigma<+\infty \tag{2.15}
\end{equation*}
$$

where σ is the Lebesgue measure in S, there is an entire function W in \mathbf{C}^{n} such that $W=V$ in S and

$$
\begin{equation*}
\int|W|^{2} e^{-\varphi}\left(1+|z|^{2}\right)^{-3 k} d m \leqslant A \int_{S}|V|^{2} e^{-\varphi} d \sigma \tag{2.16}
\end{equation*}
$$

where m is the Lebesgue measure in \mathbf{C}^{n}, k is the complex dimension of S^{\prime} and A depends on B, S and S^{\prime}.

For the definition and properties of of pluri-subharmonic functions we refer to Hörmander [4], 2.6 (and 1.6). The condition (2.14) on φ is weaker than the condition (4.4.9) in Hörmander's book, but an examination of the proof there shows that our condition is sufficient. However, our constant A is not $\left(6 \pi e^{B}\right)^{k}$ when S and S^{\prime} are not orthogonal.

In Lemma 1 we suppose that L satisfies (B) for some $b \geqslant 1$. Therefore

$$
\left|\zeta^{\beta}\right| q_{L}(\zeta)=\sum_{\alpha} \frac{\left|\zeta^{\alpha+\beta}\right|}{L_{\alpha}} \leqslant \sum_{\alpha} \frac{\left|\left(b^{|\beta|} \zeta\right)^{\alpha+\beta}\right|}{L_{\alpha+\beta}} \leqslant q_{L}\left(b^{|\beta|} \zeta\right)
$$

and from this follows

$$
\begin{equation*}
(1+|\zeta|)^{n} q_{L}(\zeta) \leqslant C_{1} q_{L}\left(b^{n} \zeta\right) \tag{2.17}
\end{equation*}
$$

where C_{1} depends only on n and d.
Now suppose that U satisfies the hypothesis in Lemma 1. Let S be the subspace $\left\{(\bar{\zeta}, \zeta): \zeta \in \mathbf{C}^{d}\right\}$ of $\mathbf{C}^{2 d}$ and define an analytic function V in S by $V(\zeta, \zeta)=$ $U(\zeta)$ for all $\zeta \in \mathbf{C}^{d}$.

Using (2.1) and (2.17) (with $n=d+1$) we obtain

$$
\begin{align*}
& \int_{S}|V(\zeta, \zeta)|^{2} q_{L}\left(b^{d+1} h \zeta\right)^{-2} e^{-2 H_{K}(\xi)} d \sigma \\
& \quad \leqslant C_{1}^{2} \int_{S}|V(\zeta, \zeta)|^{2} q_{L}(h \zeta)^{-2} e^{-2 H_{K}(\xi)}(1+h|\zeta|)^{-2 d-2} d \sigma \\
& \quad \leqslant C_{1}^{2} C^{2} \int_{S}(1+h|\zeta|)^{-2 d-2} d \sigma=C_{2}<+\infty \tag{2.18}
\end{align*}
$$

where σ is the Lebesgue measure in S.

M. neymark, Laplace transform of functionals

We shall now use Lemma 2 with $n=2 d, S^{\prime}=\left\{(0, \zeta): \zeta \in \mathbf{C}^{d}\right\}$ and φ defined in $\mathbf{c}^{2 d}$ by

$$
\varphi\left(\zeta, \zeta^{\prime}\right)=2 \log q_{L}\left(b^{d+1} h \zeta\right)+2 H_{K}\left(\xi^{\prime}\right)
$$

By means of the rules in Hörmander [4], 1.6 and 2.6, we can see that φ is pluri-subharmonic in $\mathbf{C}^{2 d}$, because

$$
\log q_{L}\left(b^{d+1} h \zeta\right)=\sup _{N} \log \sum_{\mid \alpha \leqslant N} \frac{\left|\left(b^{d+1} h \zeta\right)^{\alpha}\right|}{L_{\alpha}}
$$

where each $\log \left|\left(b^{d+1} h \zeta\right)^{\alpha}\right| / L_{\alpha}$ is pluri-subharmonic, and H_{K} is convex. Furthermore φ satisfies (2.14) for some B since $q_{L}\left(b^{d+1} h \zeta\right)$ does not depond on ζ^{\prime} and H_{K} is uniformly continuous.
(2.18) means that V satisfies (2.15) and so Lemma 2 gives an entire function W in $\mathbf{C}^{2 d}$ such that $W(\zeta, \zeta)=V(\zeta, \zeta)=U(\zeta)$ when $\zeta \in \mathbf{C}^{d}$ and

$$
\begin{align*}
& \int\left|W\left(\zeta, \zeta^{\prime}\right)\right|^{2} q_{L}\left(b^{d+1} h \zeta\right)^{-2} e^{\left.-2 H_{K^{\prime}} \xi^{\prime}\right)}\left(1+|\zeta|^{2}+\left|\zeta^{\prime}\right|^{2}\right)^{-3 d} d m \\
& \leqslant A \int_{S}|V(\zeta, \zeta)|^{2} q_{L}\left(b^{d+1} h \zeta\right)^{-2} e^{-2 H_{K}(\xi)} d \sigma \leqslant A C_{2} \tag{2.19}
\end{align*}
$$

in view of (2.16) and (2.18). Here m is the Lebesgue measure in $\mathbf{C}^{2 d}$.
Repeated use of the inequality

$$
|u(0)| \leqslant\left(\pi r^{2}\right)^{-1} \int_{|z| \leqslant r}|u(z)| d x d y
$$

which is valid when u is analytic for $|z| \leqslant r$ in \mathbf{C}, then gives

$$
\begin{align*}
\left|W\left(\zeta, \zeta^{\prime}\right)\right|^{2} & \leqslant \pi^{-2 d}\left|\zeta_{1} \ldots \zeta_{d}\right|^{-2} \int_{\substack{z_{j}-\zeta_{j}\left|\leqslant 1 \zeta_{j} j\\
\right| z_{j}^{\prime}-\zeta_{j} \mid \leqslant 1}}\left|W\left(z, z^{\prime}\right)\right|^{2} d m \\
& \leqslant A C_{2} \pi^{-2 d}\left|\zeta_{1} \ldots \zeta_{d}\right|^{-2}(1+2|\zeta|)^{6 d} q_{L}\left(2 b^{d+1} h \zeta\right)^{2} \sup _{\left|z_{j}^{\prime}-\zeta_{j}^{\prime}\right| \leqslant 1} e^{2 H_{K^{\prime}}\left(x^{\prime}\right)}\left(1+\left|z^{\prime}\right|\right)^{6 d} \tag{2.20}
\end{align*}
$$

in view of (2.19) and the inequality $1+\lambda^{2}+\mu^{2} \leqslant(1+\lambda)^{2}(1+\mu)^{2}$ for $\lambda \geqslant 0$ and $\mu \geqslant 0$. Using (2.17) (with $n=3 d)$ and the uniform continuity of H_{K} and $\log (1+$ $\left.\left|z^{\prime}\right|\right)$ we can from (2.20) conclude that

$$
\left|W\left(\zeta, \zeta^{\prime}\right)\right| \leqslant C^{\prime}\left|\zeta_{1} \ldots \zeta_{d}\right|^{-1} q_{L}\left(2 b^{4 d+1} h \zeta\right) e^{H_{K}\left(\xi^{\prime}\right)}\left(1+\left|\zeta^{\prime}\right|\right)^{3 d}
$$

where C^{\prime} depends on A, C_{2}, L, d, h and K. So if we put $a=2 b^{4 d+1}$, we have proved (2.3) in Lemma 1.

3. Approximation theorems

If f is defined in the closed intervall $[a, b]$, the Bernstein polynomials $P_{n} f(n=1,2, \ldots)$, are defined by

$$
\begin{equation*}
P_{n} f(x)=\sum_{k=0}^{n}\binom{n}{k} f\left(a+\frac{k(b-a)}{n}\right)\left(\frac{x-a}{b-a}\right)^{k}\left(\frac{b-x}{b-a}\right)^{n-k} \tag{3.1}
\end{equation*}
$$

It is well-known that $P_{n} f \rightarrow f$ uniformly in $[a, b]$ when $n \rightarrow \infty$, if f is continuous in $[a, b]$ (see e.g. Meinardus [9], 2.2.). A simple calculation shows that

$$
\begin{equation*}
D^{j} P_{n} f(x)=\frac{n!}{(b-a)^{j}(n-j)!} \sum_{k=0}^{n-j}\binom{n-j}{k} \Delta^{j} f\left(a+\frac{k(b-a)}{n}\right)\left(\frac{x-a}{b-a}\right)^{k}\left(\frac{b-x}{b-a}\right)^{n-j-k} \tag{3.2}
\end{equation*}
$$

where $\Delta^{i} f$ is defined recursively by $\Delta^{0} f=f$ and

$$
\Delta^{j} f(x)=\Delta^{j-1} f\left(x+\frac{b-a}{n}\right)-\Delta^{j-1} f(x)
$$

When $f \in C^{\infty}([a, b])$ we have

$$
\begin{equation*}
\Delta^{j} f(x)=\left(\frac{b-a}{n}\right)^{j} \int_{0}^{1} \ldots \int_{0}^{1} D^{j} f\left(x+\frac{b-a}{n} \sum_{1}^{j} t_{i}\right) d t_{1}, \ldots, d t_{j} \tag{3.3}
\end{equation*}
$$

When f is defined in a rectangle $I=\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{d}, b_{d}\right] \subset \mathbf{R}^{d}$ and $\nu=\left(v_{1}, \ldots, v_{d}\right)$ ($v_{j}=1,2, \ldots$ for $j=1, \ldots, d$), we define

$$
\begin{equation*}
P_{\nu} f(x)=\sum_{0 \leqslant \beta \leqslant \nu}\binom{\nu}{\beta} f\left(a+\frac{\beta(b-a)}{\nu}\right) \frac{(x-a)^{\beta}(b-x)^{\nu-\beta}}{(b-a)^{\nu}}, \tag{3.4}
\end{equation*}
$$

where $a=\left(a_{1}, \ldots, a_{d}\right), b=\left(b_{1}, \ldots, b_{d}\right)$,

$$
\begin{gathered}
\frac{\beta(b-a)}{v}=\left(\beta_{1}\left(b_{1}-a_{1}\right) / v_{1}, \ldots, \beta_{d}\left(b_{d}-a_{d}\right) / v_{d}\right), \\
\binom{v}{\beta}=\binom{v_{1}}{\beta_{1}} \ldots\binom{v_{d}}{\beta_{d}}
\end{gathered}
$$

and $0 \leqslant \beta \leqslant \nu$ means that $0 \leqslant \beta_{j} \leqslant \nu_{j}$ for $j=1, \ldots, d . P_{\nu} f$ is constructed by successive applications of formula (3.1) with respect to the variables x_{1}, \ldots, x_{d} and with $n=v_{1} \ldots, v_{d}, a=a_{1}, \ldots, a_{d}$ and $b=b_{1} \ldots, b_{d}$ resp.

If f is continuous in I, it follows that $P_{\nu} f \rightarrow f$ uniformly in I when $v \rightarrow \infty$ (in the sense that $\left.\min \left(v_{1}, \ldots, v_{d}\right) \rightarrow \infty\right)$. This is proved by the same methods as in the one-dimensional case and should be well-known.

When $f \in C^{\infty}(I)$, we get by combining (3.1)-(3.4)

m. neymark, Laplace transform of functionals

$$
\begin{equation*}
D^{\alpha} P_{\nu} f(x)=\frac{\nu!}{\nu^{\alpha}(\nu-\alpha)!} \sum_{0 \leqslant \beta \leqslant \nu-\alpha}\binom{\nu-\alpha}{\beta} f_{\alpha}\left(a+\frac{\beta(b-a)}{\nu}\right) \frac{(x-a)^{\beta}(b-x)^{\nu-\alpha-\beta}}{(b-a)^{\nu-\alpha}} \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{\alpha}(x)=\int_{0}^{1} \ldots \int_{0}^{1} D^{\alpha} f\left(x+\frac{\tau(b-a)}{v}\right) d t_{11} \ldots d t_{1, \alpha_{1}} \ldots d t_{d 1} \ldots d t_{d, \alpha_{d}} \tag{3.6}
\end{equation*}
$$

with

$$
\frac{\tau(b-a)}{\nu}=\left(\frac{b_{1}-a_{1}}{v_{1}} \sum_{1}^{\alpha_{1}} t_{1 j}, \ldots, \frac{b_{d}-a_{d}}{\nu_{d}} \sum_{1}^{\alpha_{d}} t_{d j}\right) .
$$

It follows from (3.6) that

$$
\begin{equation*}
\left|f_{\alpha}\left(a+\frac{\beta(b-a)}{v}\right)\right| \leqslant \sup _{I}\left|D^{\alpha} f\right| \tag{3.7}
\end{equation*}
$$

and

$$
\begin{align*}
& \left|f_{\alpha}\left(a+\frac{\beta(b-a)}{v}\right)-D^{\alpha} f\left(a+\frac{\beta(b-a)}{v-\alpha}\right)\right| \\
& \quad \leqslant \sup _{\substack{\left|y_{j}-z_{j}\right| \leqslant \alpha_{j}\left(b, j-a_{j}\right)\left(v_{j} \\
y, z \in I\right.}}\left|D^{\alpha} f(y)-D^{\alpha} f(z)\right|=c_{\alpha, v}, \tag{3.8}
\end{align*}
$$

when $0 \leqslant \beta \leqslant \nu-\alpha$. From (3.5), (3.6) and (3.7) follows

$$
\begin{align*}
\left|D^{\alpha} P_{\nu} f(x)\right| & \leqslant \frac{\nu!}{\nu^{\alpha}(\nu-\alpha)!} \sup _{I}\left|D^{\alpha} f\right| \sum_{0 \leqslant \beta \leqslant \nu-\alpha}\binom{\nu-\alpha}{\beta} \frac{(x-a)^{\beta}(b-x)^{v-\alpha-\beta}}{(b-a)^{\nu-\alpha}} \\
& =\frac{\nu!}{\nu^{\alpha}(\nu-\alpha)!} \sup _{I}\left|D^{\alpha} f\right| \leqslant \sup _{I}\left|D^{\alpha} f\right| \quad \text { if } x \in I \tag{3.9}
\end{align*}
$$

and from (3.5), (3.6) and (3.8) follows

$$
\begin{aligned}
& \left|D^{\alpha} P_{\nu} f(x)-D^{\alpha} f(x)\right| \\
& \quad \leqslant \frac{\nu!}{\nu^{\alpha}(\nu-\alpha)!} c_{\alpha, v} \sum_{0 \leqslant \beta \leqslant \nu-\alpha}\binom{v-\alpha}{\beta} \frac{(x-a)^{\beta}(b-x)^{\nu-\alpha-\beta}}{(b-a)^{\nu-\alpha}} \\
& \quad+\frac{\nu!}{\nu^{\alpha}(\nu-\alpha)!}\left|P_{\nu-\alpha} D^{\alpha} f(x)-D^{\alpha} f(x)\right|+\left(1-\frac{\nu!}{v^{\alpha}(\nu-\alpha)!}\right)\left|D^{\alpha} f(x)\right| \text { if } x \in I
\end{aligned}
$$

and from this follows

$$
\begin{equation*}
\sup _{I}\left|D^{\alpha} P_{\nu} f-D^{\alpha} f\right| \leqslant c_{\alpha, v}+\sup _{I}\left|P_{\nu-\alpha} D^{\alpha} f-D^{\alpha} f\right|+\left(1-\frac{v!}{\nu^{\alpha}(v-\alpha)!}\right) \sup _{I}\left|D^{\alpha} f\right| . \tag{3.10}
\end{equation*}
$$

Here $c_{\alpha, y} \rightarrow 0$ when $v \rightarrow \infty$ with α fixed because of (3.8) and the uniform continuity of $D^{\alpha} f$ In I. The continuity of $D^{\alpha} f$ in I also implies that $P_{v-\alpha} D^{\alpha} f \rightarrow D^{\alpha} f$
uniformly in I when $\nu \rightarrow \infty$ with α fixed, as we have already observed. Finally $\nu!/ \nu^{\alpha}(\nu-\alpha)!\rightarrow 1$ when $\nu \rightarrow \infty$ with α fixed. Therefore we can conclude from (3.10) that for fixed α

$$
\begin{equation*}
\sup _{I}\left|D^{\alpha} P_{\nu} f-D^{\alpha} f\right| \rightarrow 0 \quad \text { when } \quad \nu \rightarrow \infty . \tag{3.11}
\end{equation*}
$$

In section 2 we use the following approximation theorem.
Theorem 3. If $L=\left(L_{\alpha}\right)_{\alpha}$ and $h>0$ are given and if $f \in C^{\infty}(I)$ satisfies

$$
\begin{equation*}
\|f\|_{L, I, h}<+\infty \tag{3.12}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|P_{v} f-f\right\|_{L, I, h} \rightarrow 0 \quad \text { when } \quad v \rightarrow \infty \tag{3.13}
\end{equation*}
$$

(i.e. when $\left.\min \left(\nu_{1}, \ldots, \boldsymbol{v}_{d}\right) \rightarrow \infty\right)$. Here I is a rectangle in \mathbf{R}^{d} and $P_{\nu} f$ is defined by (3.4).

Proof. From (3.9) follows that

$$
\begin{equation*}
\left\|P_{\nu} f-f\right\|_{L, 1, h} \leqslant \sum_{|\alpha| \leqslant N} \sup _{I}\left|D^{\alpha} P_{\nu} f-D^{\alpha} f\right| \frac{h^{|\alpha|}}{L_{\alpha}}+2 \sum_{|\alpha|>N} \sup _{I}\left|D^{\alpha} f\right| \frac{h^{|\alpha|}}{L_{\alpha}} \tag{3.14}
\end{equation*}
$$

The second sum is independent of ν and tends to 0 when $N \rightarrow \infty$ because of (3.12). The first sum tends to 0 when $y \rightarrow \infty$ and N is fixed because of (3.11). Hence (3.13) follows from (3.14).

Corollary 3a. The polynomials form a dense subspace of $c_{L}\left(\mathbf{R}^{d}\right)$.
Corollary 3b. The polynomials form a dense subspace of $C_{L}\left(\mathbf{R}^{d}\right)$.
In section 2 we also use an approximation theorem, which works for more general compact sets than rectangles in \mathbf{R}^{d}. Therefore let K be a compact set in \mathbf{R}^{d} and let

$$
\varphi(x)=(2 \pi)^{-d / 2} e^{-\mid x x^{1 / 2}} .
$$

We have defined φ so that

$$
\begin{equation*}
\int \varphi d x=1 . \tag{3.15}
\end{equation*}
$$

Then if f is a continuous function in K, we can define

$$
\begin{equation*}
T_{s} f(x)=T_{K, s} f(x)=\int_{K} f(y) \varphi(s(x-y)) s^{d} d y \tag{3.16}
\end{equation*}
$$

for all $s>0 . T_{s} t$ is the restriction to \mathbf{R}^{d} of an entire function in \mathbf{C}^{d} because φ is such a function and we integrate over a compact subset of \mathbf{R}^{d}.

M. NE YMARK, Laplace transform of functionals

From (3.15) and (3.16) follows immediately

$$
\begin{equation*}
\sup _{\mathbf{R}^{d}}\left|T_{s} f\right| \leqslant \sup _{R}|f| . \tag{3.17}
\end{equation*}
$$

Now suppose that K_{0} is a compact subset of the interior of K and that $\delta=d\left(K_{0}, \mathbf{C} K\right)$. Then we get from (3.15) and (3.16)

$$
\begin{align*}
T_{s} f(x)-f(x) \mid & =\left|\int_{s(x-K)} f(x-u / s) \varphi(u) d u-\int f(x) \varphi(u) d u\right| \\
& \leqslant \sup _{|u| \leqslant r}|f(x-u / s)-f(x)| \int_{|u| \leqslant r} \varphi(u) d u+2 \sup _{K}|f| \int_{|u| \geqslant r} \varphi(u) d u \\
& \leqslant \sup _{|y-x| \leqslant \gamma / s}|f(y)-f(x)|+2 \sup _{K}|f| \int_{|u| \geqslant r} \varphi(u) d u \tag{3.18}
\end{align*}
$$

if $x \in K_{0}$ and $r / s \leqslant \delta$. If we choose $r=\sqrt{s}$, it follows from (3.18) that

$$
\begin{equation*}
\sup _{K_{0}}\left|T_{s} f-f\right| \rightarrow 0 \quad \text { when } \quad s \rightarrow+\infty \tag{3.19}
\end{equation*}
$$

for every compact subset K_{0} of the interior of K, because f is uniformly continuous in K and $\int_{|u| \geqslant r} \varphi(u) d u \rightarrow 0$ when $r \rightarrow+\infty$.

Now we suppose that $f \in C^{\infty}$ in a neighbourhood of K and that K is so regular that we can use Stokes' formula for K and its boundary ∂K (oriented with the normal pointing outwards). For our purposes it is sufficient that K is the union of a finite number of a rectangles. From (3.16) we then obtain by Stokes' formula

$$
\begin{align*}
D_{j} T_{s} f(x) & =\int_{K} f(y) D_{j} \varphi(s(x-y)) s^{d+1} d y \\
& =\int_{K} D_{j} f(y) \varphi(s(x-y)) s^{d} d y-\int_{K} \frac{\partial}{\partial y_{j}}(f(y) \varphi(s(x-y))) s^{d} d y \\
& =T_{s} D_{j} f(x)+(-1)^{j} s^{d} \int_{\partial K} f(y) \varphi(s(x-y)) d \hat{y}_{j}, \tag{3.20}
\end{align*}
$$

where $d \hat{y}_{j}=d y_{1} \wedge \ldots \wedge d y_{j-1} \wedge d y_{j+1} \wedge \ldots \wedge d y_{d}$. The interpretation of (3.20) when the dimension is \mathbf{l} is obvious. We also get

$$
\begin{equation*}
\frac{\partial}{\partial x_{k}} \int_{\partial K} f(y) \varphi(s(x-y)) d \hat{y}_{j}=s \int_{\partial K} f(y) D_{k} \varphi(s(x-y)) d \hat{y}_{j} . \tag{3.21}
\end{equation*}
$$

Using (3.20) and (3.21) we see by induction that
$D^{\alpha} T_{s} f(x)=T_{s} D^{\alpha} f(x)$

$$
\begin{equation*}
+\sum_{j=1}^{d} \sum_{k=0}^{\alpha_{j}-1}(-1)^{j^{k+1} s_{j}{ }^{\prime \prime} \mid+d} \int_{\partial K} D^{\alpha_{j}^{\prime}} D_{j}^{\alpha_{j}-k-1} f(y) D^{\alpha_{j}{ }^{z}} D_{j}^{k} \varphi(s(x-y)) d \hat{y}_{j} \tag{3.22}
\end{equation*}
$$

where $\alpha_{j}^{\prime}=\left(\alpha_{1}, \ldots, \alpha_{j-1}, 0, \ldots, 0\right)$ and $\alpha_{j}^{\prime \prime}=\left(0, \ldots, 0, \alpha_{j+1}, \ldots, \alpha_{d}\right)$. If $\alpha_{j}=0$ then the corresponding sum over over k in (3.22) shall be 0 .

Now let K_{0} be a compact subset of the interior of K and put $\delta=d\left(K_{0}, C K\right)$. Then it follows from (3.22) that

$$
\begin{align*}
& \left|D^{\alpha} T_{s} f(x)-D^{\alpha} f(x)\right| \leqslant\left|T_{s} D^{\alpha} f(x)-D^{\alpha} f(x)\right| \\
& \quad+\sum_{j=1}^{d} \sum_{k=0}^{\alpha_{j}-1} s^{k+\left|\alpha_{j} j^{\prime \prime}\right|+a} \sup _{K}\left|D^{\alpha_{j}^{\prime}} D_{j}^{\alpha_{j}-k-1} f\right| \sup _{|u| \geqslant s \delta}\left|D^{\alpha_{j}^{\prime \prime}} D_{j}^{k} \varphi(u)\right| A(\partial K) \\
& \text { if } \quad x \in K_{0} \tag{3.23}
\end{align*}
$$

where $A(\partial K)$ is the $(d-1)$-dimensional measure of ∂K.
From (3.19) and (3.23) follows that

$$
\begin{equation*}
\sup _{K_{0}}\left|D^{\alpha} T_{s} t-D^{\alpha} f\right| \rightarrow 0 \quad \text { when } \quad s \rightarrow+\infty \tag{3.24}
\end{equation*}
$$

for every fixed α, because

$$
r^{n} \sup _{|u| \geqslant r}\left|D^{\beta} \varphi(u)\right| \rightarrow 0 \quad \text { when } \quad r \rightarrow \infty
$$

if $n \geqslant 0$ and β is a multi-index.
Theorem 4. Suppose that $f \in C^{\infty}$ in a neighbourhood of a compact subset K of \mathbf{R}^{d}, which is so regular that Stokes' formula is applicable, and suppose that

$$
\begin{equation*}
\|f\|_{L, K, h}<+\infty \tag{3.25}
\end{equation*}
$$

where $h>0$ and $L=\left(L_{\alpha}\right)_{\alpha}$ satisfies (C) and $(\alpha!)_{\alpha}<L$, which implies that there are constants C and $a>0$ such that $|\alpha|!\leqslant C a^{|\alpha|} L_{\alpha}$ for all α. Then

$$
\begin{equation*}
\left\|T_{s} f \sim f\right\|_{L . K_{0, h / c} \rightarrow 0} \quad \text { when } \quad s \rightarrow+\infty \tag{3.26}
\end{equation*}
$$

if $T_{s} f$ is defined by (3.16), K_{0} is a compact subset of the interior of K and $h<(5 a)^{-1} d\left(K_{0}, \mathbf{C K}\right) . c$ is the constant in (C); here we suppose that $c \geqslant 1$.

In the proof we need the following estimate of the derivatives of φ.
Lemma 3. If $\varphi(u)=(2 \pi)^{-d / 2} e^{-|u|^{2 / 2}}\left(u \in \mathbf{R}^{d}\right)$, then for every m there is a constant C such that

$$
\begin{equation*}
\forall \alpha: \quad r^{|\alpha|+m} \sup _{|u| \geqslant r}\left|D^{\alpha} \varphi(u)\right| \leqslant C 5^{|\alpha|}|\alpha|! \tag{3.27}
\end{equation*}
$$

M. NEYMARK, Laplace transform of functionals

Proof. φ is also defined by

$$
\varphi(u)=(2 \pi)^{-d} \int e^{i\langle u, \xi\rangle} e^{-|\xi|^{2} / 2} d \xi
$$

It follows that

$$
\begin{align*}
r^{|\alpha|+m}\left|D^{\alpha} \varphi(u)\right| & =r^{|\alpha|+m}(2 \pi)^{-d}\left|\int(i \xi)^{\alpha} e^{i\langle u, \xi\rangle} e^{-|\xi|^{2} / 2} d \xi\right| \\
& =(2 \pi)^{-a} r^{\left\{\left.\alpha\right|^{\prime}+m\right.} \mid \int(i \xi-\eta)^{\alpha} e^{i\langle u, \xi\rangle-\langle u, \eta\rangle} e^{-|\xi|^{2} / 2+|\eta|^{2} / 2-i\langle\xi, \eta\rangle} d \xi \\
& \leqslant(2 \pi)^{-d} r^{|\alpha|+m} e^{-\langle u, \eta\rangle+|\eta|^{2} / 2} \int(|\xi|+|\eta|)^{|\alpha|} e^{-|\xi|^{2} / 2} d \xi \\
& \leqslant C r^{|\alpha|+m} e^{-r^{2} / 2} \int_{0}^{+\infty}(t+r)^{|\alpha|} e^{-t^{2} / 2} t^{d-1} d t \\
& \leqslant 2^{|\alpha|} C\left(r^{2|\alpha|+m+d-1} e^{-r^{2} / 2} \int_{0}^{r} e^{-t^{2} / 2} d t+e^{-\tau^{2} / 2} \int_{r}^{+\infty} t^{2|\alpha|+m+d-1} e^{-t^{2} / 2} d t\right)
\end{align*}
$$

Here we have moved the integration to the hyperplane $\mathbf{R}^{d}+i \eta$ in \mathbf{C}^{d}, where η is the vector in \mathbf{R}^{d} which has the same direction as u and length r. It is obvious that this is possible by Cauchy's integral theorem.

Using the inequality

$$
r^{2 k+n} e^{-r^{2} / 2} \leqslant \sqrt{(2 k+n)!} \leqslant 2^{k} k!\sqrt{(2 k+1) \ldots(2 k+n)}
$$

and the equality

$$
\int_{0}^{+\infty} t^{2 k+n} e^{-t^{2} / 2} d t=2^{k+(n-1) / 2} \int_{0}^{+\infty} t^{k+(n-1) / 2} e^{-t} d t=2^{k+(d-1) / 2} \Gamma(k+(d+1) / 2)
$$

we obtain (3.27) from (3.28) with a new constant C.
Proof of Theorem 4. If $\delta=d\left(K_{0}, C K\right)$, we get from (3.23), (3.17) and Lemma 3

$$
\begin{equation*}
\sup _{K_{0}}\left|D^{\alpha} T_{s} f-D^{\alpha} f\right| \leqslant 2 \sup _{K}\left|D^{\alpha} f\right|+C_{1} \sum_{j=1}^{d} \sum_{k=0}^{\alpha_{j}-1} \sup _{K}\left|D^{\alpha_{j}^{\prime}} D_{j}^{\alpha_{j}-k-1} f\right|\left(\frac{5}{\delta}\right)^{k+\left|\alpha_{j}^{\prime \prime}\right|}\left(k+\left|\alpha_{j}^{\prime \prime}\right|\right)! \tag{3.29}
\end{equation*}
$$

with a new constant C_{1} not depending on α or s.
Now suppose that f satisfies (3.25). Then using the condition (C) with $c \geqslant 1$ and $|\alpha|!\leqslant C a^{|\alpha|} L_{\alpha}$ we see that (3.29) implies that

$$
\begin{align*}
\sum_{|\alpha|>N} \sup _{K_{0}} \mid D^{\alpha} T_{s} f & \left.-D^{\alpha} f\left|\frac{(h / c)^{|\alpha|}}{L_{\alpha}} \leqslant 2 \sum_{|\alpha|>N} \sup _{K}\right| D^{\alpha} f \right\rvert\, \frac{(h / c)^{|\alpha|}}{L_{\alpha}} \\
& +C_{1} C^{2} \sum_{j=1}^{d} \sum_{|\alpha|>N} \sum_{k=0}^{\alpha_{j}-1} \sup _{K}\left|D^{\alpha_{j}^{\prime}} D_{j}^{\alpha_{j}-k-1} f\right| \frac{h^{|\alpha|}(5 / \delta)^{k+\left|\alpha_{j}{ }^{\prime \prime}\right|} a^{k+1+\left|\alpha_{j}\right|}}{L_{\left(\alpha_{1}, \ldots, \alpha_{j-1}, \alpha_{j}-k-1,0, \ldots, 0\right)}} \\
& \leqslant 2 \sum_{|\alpha|>N} \sup _{K}\left|D^{\alpha} f\right| \frac{h^{|\alpha|}}{L_{\alpha}}+C_{2} \sum_{\alpha}\left(\frac{5 a h}{\delta}\right)^{|\alpha|} \sum_{|\beta|>N-|\alpha|-1} \sup _{K}\left|D^{\beta} f\right| \frac{h^{|\beta|}}{L_{\beta}} \tag{3.30}
\end{align*}
$$

where the new constant C_{2} is independent of N and s. In the last sum we have changed ($\alpha_{1}, \ldots, \alpha_{j-1}, \alpha_{j}-k-1,0, \ldots, 0$) to β. Suppose that $h<\delta / 5 a$. Then (3.30) implies that

$$
\begin{align*}
& \left\|T_{s} f-f\right\|_{L, K_{0}, h / c} \leqslant \sum_{|\alpha| \leqslant N} \sup _{R_{0}}\left|D^{\alpha} T_{s} f-D^{\alpha} f\right| \frac{(h / c)^{|\alpha|}}{L_{\alpha}} \\
& \quad+\left(2+C_{2} \sum_{|\alpha|<m}\left(\frac{5 a h}{\delta}\right)^{|\alpha|}\right)_{|\alpha| \geqslant N-m} \sup _{K} \left\lvert\, D^{\alpha} f \frac{h^{|\alpha|}}{L_{\alpha}}+C_{2} \sum_{|\alpha| \geqslant m}\left(\frac{5 a h}{\delta}\right)^{|\alpha|}\|f\|_{L, K, h} .\right. \tag{3.31}
\end{align*}
$$

Here the middle and the last term tend to 0 when $m \rightarrow+\infty$ and $N-m \rightarrow+\infty$. They are both independent of s. The first term tends to 0 when $s \rightarrow+\infty$ for fixed N. Therefore (3.26) follows from (3.31) and Theorem 4 is proved.

Corollary 4a. If L satisfies (C) and $(\alpha!)_{\alpha} \prec \prec L$, then the entire functions in \mathbf{R}^{d} are dense in $c_{L}(\Omega)$, if Ω is an open set in \mathbf{R}^{d}.

Corollary 4b. If L satisfies (C) and $(\alpha!)_{\alpha}<L$, then the entire functions in \mathbf{R}^{d} are dense in $C_{L}(\Omega)$, if Ω is an open set in \mathbf{R}^{d}.

Corollary 4 a shows that the image of $c_{L}\left(\mathbf{R}^{d}\right)$ (under the restriction mapping $c_{L}\left(\mathbf{R}^{d}\right) \rightarrow c_{L}(\Omega)$) is dense in $c_{L}(\Omega)$, if L satisfies (C) and ($\left.\alpha!\right)_{\alpha} \ll L$. By Corollary 4 b the same statement is true for C_{L}, if L satisfies (C) and (α ! $)_{\alpha}<L$. On the other hand it is not true for $c_{L}(\Omega)$ if $L \prec(\alpha!)_{\alpha}$ or for $C_{L}(\Omega)$ if $L \prec \prec(\alpha!)_{\alpha}$ and Ω is not connected.

If $u \in c_{L}^{\prime}\left(\mathbf{R}^{d}\right)$ is carried by a compact subset of $\Omega \subset \mathbf{R}^{d}$, then $u(f)=u(g)$ when f and $g \in c_{L}\left(\mathbf{R}^{d}\right)$ and $f=g$ in Ω. Hence we can identify the space of all such u with the space of continuous linear forms on the image of $c_{L}\left(\mathbf{R}^{d}\right)$ in $c_{L}(\Omega)$, and all these linear forms can be uniquely extended to $c_{L}(\Omega)$ if and only if the image of $c_{L}\left(\mathbf{R}^{d}\right)$ is dense in $c_{L}(\Omega)$. Therefore we can identify $c_{L}^{\prime}(\Omega)$ with the space of all $u \in c_{L}^{\prime}\left(\mathbf{R}^{d}\right)$ which are carried by compact subsets of Ω, at least if L satisfies (C) and $(\alpha!)_{\alpha}<\prec L$. This statement is not true when $L \prec(\alpha!)_{\alpha}$ and Ω is not connected.

Similarly $C_{L}^{\prime}(\Omega)$ can be identified with the space of all $u \in C_{L}^{\prime}\left(\mathbf{R}^{d}\right)$ which are carried by compact subsets of Ω, at least if L satisfies (C) and $(\alpha!)_{\alpha} \prec L$. It is not true when $L \prec \prec(\alpha!)_{\alpha}$ and Ω is not connected.

REFERENGES

1. Bang, Th., Om quasi-analytiske Funktioner. Copenhagen, 1946.
2. Bлörck, G., Linear partial differential operators and generalized distributions. Arkiv för Mat. 6, 351-407 (1966).
3. Hörmander, L., Linear partial differential operators. Springer, Berlin, 1963.
4. -_, An introduction to complex analysis in several variables. Van Nostrand, Princeton, N. J., 1966.
5. Kiselman, C. O., On unique supports of analytic functionals. Arkiv för Mat. 6, 307-318 (1966).
6. - On entire functions of exponential type and indicators of analytic functionals. Acta Math. 117, 1-35 (1967).
7. Lelong, P., Sur une propriété de quasi-analyticité des fonctions de plusieurs variables. C. R. Acad. Sci. Paris 232, 1178-1180 (1951).
8. Martineau, A., Sur les fonctionelles analytiques et la transformation de Fourier-Borel, J. Analyse Math. 11, 1-164 (1963).
9. Meinardus, G., Approximation von Funktionen und ihre numerische Behandlung. Springer, Berlin, 1964.
10. Roumieu, Ch., Ultra-distributions définies sur R^{n} et sur certaines classes de variétés différentiables. J. Analyse Math. 10, 153-192 (1962/63).

Tryckt den 25 november 1968

