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A problem of Newman on the eigenvalues of operators 
of convolution type 

By ANDERS WIK 

In  [1] Newman has studied the problem of uniqueness of the class of equations 

~F(x) - fE F(t) K ( x -  t) dt = G(x) for x E E 

under the restriction that  K has compact support. However, the result in [1] is 
true also without that  restriction: 

Theorem 1. Let G be a locally compact abelian group with Haar measure dt and let 
K(x) E LI(G). Then/or any measurable set E 

2 F ( x ) -  f F ( t ) K ( x - t ) d t = O  for x E E  and FEL~C ~F=--O 

i/ ,~ ~ H k = CH(K(~)]~ E G} = the closed convex hull o/the values assumed by the Fou. 
rier trans/orm 1~ of K. 

An equivalent theorem is obtained by  looking at  the class of operators on L ~r 

KE F =  { F-)e K for x E E, 

0 for x r E, 

where the kernel K E L 1. The theorem then states that  for any  measurable set E, 
K~ has all its eigenvalues inside HR. Thus HK is a bound, uniform in E, for the 
eigenvalues of K~. The question of the "bes t"  uniform bound has not been settled. 
The eigenvalue problem when G = It  or Z has been solved in the cases E = ( - ~ ,  

), ( -  c~, 0) and (0, c~) (see e.g. Krein [2]). Together these eigenvalues form the 
set 

AK = (/~($) I ~ e ~)U (~lind (4 - ~ )=  (2~) -1S-~ d, arg (~t --/~($)) * 0}, 

i.e. the set of points on or "inside" the curve described by the Fourier transform 
/~. Consequently, if MK is the best uniform bound for the eigenvalues then 
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AK~_Mr:~HK. In  [1] there is an example where G=  Z and KE for suitable E has 
eigenvalues outside AK. In  tha t  example MK is strictly between A~ and HK. 

For the proof of Theorem 1 the.following expression for the integral equation 
in question will be useful 

]F(x)I~=F(x)(F-)eK)(x) for all xEG. (1) 

Proo/. I t  is sufficient to s tudy the case ~t= 1. Following [1] we observe tha t  
1 r HK implies the existence of a complex number ~ such tha t  

Re (~(1 - /~(~)))  >7 1 for all ~ E G. (2) 

Let  x 0 denote an arbi trary point of G and let V be a compact symmetric subset 
of G such that  

fc(v) [ K(x)] dx< �89 

For abbreviation we define/(x) = Zn(x)" F(x) where Z~ is the characteristic func- 
tion of xo+V=={Xo+~_ix~lx, E V}. With these notations Parseval 's  theorem 
gives us 

]0~]-1 iF(x)l dx= i l-i ]/(x)]~dx= ]~, l f~ ,](~),2d~" 

From the inequality (2) and from Parseval 's  theorem once again it follows tha t  

= l f oll(x)l'- /(x) (l , K) (x)dx = l f, o+, lF(x)12- P(X) fx.+, F(') K(x-  )d dz 

:Now by  the relation (1) this equals 

f ~,+ vnF(x) f x,+,(vn)F(t) K(x-  t) dt dx " 

After a 

y - -  x e - xo +C( V n) 

change of variables (y = x - t ;  x = x) we can use Fubini 's theorem to get 

-F(x) F(x - y) K(y) dy dx = [ f fxEx,+ Ey F(x) F(x - y) K(y) dx dy 
y E V n + ~ ( V  n) 

where my= V n f3 {y+  C(Vn)}. Thus we have arrived at  the inequality 

fxo+v [F(x)l~dx<l~l f lK(Y)l fx~ [F(x)F(x--y)ldxdy" (3) 
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Define 

and 

Thus (3) yields 

~~176 ~[~1 f v  IK(y)ldY fXo+E~ IF(x) F(x-y)Idxdy 

§ I=[ 

Now E:_~ V" so 

f,<v) I K(U) I v(n) dy < �89 v(n). 12 I" 

Schwarz's inequali ty gives us 

2 + fxo+E IF(x)F(x--y)]dx<-<{ fxo+Ey[F(x)[2dx fx,_y+E IF(x)[ dx} . (4) 

But  for y e VEy = V n N {y + C(Vn)}- Vn~V n-l~- vn+I~V n-1 

and - y +  Ey=C(V n) N { - - y +  Vn} ~_ Vn+l~vnc. vn+I~v n-1 

so the right member of (4) is less than  ~%o(n + 1 ) -  ~xo(n-1).  Therefore 

wan)< I~l" f lK(y)ldy{~=o(n+ 1)- ~=o(n- 1)}+ �89 

< I[gll~{~xo(n + 1)- ~=0(n- 1)}+ �89 

But  as c v~o(n) and ~v(n) are increasing this yields 

([] g [[1 + 1) c v~o(n - 1) < [[ g [h ~V~o(n + 1) + �89 + 1). 

Varying x o we get 

~v(n-1 )<  IIg[[l+�89 (/~< 1). 
II Kill + 1 

So  ~v(2) < ~n-l~v(2n). (5) 

We need the following simple lemma of Newman [1]. 

Lemma. Let V be a compact subset o/ G. Then there exist constants c and d such that 

m( V ~) < c " n a. 
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Applying it in this s i tuat ion we get ~(2n) ~< C" M "  (2n) d and  thus  f rom (5) 

~(2)<C.M./xn-l . (2n)d-+O (n~c~) .  

F r o m  the definit ion of ~v we get t h a t  F(x)~O and the theorem is proved.  

Remark. The proof is val id wi th  a minor  modificat ion also in the case F E LP(G), 
2 ~< p < ~ .  The only place where we used IF(x) [ ~< M was to  prove  t ha t  ~(2n) ~< C" 
M .  (2n) ~. We can write I F I ~ (~ L v/~, F I  ~ = F1 + F2 where F~ e 51 and  F~ E L ~. 

Then  v(2n)~< C" (2n) d- IIF~ ~ +  IIFl/11 and  the result  follows just  as above.  
The  only remaining case of interest  is F E L v, 1 ~< p < 2. I t  is reduced to the  

above by  the  following 

Lemma.  I] I F ( x ) l  ~ = F ( x )  . ( F  ~ K) (x) where K E LI(G) and F E Lv(G), 1 ~ p < 2 then 
2' e L2( G). 

Proo/. Suppose p = 1. Other  cases are t rea ted  similarly. I t  follows t h a t  I FI  ~< IF ~- K Now K can be K S where K2E f3L z and  �9 wr i t t en  K = K 1 + K~ E L 1, L 1 
IKl111<~<�89 Ig~ ~ = M < ~ .  Then  

12"1 < 12"1 ~-Igxl  + IFI ~-Ig~l �9 (6) 

Using this estimate of 12"1 in the first term of ~he right member we get a new 
estimate 12"1 < g~ + h~ where g~ = 12"1 ~ I K~I ~- I K~I 

and h~ = 12"1 ~ IK~I ~ - IK I I  + 12"1~ IK~I. 

We repea t  this procedure on the  t e r m  12"1 ~ I K ~  I in (6) to get  successively new esti- 
ma tes  I F I ~< g~ + h, where 

gi+i=g,~lKi l  and  h,+~=h,~lK~l+12,1~lK~l . 

Therefore IIg,+~ I~< ~llg, II and [h,+~ll~< ~llh, ll~+MII2"11. It follows that IIg, lli< 
e~+l. IIFII1 and Ih~ll~< 2 M .  II F 1 and  we get 

112,-h;ll~<~'+~.ll2,111~o as i ~  where Ilh;ll~<llh, ll<2illFill . 
We can choose a subsequence {h,k } such t ha t  hjk(x ) ~12"(~)1  a . e .  The conclusion 

t h a t  2" E L 2 now follows f rom Fa tou ' s  lemma:  

f l2"1~dx<liminfflh~kl~dx<(2MIIF~ll) 2. 

Thus we have  proved  the  more  general  form of Theorem 1. 

Theorem 2. I /  K ELI(G) then the operator KE de/ined in any one o/ the spaces 
L~(G), 1 <~ p <~ ~ , by 

K E 2 , = K ~ 2 "  /or x e E ,  KEF=O /or x ~ E  

has no eigenvalue outside the set H~. 
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