A problem of Newman on the eigenvalues of operators of convolution type

By Anders Wik

In [1] Newman has studied the problem of uniqueness of the class of equations

$$
\lambda F(x)-\int_{E} F(t) K(x-t) d t=G(x) \quad \text { for } \quad x \in E
$$

under the restriction that K has compact support. However, the result in [1] is true also without that restriction:

Theorem 1. Let G be a locally compact abelian group with Haar measure dt and let $K(x) \in L^{1}(G)$. Then for any measurable set E

$$
\lambda F(x)-\int_{E} F(t) K(x-t) d t=0 \quad \text { for } \quad x \in E \quad \text { and } \quad F \in L^{\infty} \Rightarrow F \equiv 0
$$

if $\lambda \notin H_{k}=\overline{C H} \overline{\{\bar{K}(\xi) \mid \overline{\xi \in \hat{G}\}}}=$ the closed convex hull of the values assumed by the Fourier transform \hat{K} of K.

An equivalent theorem is obtained by looking at the class of operators on L^{∞}

$$
\mathbf{K}_{E} F=\left\{\begin{array}{l}
F * K \text { for } x \in E, \\
0 \text { for } x \notin E,
\end{array}\right.
$$

where the kernel $K \in L^{1}$. The theorem then states that for any measurable set E, \mathbf{K}_{E} has all its eigenvalues inside H_{K}. Thus H_{K} is a bound, uniform in E, for the eigenvalues of \mathbf{K}_{E}. The question of the "best" uniform bound has not been settled. The eigenvalue problem when $G=\mathbf{R}$ or \mathbf{Z} has been solved in the cases $E=(-\infty$, $\infty),(-\infty, 0)$ and $(0, \infty)$ (see e.g. Krein [2]). Together these eigenvalues form the set

$$
A_{K}=\{\hat{K}(\xi) \mid \xi \in \hat{G}\} \cup\left\{\lambda \mid \operatorname{ind}(\lambda-\hat{K})=(2 \pi)^{-1} \int_{-\infty}^{\infty} d_{\xi} \arg (\lambda-\hat{K}(\xi)) \neq 0\right\}
$$

i.e. the set of points on or "inside" the curve described by the Fourier transform \overparen{K}. Consequently, if M_{K} is the best uniform bound for the eigenvalues then

A. wiк, Eigenvalues of operators

$A_{K} \subseteq M_{K} \subseteq H_{K}$. In [1] there is an example where $G=\mathbf{Z}$ and \mathbf{K}_{E} for suitable E has eigenvalues outside A_{K}. In that example M_{K} is strictly between A_{K} and H_{K}.

For the proof of Theorem 1 the following expression for the integral equation. in question will be useful

$$
\begin{equation*}
|F(x)|^{2}=\overline{F(x)}(F * K)(x) \quad \text { for all } \quad x \in G \tag{1}
\end{equation*}
$$

Proof. It is sufficient to study the case $\lambda=1$. Following [1] we observe that $1 \notin H_{K}$ implies the existence of a complex number α such that

$$
\begin{equation*}
\operatorname{Re}(\alpha(1-\hat{K}(\xi))) \geqslant 1 \text { for all } \xi \in \hat{G} . \tag{2}
\end{equation*}
$$

Let x_{0} denote an arbitrary point of G and let V be a compact symmetric subset of G such that

$$
\int_{G^{(}(V)}|K(x)| d x<\frac{1}{2}|\alpha|^{-1} .
$$

For abbreviation we define $f(x)=\chi_{n}(x) \cdot F(x)$ where χ_{n} is the characteristic function of $x_{0}+V^{n}=\left\{x_{0}+\sum_{i=1}^{n} x_{i} \mid x_{i} \in V\right\}$. With these notations Parseval's theorem gives us

$$
|\alpha|^{-1} \int_{x_{0}+v_{n}}|F(x)|^{2} d x=|\alpha|^{-1} \int_{G}|f(x)|^{2} d x=|\alpha|^{-1} \int_{\hat{G}}|\hat{f}(\xi)|^{2} d \xi .
$$

From the inequality (2) and from Parseval's theorem once again it follows that

$$
\begin{aligned}
& |\alpha|^{-1} \int_{\hat{G}}|\hat{f}(\xi)|^{2} d \xi \leqslant\left.\left|\int_{\hat{G}}\right| \hat{f}(\xi)\right|^{2}(1-\hat{K}(\xi)) d \xi \mid \\
& \quad=\left.\left|\int_{G}\right| f(x)\right|^{2}-\overline{f(x)}(f * K)(x) d x\left|=\left|\int_{x_{0}+V^{n}}\right| F(x)\right|^{2}-\overline{F(x)} \int_{x_{0}+V^{n}} F(t) K(x-t) d t d x \mid .
\end{aligned}
$$

Now by the relation (1) this equals

$$
\left|\int_{x_{0}+V n} \overline{F(x)} \int_{x_{0}+\mathbf{c}(V n)} F(t) K(x-t) d t d x\right| .
$$

After a change of variables $(y=x-t ; x=x)$ we can use Fubini's theorem to get

$$
\begin{aligned}
\left|\iint_{\substack{x \in x_{0}+V^{n} \\
y-x \in-x_{0}+\mathbf{C}\left(V^{n}\right)}} \overline{F(x)} F(x-y) K(y) d y d x\right| & =\left|\iint_{\substack{x \in x_{0}+E_{y} \\
y \in V^{n}+\mathbf{C}\left(V^{n}\right)}} \overline{F(x)} F^{\prime}(x-y) K(y) d x d y\right| \\
& \leqslant \int_{G}|K(y)| \int_{x_{0}+E_{y}}|F(x) F(x-y)| d x d y,
\end{aligned}
$$

where $E_{y}=V^{n} \cap\left\{y+\mathbf{C}\left(V^{n}\right)\right\}$. Thus we have arrived at the inequality

$$
\begin{equation*}
\int_{x_{0}+V^{n}}|F(x)|^{2} d x \leqslant|\alpha| \int_{G}|K(y)| \int_{x_{0}+E y}|F(x) F(x-y)| d x d y \tag{3}
\end{equation*}
$$

Define

$$
\varphi_{x_{0}}(n)=\int_{x_{0}+V^{n}}|F(x)|^{2} d x
$$

and

$$
\psi(n)=\sup _{x_{0} \in G} \varphi_{x_{0}}(n) .
$$

Thus (3) yields

$$
\begin{aligned}
\varphi_{x_{0}}(n) \leqslant|\alpha| & \int_{V}|K(y)| d y \int_{x_{0}+E_{y}}|F(x) F(x-y)| d x d y \\
& +|\alpha| \int_{\mathbf{C}(V)}|K(y)| \int_{x_{0}+E_{y}}|F(x) F(x-y)| d x d y=I_{1}+I_{2} .
\end{aligned}
$$

Now $E_{y} \subseteq V^{n}$ so

$$
I_{2} \leqslant|\alpha| \cdot \int_{C(V)}|K(y)| \psi(n) d y<\frac{1}{2} \cdot \psi(n) .
$$

Schwarz's inequality gives us

$$
\begin{equation*}
\int_{x_{0}+E_{y}}|F(x) F(x-y)| d x \leqslant\left\{\int_{x_{0}+E_{y}}|F(x)|^{2} d x \int_{x_{0}-y+E_{y}}|F(x)|^{2} d x\right\}^{\frac{1}{2}} . \tag{4}
\end{equation*}
$$

But for $\quad y \in V E_{y}=V^{n} \cap\left\{y+\mathbf{C}\left(V^{n}\right)\right\} \subseteq V^{n} \backslash V^{n-1} \subseteq V^{n+1} \backslash V^{n-1}$
and

$$
-y+E_{y}=\mathbf{C}\left(V^{n}\right) \cap\left\{-y+V^{n}\right\} \subseteq V^{n+1} \backslash V^{n} \subseteq V^{n+1} \backslash V^{n-1}
$$

so the right member of (4) is less than $\varphi_{x_{0}}(n+1)-\varphi_{x_{0}}(n-1)$. Therefore

$$
\begin{aligned}
\varphi_{x_{0}}(n) & <|\alpha| \cdot \int_{V}|K(y)| d y\left\{\varphi_{x_{0}}(n+1)-\varphi_{x_{0}}(n-1)\right\}+\frac{1}{2} \psi(n) \\
& \leqslant\|K\|_{1}\left\{\varphi_{x_{0}}(n+1)-\varphi_{x_{0}}(n-1)\right\}+\frac{1}{2} \psi(n) .
\end{aligned}
$$

But as $\varphi_{x_{0}}(n)$ and $\psi(n)$ are increasing this yields

$$
\left(\|K\|_{1}+1\right) \varphi_{x_{0}}(n-1)<\|K\|_{1} \varphi_{x_{0}}(n+1)+\frac{1}{2} \psi(n+1)
$$

Varying x_{0} we get

$$
\psi(n-1)<\frac{\|K\|_{1}+\frac{1}{2}}{\|K\|_{1}+1} \cdot \psi(n+1)=\mu \cdot \psi(n+1) \quad(\mu<1) .
$$

So

$$
\begin{equation*}
\psi(2)<\mu^{n-1} \psi(2 n) . \tag{5}
\end{equation*}
$$

We need the following simple lemma of Newman [1].
Lemma. Let V be a compact subset of G. Then there exist constants c and d such that

$$
m\left(V^{n}\right) \leqslant c \cdot n^{d} .
$$

Applying it in this situation we get $\psi(2 n) \leqslant C \cdot M \cdot(2 n)^{d}$ and thus from (5)

$$
\psi(2)<C \cdot M \cdot \mu^{n-1} \cdot(2 n)^{d} \rightarrow 0 \quad(n \rightarrow \infty)
$$

From the definition of ψ we get that $F(x) \equiv 0$ and the theorem is proved.
Remark. The proof is valid with a minor modification also in the case $F \in L^{p}(G)$, $2 \leqslant p<\infty$. The only place where we used $|F(x)| \leqslant M$ was to prove that $\psi(2 n) \leqslant C$. $M \cdot(2 n)^{d}$. We can write $|F|^{2} \in L^{p / 2},|F|^{2}=F_{1}+F_{2}$ where $F_{1} \in L^{1}$ and $F_{2} \in L^{\infty}$.

Then $\psi(2 n) \leqslant C \cdot(2 n)^{d} \cdot\left\|F_{2}\right\|_{\infty}+\left\|F_{1}\right\|_{1}$ and the result follows just as above.
The only remaining case of interest is $F \in L^{p}, 1 \leqslant p<2$. It is reduced to the above by the following

Lemma. If $|F(x)|^{2}=F(x) \cdot(F * K)(x)$ where $K \in L^{1}(G)$ and $F \in L^{p}(G), 1 \leqslant p<2$ then $F \in L^{2}(G)$.

Proof. Suppose $p=1$. Other cases are treated similarly. It follows that $|F| \leqslant$ $|F| *|K|$. Now K can be written $K=K_{1}+K_{2}$ where $K_{1} \in L^{1}, K_{2} \in L^{1} \cap L^{2}$ and $\left\|K_{1}\right\|_{1}<\varepsilon<\frac{1}{2},\left\|K_{2}\right\|_{2}=M<\infty$. Then

$$
\begin{equation*}
|F| \leqslant|F| *\left|K_{1}\right|+|F| *\left|K_{2}\right| . \tag{6}
\end{equation*}
$$

Using this estimate of $|F|$ in the first term of the right member we get a new estimate $|F|<g_{1}+h_{1}$ where $g_{1}=|F| *\left|K_{1}\right| *\left|K_{1}\right|$
and

$$
h_{1}=|F| *\left|K_{2}\right| *\left|K_{1}\right|+|F| *\left|K_{2}\right| .
$$

We repeat this procedure on the term $|F| *\left|K_{1}\right|$ in (6) to get successively new estimates $|F| \leqslant g_{i}+h_{2}$ where

$$
g_{i+1}=g_{i} *\left|K_{1}\right| \quad \text { and } \quad h_{i+1}=h_{i} *\left|K_{1}\right|+|F| *\left|K_{2}\right| .
$$

Therefore $\left\|g_{i+1}\right\|_{1}<\varepsilon\left\|g_{i}\right\|$ and $\left\|h_{i+1}\right\|_{2}<\varepsilon\left\|h_{i}\right\|_{2}+M\|F\|_{1}$. It follows that $\left\|g_{i}\right\|_{1}<$ $\varepsilon^{i+1} \cdot\|F\|_{1}$ and $\left\|h_{t}\right\|_{2}<2 M \cdot\|F\|_{1}$ and we get

$$
\left\|F-h_{i}^{\prime}\right\|_{1}<\varepsilon^{i+1} \cdot\|F\|_{1} \rightarrow 0 \quad \text { as } \quad i \rightarrow \infty \quad \text { where } \quad\left\|h_{i}^{\prime}\right\|_{2} \leqslant\left\|h_{i}\right\|<2 M\left\|F_{1}\right\| .
$$

We can choose a subsequence $\left\{h_{i_{k}}\right\}$ such that $h_{j_{k}}(x) \rightarrow|F(x)|$ a.e. The conclusion that $F \in L^{2}$ now follows from Fatou's lemma:

$$
\int_{G}|F|^{2} d x \leqslant \lim \inf \int_{G}\left|h_{i_{k}}\right|^{2} d x \leqslant\left(2 M\left\|F_{1}\right\|\right)^{2}
$$

Thus we have proved the more general form of Theorem 1.
Theorem 2. If $K \in L^{1}(G)$ then the operator \mathbf{K}_{E} defined in any one of the spaces $L^{p}(G), 1 \leqslant p \leqslant \infty, b y$

$$
\mathbf{K}_{E} \boldsymbol{F}=K * \boldsymbol{F} \quad \text { for } \quad x \in E, \mathbf{K}_{E} F=0 \quad \text { for } \quad x \notin E
$$

has no eigenvalue outside the set H_{K}.
Department of Mathematics, University of Uppsala, Uppsala, Sweden.

REFERENCES

1. Newman, D. J., Uniqueness theorems for convolution type equations. Proc. Amer. Math. Soc. 16, 629-634 (1965).
2. Krein, M. G., Integral equations on a half-line with kernel depending upon the difference of the arguments. Uspehi Mat. Nauk 13, 3-120 (1958) (= Amer. Math. Soc. Transl. (2) 22, 163-288 (1962)).
