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On the Hellinger integrals and interpolation of 
q-variate stationary stochastic processes 

By HABIB SALEHI 

Introduct ion  

Let (X~)~¢@ be a q-variate continuous parameter, mean continuous, weakly 
stationary stochastic process (SP) with the spectral distribution measure F de- 
fined on B the Borel family of subsets of the real line; cf. [1]. I t  is known [10] that  for 
matrix-valued measures M and ~V the Hellinger integral (M, N) = S-~ (dMdN*/dF) 
(*= conjugate) may be defined in such a way that  H~.F the space of all matrix- 
valued measures M for which (M, M)F= S~-~ (dMdM*/d-~) exist becomes a Hil- 
bert space under the inner product T(M, N) 2 (~ = trace). The significance of these 
integrals when M and ~V are complex-valued measures and lv is a non-negative 
real-valued measure has been pointed out by H. Cramgr [2, p. 487] and U. 
Grenander [3, p. 207; 4, p. 195] in relation to unvariate SP's. The importance 
of Hellinger integrals with regard to the theory of interpolation of a q-variate 
weakly stationary SP with discrete time has been discussed by the author in 
[11]. In this paper we propose to use the Hellinger integrals and obtain similar 
results concerning the interpolability of a q-variate continuous parameter, mean con- 
tinous, weakly stationary SP. The question of interpolability of a univariate SP 
with continuous time has been looked at by K. Karhunen [6]. Our results extend 
his work in a natural way. 

Let K be any bounded measurable subset of the real line. K' will denote 
the complement of K in the set of the real numbers. ~ K  and 7hE" will denote 
the (closed) subspaees spanned by Xt, t6K and Xt, t E K '  respectively, i.e., 7~K= 
~{Xt, tEK} and ~ K ' = ~ { X t ,  tEK'}. 7H¢@ will denote ~{Xt, t real} and finally S~ 
will denote 7H~ N 7n~., where 7n~:, denotes the orthogonal complement of 7~K' 
in a fixed Hilbert space ~/~ containing the SP (Xt)-~. 

Definition 1. We say that  (a) K is interpolable with respect to (w.r.t.) ( X t ) ~  
if ~={0}. 

(b) (Xt)_~ is interpolable if each bounded measurable subset K of the real 
line is interpolable w.r.t. (Xt)_~. 

For each X6~¢~,  (X, Xt) is a continuous function on ( - c ~ ,  c~). Moreover, 
(X, Xt)= 0 iff t ilK'. Thus the following definition makes sense. 
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De/inition 2. For each X e }lK, we let 

Px(2) = f ?** e-'~'(X, :L)dt 

= 

The properties of Px are given in the next lemma. 

Lemma 1. (a) The entries o/ the matrix-valued /unction Px  are integrable w.r.t. 
Lebesgue measure. Hence ]or each B 6 B, the integral ~BPz(I)d2 exists. 

(b) I /  /or each Be B we de/iue 

Mpx(B) = fBPx(2)d2, 

then MPx E H~. r. 

Proof. (a) Let X G ~ and tF be in /~.F such that  V~F=X, where F is the 
isomorphism on L2.p onto ~ [9, pp. 279-98]. Then 

(X, Xt) = (VW, Ve-aq = 1 (W, e-"a)r 

(1) 

Also by definition of Px 

Px(2) -- e-aqX, Xt)d~. (2) 

By (1) and (2) it follows that  for each BEB 

(3) 

Thus (a) follows from (3). 
(b) Since by (a) for each BfiB, SsPx(~)d2 exists, therefore Me~ is a matrix- 

valued measure on B. By the definition of M~x, (3) and [10, Theorem 2] (b) follows. 
(Q.E.D.) 

Thus the following definition makes sense. 

Definition 3. We define the operator TK on ~K into H2.F as follows: for 
each X E ~ 

1 

The important properties of T k are given in the following theorem. 
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Theorem 1. (a) Let X 6 ~ and 1F 6 L~. F such that lz~ = X, where V is the 
isomorphism on L2.~ onto 71L¢ [9, pp. 297-98]. Then ]or each B6 ~, Me~(B)= 

(b) TK is an isometry on ~ into H2.p. In  /act /or all X and Y in ?IK 

(X, Y)= (T~:X, T K Y)~,. 

(e) The range o/ T~: is a closed subspace o/ the Hilbert space H2.F. 

Proo/. (a) follows from the proof of Lemma 1. 
(b) Let  X and Y be in 7/K, and let (I) and LF be in L2.Fsuch that  VqD=X 

and VuF = Y. Then by (a) and [10, Theorem 1] 

2st(Tz, Tr)F = (¢, ~F)F. (1) 

Also by  [9, p. 297] 

2 n ( x ,  y )  = (op, ~F)F. (2) 

From (1) and (2), (b) follows. 
(c) Since ~K is a (closed) subspace and since by (b) T~ is an isometry on 

~K into H2.F, therefore range of T~ is a closed subspaee of H2.p. (Q.E.D.) 
I t  is convenient at this point to introduce the following definition. 

De]inition 4. (a) A q × q matrix-valued function P on ( - oo, oo) is called time- 
limited if 

(i) The entries of P are integrable w.r.t. Lebesgue measure. 

(ii) P( t )= f ~_ ¢~ e-~tG(t)dt, 

where G is a q × q matrix-valued function whose entries have bounded supports 
and are square-integrable w.r.t. Lebesgue measure. 

(b) C will denote the class of all time-limited q × q matrix-valued functions 
on ( -  oo, oo). 

(c) for each P E E the matrix-valued measure Mp is defined on B as follows; 
for each B 6 B 

Me(B) = f~ P(1)dl. 

We note that  if X67~K and Px(1)f]_~oe-t~(X, Xt)dt , then by Lemma 1 (a), 
2xe£. 

L e m m a  2. Let X 6 7t~ 0 7tL. Then 

TKX = T~ Y. 
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Proo/. I t  is clear that  ~x t ]~z=7 /Knz .  Hence T K X = T ~ : n z X = T z X .  (Q.E.E.) 
Making use of this lemma, Tx's may be put together to introduce a well- 

defined operator with a bigger domain. This is done in the following theorem. 

Theorem 2. Let 7 /=  U ~x,  where K is a bounded measurable subset o / ( -  oo, oo). 
De]ine the o,perator T on 7,l by 

TX=T~:X, i/ X 671~:. 

Then 
(a) ~ is a linear manqolg in ~, i.e., X, Y e ~ and A, B matrices ~AX + 

BYE71. 
(b) T is a single-valued linear o~ra$or on ~, i.e., q X, Y E74 and A, B are 

nuarices, then 

A (AX  + BY)  = A T X  + B T Y .  

(c) T is an isametry on 71 into H~.~. In /act /or X,  Yfi71 

(X, Y)= (TX, TY)z,. 

(d) The range o] T con4i~ o] all matrix-valued measures M1, /or which the 
Hellinger integrals S~_~ (dM~dM*/d]) exi t  where P e E, E is as in de/inition 4(b) 
and Me is related to P as in de/inition 4 (c). 

Proo]. (a) follows from the fact that  ~x  U ~ r _  ~ ~EuL. 
(b) and (c) are consequences of Lemma 1 and Theorem 1. 
(d) Let  X E ~.  Then X E ~E for some K. I t  then follows from the definition 

of T that  

T X  = TxX- -  MPx, (1) 

where for each B f B ,  Mpx(B)=~nPx(2)d2 and Px(2)=~-o~e-a~(X, Xt)dt. Since 
by Theorem 1 (a) the entries of Px are integrable w.r.t. Lebesgue measure, 
hence Px£1: .  From (1) and (c) it follows that  (X ,X)= (Mpx, M~x)~ and henc~ 
(Mex, Mex) is Helllnger integrable w . r . t . F .  

Conversely let Mp be a matrix-valued measure such that  for each B fi]~ 

~(B)  = fBe(,~)aa, 

where P 6  l: and f_~ (dMpdM*/d]) exists. Then by [10, Theorem 1 (c)], ¢ = 
(dMe/dl~) (dF/dl~)- £/~.  F, where /~ is any ~-finite non-negative real-valued meas- 
ure w.r.t, which Me and P are a.c. {(dF/d/~)- denotes the generalized inverse of 
dF/d/u; cf. [8]}. If  X 6 ~  such that  V O = X ,  where V is as in Theorem 1, 
then by [9, p. 297] and [10, Theorem 2] 
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1 e_i~t) F ( x ,  x~) = ~ (o, 

if:. = 2---~ (dMe/dt~) (d-~/dl~)- (dF/d#) eatdl ~ 

= 2~ e'~qdM~/d#) d# 

Since P E £ then 

where the entries of G have bounded supports and are square-integrable w.r.t. 
Lebesgue measure. I t  then follows that  

G(t) = ~ f_  ~ e'atP(2) dl. (2) 

By (1) and (2) we conclude that  

(X, Xt) = G(t) a.e. 

Therefore the entries of (X, Xt) have bounded supports and hence their supports 
are contained in [ - e ,  e] for some e > 0 .  Since X is in 77/o~ it  follows that  
XG~/c_~.~ ] and therefore X E ~ l =  t ) K ~ .  I t  is clear that  M~,x=Mp and the re- 
sult follows. (Q.E.D.) 

We are now ready to give a characterization for the interpolability of a SP. 

Theorem 3. ( X t ) ~  is interpolable i]] /or any time-limited matrix-valued ]unction 
P /or which Mp is not a null-point in He, F, (Me, Me) is not HeUinger w.r.t. ~. 

Proo[. ( ¢ )  I f  K is any bounded measurable subset of ( - ~ o ,  ¢0), it  is a 
consequence of Lemma 1 {b) and Theorem 2 (d) that  ~/K = {0}. Hence by  de- 
finition 1 (a) K is interpolable w.r.t. (Xt)_~o~. Since K is arbi t rary it foUows 
that  ~/= U K = {0} so that  by definition 1 (b), (Xt)_~o¢ is interpolable. 

( ~ )  I t  follows that  ~ = {0}. Hence by  Theorem 2 (d) range of T =  {0}. The 
result follows from Theorem 2 (c). (Q.E.D.) 

Remark 1. Since U ~ / t  . . . .  ~-- U K~/K = ~ and since by [7, Theorem 10] P is a 
time-limited matrix-valued function in the form P(2)=S~_~e-ttaG(t)dt if the en- 
tries of P(2) are integrable as well as square-integrable w.r.t. Lebesgue measure 
and P(z)=o('l~l), where P(z) is the unique analytic extension of P(2), we im- 
mediately obtain the following theorem, which generalizes the corresponding 
result for the unvariate case due to Karhunen [6]. 
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T h e o r e m  4. (Xt)_~=o is interpolable i// /or any analytic matrix-valued /unction 
P(z )  o~ the /orm P(z)=o(e "lzl) ~uch that the entries o/ P(~) are integrable as well 
as 8quare-inte~rable w.r.t. Lebesgue measure i/ Mp is not a nulLpoint in tt2. F, 
then (Mp, Mp) is not Hellinger integrable w.r.t. F. 
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