On the Hellinger integrals and interpolation of q-variate stationary stochastic processes

By Habib Saleeti

Introduction

Let $\left(X_{t}\right)_{-\infty}^{\infty}$ be a q-variate continuous parameter, mean continuous, weakly stationary stochastic process (SP) with the spectral distribution measure F defined on \mathcal{B} the Borel family of subsets of the real line; cf. [1]. It is known [10] that for matrix-valued measures M and N the Hellinger integral $(M, N)=\int_{-\infty}^{\infty}\left(d M d N^{*} / d F\right)$ (* = conjugate) may be defined in such a way that $H_{2, F}$ the space of all matrixvalued measures M for which $(M, M)_{F}=\int_{-\infty}^{\infty}\left(d M d M^{*} / d F^{\prime}\right)$ exist becomes a Hilbert space under the inner product $\tau(M, N)_{F}(\tau=$ trace $)$. The significance of these integrals when M and N are complex-valued measures and F is a non-negative real-valued measure has been pointed out by H. Cramér [2, p. 487] and U. Grenander [3, p. 207; 4, p. 195] in relation to unvariate SP's. The importance of Hellinger integrals with regard to the theory of interpolation of a q-variate weakly stationary SP with discrete time has been discussed by the author in [11]. In this paper we propose to use the Hellinger integrals and obtain similar results concerning the interpolability of a q-variate continuous parameter, mean continous, weakly stationary SP. The question of interpolability of a univariate SP with continuous time has been looked at by K. Karhunen [6]. Our results extend his work in a natural way.

Let K be any bounded measurable subset of the real line. K^{\prime} will denote the complement of K in the set of the real numbers. m_{R} and m_{R}, will denote the (closed) subspaces spanned by $X_{t}, t \in K$ and $X_{t}, t \in K^{\prime}$ respectively, i.e., $m_{K}=$ $\mathscr{S}\left\{X_{t}, t \in K\right\}$ and $M_{R^{\prime}}=\mathfrak{G}\left\{X_{t}, t \in K^{\prime}\right\}$. M_{∞} will denote $\mathscr{G}\left\{X_{t}, t\right.$ real $\}$ and finally n_{K} will denote $m_{\infty} \cap M_{R^{\prime}}^{\perp}$, where $\prod_{K^{\prime}}^{\prime}$, denotes the orthogonal complement of $\prod_{K^{\prime}}$ in a fixed Hilbert space \mathcal{H}^{q} containing the $\mathrm{SP}\left(X_{t}\right)_{-\infty}^{\infty}$.

Definition 1. We say that (a) K is interpolable with respect to (w.r.t.) $\left(X_{t}\right)_{-\infty}^{\infty}$ if $n_{B}=\{0\}$.
(b) $\left(X_{i}\right)^{\infty}$ is interpolable if each bounded measurable subset K of the real line is interpolable w.r.t. $\left(X_{t}\right)_{-\infty}^{\infty}$.

For each $X \in M_{\infty},\left(X, X_{t}\right)$ is a continuous function on $(-\infty, \infty)$. Moreover, $\left(X, X_{t}\right)=0$ iff $t \in K^{\prime}$. Thus the following definition makes sense.

H. Salefi, On the Hellinger integrals

Definition 2. For each $X \in \boldsymbol{\eta}_{K}$, we let

$$
\begin{aligned}
P_{X}(\lambda) & =\int_{-\infty}^{\infty} e^{-i \lambda t}\left(X, X_{t}\right) d t \\
& =\int_{K} e^{-i \lambda t}\left(X, X_{t}\right) d t
\end{aligned}
$$

The properties of P_{X} are given in the next lemma.
Lemma 1. (a) The entries of the matrix-valued function P_{X} are integrable w.r.t. Lebesgue measure. Hence for each $B \in B$, the integral $\int_{B} P_{X}(\lambda) d \lambda$ exists.
(b) If for each $B \in B$ we define

$$
M_{P_{X}}(B)=\int_{B} P_{X}(\lambda) d \lambda
$$

then $M_{P_{X}} \in H_{2 . F}$.
Proof. (a) Let $X \in \eta_{K}$ and Ψ be in $L_{2 . F}$ such that $V \Psi=X$, where V is the isomorphism on $L_{2, F}$ onto \prod_{∞} [9, pp. 279-98]. Then

$$
\begin{align*}
\left(X, X_{t}\right) & =\left(V \Psi, V e^{-i \lambda t}\right)=\frac{1}{2 \pi}\left(\Psi, e^{-i t \lambda}\right)_{F} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \Psi(\lambda) d F(\lambda) e^{i t \lambda}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i t \lambda} \Psi(\lambda) d F^{\prime}(\lambda) . \tag{1}
\end{align*}
$$

Also by definition of P_{X}

$$
\begin{equation*}
P_{X}(\lambda)=\int_{-\infty}^{\infty} e^{-i \lambda t}\left(X, X_{t}\right) d t \tag{2}
\end{equation*}
$$

By (1) and (2) it follows that for each $B \in B$

$$
\begin{equation*}
\int_{B} P_{X}(\lambda) d \lambda=\int_{B} \Psi(\lambda) d F(\lambda) \tag{3}
\end{equation*}
$$

Thus (a) follows from (3).
(b) Since by (a) for each $B \in \mathcal{B}, \int_{B} P_{X}(\lambda) d \lambda$ exists, therefore $M_{P_{X}}$ is a matrixvalued measure on \mathcal{B}. By the definition of $M_{P x}$, (3) and [10, Theorem 2] (b) follows. (Q.E.D.)

Thus the following definition makes sense.
Definition 3. We define the operator T_{K} on $n_{\bar{K}}$ into $H_{2, F}$ as follows: for each $X \in \eta_{K}$

$$
T_{K} X=\frac{1}{\sqrt{2 \pi}} M_{P_{X}}
$$

The important properties of T_{k} are given in the following theorem.

Theorem 1. (a) Let $X \in \eta_{K}$ and $\Psi \in L_{2 . F}$ such that $V \Psi=X$, where V is the isomorphism on $L_{2, F}$ onto $\prod_{\infty}[9, p p .297-98]$. Then for each $B \in \mathcal{B}, M_{P_{X}}(B)=$ $\int_{B} \Psi d F$.
(b) T_{K} is an isometry on n_{K} into $H_{2 . F}$. In fact for all X and Y in n_{K}

$$
(X, Y)=\left(T_{K} X, T_{K} Y\right)_{F}
$$

(c) The range of T_{K} is a closed subspace of the Hilbert space $H_{2, F}$.

Proof. (a) follows from the proof of Lemma 1.
(b) Let X and Y be in η_{K}, and let Φ and Ψ be in $L_{2, F}$ such that $V \Phi=X$ and $V \Psi=Y$. Then by (a) and [10, Theorem 1]

$$
\begin{equation*}
2 \pi\left(T_{X}, T_{Y}\right)_{F}=\left(\Phi, \Psi_{F}\right)_{F} \tag{1}
\end{equation*}
$$

Also by [9, p. 297]

$$
\begin{equation*}
2 \pi(X, Y)=\left(\Phi, \Psi^{*}\right)_{F} \tag{2}
\end{equation*}
$$

From (1) and (2), (b) follows.
(c) Since n_{K} is a (closed) subspace and since by (b) T_{K} is an isometry on \boldsymbol{n}_{K} into $H_{2, F}$, therefore range of T_{K} is a closed subspace of $H_{2, F}$ (Q.E.D.)

It is convenient at this point to introduce the following definition.
Definition 4. (a) A $q \times q$ matrix-valued function P on ($-\infty, \infty$) is called timelimited if
(i) The entries of P are integrable w.r.t. Lebesgue measure.

$$
\begin{equation*}
P(\lambda)=\int_{-\infty}^{\infty} e^{-i \lambda t} G(t) d t \tag{ii}
\end{equation*}
$$

where G is a $q \times q$ matrix-valued function whose entries have bounded supports and are square-integrable w.r.t. Lebesgue measure.
(b) \mathcal{L} will denote the class of all time-limited $q \times q$ matrix-valued functions on $(-\infty, \infty)$.
(c) for each $P \in \mathcal{L}$ the matrix-valued measure M_{P} is defined on B as follows; for each $B \in \mathcal{B}$

$$
M_{P}(B)=\int_{B} P(\lambda) d \lambda
$$

We note that if $X \in \boldsymbol{H}_{K}$ and $P_{X}(\lambda)=\int_{-\infty}^{\infty} e^{-i \lambda t}\left(X, X_{t}\right) d t$, then by Lemma 1 (a), $P_{X} \in \mathcal{L}$.

Lemma 2. Let $X \in \eta_{K} \cap \eta_{L}$. Then

$$
T_{K} X=T_{K} Y
$$

H. salehi, On the Hellinger integrals

Proof. It is clear that $n_{K} \cap \eta_{L}=\boldsymbol{n}_{K_{\cap} L}$. Hence $T_{K} X=T_{K_{\cap} L} X=T_{L} X$. (Q.E.E.)
Making use of this lemma, $T_{L^{\prime}}$'s may be put together to introduce a welldefined operator with a bigger domain. This is done in the following theorem.

Theorem 2. Let $\boldsymbol{n}=\cup \boldsymbol{n}_{\boldsymbol{K}}$, where K is a bounded measurable subset of $(-\infty, \infty)$. Define the operator T on n by

$$
T X=T_{K} X, \text { if } X \in \eta_{E}
$$

Then
(a) n is a linear manifold in M_{∞}, i.e., $X, Y \in \Pi$ and A, B matrices $\Rightarrow A X+$ $B Y \in \eta$.
(b) T is a single-valued linear operator on n, i.e., if $X, Y \in \mathbb{N}$ and A, B are matrices, then

$$
A(A X+B Y)=A T X+B T Y
$$

(c) T is an isometry on n into $H_{2, F}$. In fact for $X, Y \in \eta$

$$
(X, Y)=(T X, T Y)_{F}
$$

(d) The range of T consists of all matrix-valued measures M_{P} for which the Hellinger integrals $\int_{-\infty}^{\infty}\left(d M_{P} d M_{P}^{*} / d f\right)$ exist where $P \in \mathcal{L}, \mathcal{L}$ is as in definition $4(\mathrm{~b})$ and M_{P} is related to P as in definition 4 (c).

Proof. (a) follows from the fact that $n_{K} \cup \eta_{L} \subseteq \boldsymbol{n}_{\boldsymbol{K} \cup L}$.
(b) and (c) are consequences of Lemma 1 and Theorem 1.
(d) Let $X \in \boldsymbol{n}$. Then $X \in \boldsymbol{n}_{\boldsymbol{K}}$ for some K. It then follows from the definition of T that

$$
\begin{equation*}
T X=T_{K} X=M_{P_{X}} \tag{1}
\end{equation*}
$$

where for each $B \in B, M_{P_{X}}(B)=\int_{B} P_{X}(\lambda) d \lambda$ and $P_{X}(\lambda)=\int_{-\infty}^{\infty} e^{-i \lambda t}\left(X, X_{t}\right) d t$. Since by Theorem 1 (a) the entries of P_{X} are integrable w.r.t. Lebesgue measure, hence $P_{X} \in \mathcal{L}$. From (1) and (c) it follows that $(X, X)=\left(M_{P_{X}}, M_{P_{X}}\right)_{F}$ and hence ($M_{P_{X}}, M_{P_{X}}$) is Hellinger integrable w.r.t. F.

Conversely let M_{P} be a matrix-valued measure such that for each $B \in \mathcal{B}$

$$
M_{P}(B)=\int_{B} P(\lambda) d \lambda
$$

where $P \in \mathcal{L}$ and $\int_{-\infty}^{\infty}\left(d M_{P} d M_{P}^{*} / d f\right)$ exists. Then by [10, Theorem 1 (c)], $\Phi=$ $\left(d M_{P} / d \mu\right)(d F / d \mu)^{-} \in L_{2, F}$, where μ is any σ-finite non-negative real-valued measure w.r.t. which M_{P} and F are a.c. $\left\{(d F / d \mu)^{-}\right.$denotes the generalized inverse of $d F / d \mu$; cf. [8]\}. If $X \in \mathcal{M}_{\infty}$ such that $V \Phi=X$, where V is as in Theorem 1 , then by [9, p. 297] and [10, Theorem 2]

$$
\begin{align*}
\left(X, X_{t}\right) & =\frac{1}{2 \pi}\left(\Phi, e^{-i \lambda t}\right)_{F} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(d M_{P} / d \mu\right)(d F / d \mu)^{-}(d F / d \mu) e^{i \lambda t} d \mu \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \lambda t}\left(d M_{P} / d \mu\right) d \mu \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \lambda t} d M_{P}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \lambda t} P(\lambda) d \lambda \tag{1}
\end{align*}
$$

Since $P \in \mathcal{L}$ then

$$
P(\lambda)=\int_{-\infty}^{\infty} G(t) e^{-i t \lambda} d t
$$

where the entries of G have bounded supports and are square-integrable w.r.t. Lebesgue measure. It then follows that

$$
\begin{equation*}
G(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \lambda t} P(\lambda) d \lambda \tag{2}
\end{equation*}
$$

By (1) and (2) we conclude that

$$
\left(X, X_{t}\right)=G(t) \text { a.e. }
$$

Therefore the entries of (X, X_{t}) have bounded supports and hence their supports are contained in $[-\varepsilon, \varepsilon]$ for some $\varepsilon>0$. Since X is in m_{∞} it follows that $X \in \eta_{[-\varepsilon, \varepsilon]}$ and therefore $X \in \boldsymbol{n}=U_{K} \boldsymbol{n}_{K}$. It is clear that $M_{P_{X}}=M_{P}$ and the result follows. (Q.E.D.)

We are now ready to give a characterization for the interpolability of a SP.
Theorem 3. $\left(X_{t}\right)_{-\infty}^{\infty}$ is interpolable iff for any time-limited matrix-valued function P for which M_{P} is not a null-point in $H_{2, F},\left(M_{P}, M_{P}\right)$ is not Hellinger w.r.t. \boldsymbol{F}.

Proof. (\Leftrightarrow) If K is any bounded measurable subset of $(-\infty, \infty)$, it is a consequence of Lemma 1 (b) and Theorem $2(\mathrm{~d})$ that $\eta_{R}=\{0\}$. Hence by definition 1 (a) K is interpolable w.r.t. $\left(X_{t}\right)_{-\infty}^{\infty}$. Since K is arbitrary it follows that $\eta=U_{K}=\{0\}$ so that by definition $1(\mathrm{~b}),\left(X_{t}\right)_{-\infty}^{\infty}$ is interpolable.
(\Rightarrow) It follows that $n=\{0\}$. Hence by Theorem $2(\mathrm{~d})$ range of $T=\{0\}$. The result follows from Theorem 2 (c). (Q.E.D.)

Remark 1. Since $U_{\varepsilon} n_{[-\varepsilon, \varepsilon]}=U_{K} n_{K}=n$ and since by [7, Theorem 10] P is a time-limited matrix-valued function in the form $P(\lambda)=\int_{-\varepsilon}^{8} e^{-i t \lambda} G(t) d t$ if the entries of $P(\lambda)$ are integrable as well as square-integrable w.r.t. Lebesgue measure and $\left.P(z)=o^{(\varepsilon|z|}\right)$, where $P(z)$ is the unique analytic extension of $P(\lambda)$, we immediately obtain the following theorem, which generalizes the corresponding result for the unvariate case due to Karhunen [6].

H. saleir, On the Hellinger integrals

Theorem 4. $\left(X_{t}\right)_{-\infty}^{\infty}$ is interpolable iff for any analytic matrix-valued function $P(z)$ of the form $P(z)=o\left(e^{z|z|}\right)$ such that the entries of $P(\lambda)$ are integrable as well as square-integrable w.r.t. Lebesgue measure if M_{P} is not a null-point in $H_{2, F}$, then $\left(M_{P}, M_{P}\right)$ is not Hellinger integrable w.r.t. F.

ACKNOWLEDGEMENT

This research was partially supported by National Science Foundation GP-7535 and GP. 8614.

Michigan State University, Eeast Lansing, Michigan 48823, USA

REFERENCES

1, Cramer, H., On the theory of stationary random processes. Ann. Math., No. 41, 215-230 (1940).
2. -_Mathematical Methods of Statistics. Princeton University Press, New Jersey, 1961.
3. Geenander, U., and Szegō, G., Toeplitz Forms and Their Applications. University of California Press, California, 1958.
4. Grenander, U., Probabilities on Algebraic Structures. Wiley, New York, 1963.
5. Hobson, E. W., On Hellinger's integrals. Proc. London Math. Soc. 2, No. 18, 249 -265 (1919).
6. Karhunify, K., Zur interpolation von stationären zufällingen funktionen. Ann. Acad. Sci. Fennicae, Ser. A, Math. Phys., No. 142, 3-8 (1958).
7. Paley, R., and Wrener, N., Fourier Transforms in the Complex Domain. Amer. Math. Soc Colloquium Pub., No. 19, New York, 1934.
8. Penrose, R. E., A generalized inverse for matrix. Proc. Cambridge Phil. Soc., No. 51, 406413 (1955).
9. Rosenberg, M., The square-integrability of matrix-valued functions with respect to a nonnegative hermitian measure. Duke Math. J., No. 32, 291-298 (1964).
10. Salehi, H., The Hellinger square-integrability of matrix-valued measures with respect to a non-negative hermitian measure. Ark. Mat. 1, No. 21, 299-303 (1967).
11. -_Applications of the Hellinger integrals to q-variate stationary stochastic processes. Ark. för Mat. 7, No. 21, 305-311 (1967).
12. Zygmund, A., Trigonometric Series. Cambridge University Press, New York, 1959.

