1.68 10 1 Communicated 5 June 1968 by HARALD CRAMÉR and ULF GRENANDER

On the Hellinger integrals and interpolation of q-variate stationary stochastic processes

By HABIB SALEHI

Introduction

Let $(X_t)_{-\infty}^{\infty}$ be a q-variate continuous parameter, mean continuous, weakly stationary stochastic process (SP) with the spectral distribution measure F defined on $\boldsymbol{\mathcal{B}}$ the Borel family of subsets of the real line; cf. [1]. It is known [10] that for matrix-valued measures M and N the Hellinger integral $(M, N) = \int_{-\infty}^{\infty} (dM dN^*/dF)$ (*= conjugate) may be defined in such a way that $H_{2,F}$ the space of all matrixvalued measures M for which $(M, M)_F = \int_{-\infty}^{\infty} (dM dM^*/dF)$ exist becomes a Hilbert space under the inner product $\tau(M, N)_F$ ($\tau = \text{trace}$). The significance of these integrals when M and N are complex-valued measures and F is a non-negative real-valued measure has been pointed out by H. Cramér [2, p. 487] and U. Grenander [3, p. 207; 4, p. 195] in relation to unvariate SP's. The importance of Hellinger integrals with regard to the theory of interpolation of a q-variate weakly stationary SP with discrete time has been discussed by the author in [11]. In this paper we propose to use the Hellinger integrals and obtain similar results concerning the interpolability of a q-variate continuous parameter, mean continous, weakly stationary SP. The question of interpolability of a univariate SP with continuous time has been looked at by K. Karhunen [6]. Our results extend his work in a natural way.

Let K be any bounded measurable subset of the real line. K' will denote the complement of K in the set of the real numbers. \mathcal{M}_{K} and $\mathcal{M}_{K'}$ will denote the (closed) subspaces spanned by $X_t, t \in K$ and $X_t, t \in K'$ respectively, i.e., $\mathcal{M}_{K} = \bigotimes \{X_t, t \in K\}$ and $\mathcal{M}_{K'} = \bigotimes \{X_t, t \in K'\}$. \mathcal{M}_{∞} will denote $\bigotimes \{X_t, t \text{ real}\}$ and finally \mathcal{N}_{K} will denote $\mathcal{M}_{\infty} \cap \mathcal{M}_{K'}^{\perp}$, where $\mathcal{M}_{K'}^{\perp}$ denotes the orthogonal complement of $\mathcal{M}_{K'}$ in a fixed Hilbert space \mathcal{H}^q containing the SP $(X_t)_{-\infty}^{\infty}$.

Definition 1. We say that (a) K is interpolable with respect to (w.r.t.) $(X_t)_{-\infty}^{\infty}$ if $\mathcal{N}_{\kappa} = \{0\}$.

(b) $(X_t)_{-\infty}^{\infty}$ is interpolable if each bounded measurable subset K of the real line is interpolable w.r.t. $(X_t)_{-\infty}^{\infty}$.

For each $X \in \mathcal{M}_{\infty}$, (X, X_t) is a continuous function on $(-\infty, \infty)$. Moreover, $(X, X_t) = 0$ iff $t \in K'$. Thus the following definition makes sense.

H. SALEHI, On the Hellinger integrals

Definition 2. For each $X \in \mathcal{N}_{K}$, we let

$$P_X(\lambda) = \int_{-\infty}^{\infty} e^{-i\lambda t}(X, X_t) dt$$
$$= \int_{K} e^{-i\lambda t}(X, X_t) dt.$$

The properties of P_x are given in the next lemma.

Lemma 1. (a) The entries of the matrix-valued function P_x are integrable w.r.t. Lebesgue measure. Hence for each $B \in \mathcal{B}$, the integral $\int_B P_x(\lambda) d\lambda$ exists.

(b) If for each $B \in B$ we define

$$M_{P_{\mathcal{X}}}(B) = \int_{B} P_{\mathcal{X}}(\lambda) d\lambda,$$

then $M_{P_X} \in H_{2, F}$.

Proof. (a) Let $X \in \mathcal{N}_{K}$ and Ψ be in $L_{2,F}$ such that $V\Psi = X$, where V is the isomorphism on $L_{2,F}$ onto \mathcal{M}_{∞} [9, pp. 279-98]. Then

$$(X, X_t) = (V\Psi, Ve^{-i\lambda t}) = \frac{1}{2\pi} (\Psi, e^{-it\lambda})_F$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \Psi(\lambda) dF(\lambda) e^{it\lambda} = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{it\lambda} \Psi(\lambda) dF(\lambda).$$
(1)

Also by definition of P_x

$$P_X(\lambda) = \int_{-\infty}^{\infty} e^{-i\lambda t} (X, X_t) dt.$$
⁽²⁾

By (1) and (2) it follows that for each $B \in B$

$$\int_{B} P_{X}(\lambda) d\lambda = \int_{B} \Psi(\lambda) dF(\lambda).$$
(3)

Thus (a) follows from (3).

(b) Since by (a) for each $B \in \mathcal{B}$, $\int_B P_X(\lambda) d\lambda$ exists, therefore M_{P_X} is a matrixvalued measure on \mathcal{B} . By the definition of M_{P_X} , (3) and [10, Theorem 2] (b) follows. (Q.E.D.)

Thus the following definition makes sense.

Definition 3. We define the operator T_{κ} on \mathcal{N}_{κ} into $H_{2, F}$ as follows: for each $X \in \mathcal{N}_{\kappa}$

$$T_{\kappa}X = \frac{1}{\sqrt{2\pi}}M_{P_{\kappa}}.$$

The important properties of T_k are given in the following theorem.

Theorem 1. (a) Let $X \in \mathcal{H}_{K}$ and $\Psi \in L_{2,F}$ such that $V\Psi = X$, where V is the isomorphism on $L_{2,F}$ onto \mathcal{M}_{∞} [9, pp. 297–98]. Then for each $B \in \mathcal{B}$, $\mathcal{M}_{P_{X}}(B) = \int_{B} \Psi dF$.

(b) T_{κ} is an isometry on \mathcal{N}_{κ} into $H_{2, F}$. In fact for all X and Y in \mathcal{N}_{κ}

$$(X, Y) = (T_{\mathcal{K}}X, T_{\mathcal{K}}Y)_{\mathcal{F}}$$

(c) The range of T_{κ} is a closed subspace of the Hilbert space $H_{2,F}$.

Proof. (a) follows from the proof of Lemma 1.

(b) Let X and Y be in \mathcal{N}_{K} , and let Φ and Ψ be in $L_{2,F}$ such that $V\Phi = X$ and $V\Psi = Y$. Then by (a) and [10, Theorem 1]

$$2\pi (T_{X}, T_{Y})_{F} = (\Phi, \Psi)_{F}.$$
 (1)

Also by [9, p. 297]

$$2\pi(X, Y) = (\Phi, \Psi)_F. \tag{2}$$

From (1) and (2), (b) follows.

(c) Since \mathcal{H}_{κ} is a (closed) subspace and since by (b) T_{κ} is an isometry on \mathcal{H}_{κ} into $H_{2,F}$, therefore range of T_{κ} is a closed subspace of $H_{2,F}$. (Q.E.D.) It is convenient at this point to introduce the following definition.

Definition 4. (a) A $q \times q$ matrix-valued function P on $(-\infty, \infty)$ is called time-

limited if

(i) The entries of P are integrable w.r.t. Lebesgue measure.

(ii)
$$P(\lambda) = \int_{-\infty}^{\infty} e^{-i\lambda t} G(t) dt,$$

where G is a $q \times q$ matrix-valued function whose entries have bounded supports and are square-integrable w.r.t. Lebesgue measure.

(b) \mathcal{L} will denote the class of all time-limited $q \times q$ matrix-valued functions on $(-\infty, \infty)$.

(c) for each $P \in \mathcal{L}$ the matrix-valued measure M_P is defined on \mathcal{B} as follows; for each $B \in \mathcal{B}$

$$M_P(B)=\int_B P(\lambda)\,d\lambda.$$

We note that if $X \in \mathcal{H}_{\kappa}$ and $P_{X}(\lambda) = \int_{-\infty}^{\infty} e^{-i\lambda t}(X, X_{t}) dt$, then by Lemma 1 (a), $P_{X} \in \mathcal{L}$.

Lemma 2. Let $X \in \mathcal{N}_{K} \cap \mathcal{N}_{L}$. Then

$$T_{\kappa}X = T_{\kappa}Y$$

H. SALEHI, On the Hellinger integrals

Proof. It is clear that $\mathcal{N}_{\mathcal{K}} \cap \mathcal{N}_{L} = \mathcal{N}_{\mathcal{K} \cap L}$. Hence $T_{\mathcal{K}} X = T_{\mathcal{K} \cap L} X = T_{L} X$. (Q.E.E.) Making use of this lemma, $T_{\mathcal{K}}$'s may be put together to introduce a well-defined operator with a bigger domain. This is done in the following theorem.

Theorem 2. Let $\mathcal{N} = \bigcup \mathcal{N}_{K}$, where K is a bounded measurable subset of $(-\infty, \infty)$. Define the operator T on \mathcal{N} by

$$TX = T_{\kappa}X, if X \in \mathcal{N}_{\kappa}.$$

Then

(a) \mathcal{N} is a linear manifold in \mathcal{M}_{∞} , i.e., $X, Y \in \mathcal{N}$ and A, B matrices $\Rightarrow AX + BY \in \mathcal{N}$.

(b) T is a single-valued linear operator on \mathcal{N} , i.e., if $X, Y \in \mathcal{N}$ and A, B are matrices, then

$$A(AX+BY)=ATX+BTY.$$

(c) T is an isometry on \mathcal{N} into $H_{2,F}$. In fact for X, $Y \in \mathcal{N}$

$$(X, Y) = (TX, TY)_F.$$

(d) The range of T consists of all matrix-valued measures M_P for which the Hellinger integrals $\int_{-\infty}^{\infty} (dM_P dM_P^*/df)$ exist where $P \in \mathcal{L}, \mathcal{L}$ is as in definition 4(b) and M_P is related to P as in definition 4 (c).

Proof. (a) follows from the fact that $\mathcal{N}_{K} \cup \mathcal{N}_{L} \subseteq \mathcal{N}_{K \cup L}$.

(b) and (c) are consequences of Lemma 1 and Theorem 1.

(d) Let $X \in \mathcal{N}$. Then $\overline{X} \in \mathcal{N}_{K}$ for some K. It then follows from the definition of T that

$$TX = T_{\kappa}X = M_{P_X},\tag{1}$$

where for each $B \in \mathcal{B}$, $M_{P_X}(B) = \int_B P_X(\lambda) d\lambda$ and $P_X(\lambda) = \int_{-\infty}^{\infty} e^{-i\lambda t}(X, X_t) dt$. Since by Theorem 1 (a) the entries of P_X are integrable w.r.t. Lebesgue measure, hence $P_X \in \mathcal{L}$. From (1) and (c) it follows that $(X, X) = (M_{P_X}, M_{P_X})_F$ and hence (M_{P_X}, M_{P_X}) is Hellinger integrable w.r.t. F.

Conversely let M_P be a matrix-valued measure such that for each $B \in B$

$$M_P(B) = \int_B P(\lambda) \, d\lambda,$$

where $P \in \mathcal{L}$ and $\int_{-\infty}^{\infty} (dM_P dM_P^*/df)$ exists. Then by [10, Theorem 1 (c)], $\Phi = (dM_P/d\mu)(dF/d\mu)^- \in L_{2,F}$, where μ is any σ -finite non-negative real-valued measure w.r.t. which M_P and F are a.c. $\{(dF/d\mu)^-$ denotes the generalized inverse of $dF/d\mu$; cf. [8]}. If $X \in \mathcal{M}_{\infty}$ such that $V\Phi = X$, where V is as in Theorem 1, then by [9, p. 297] and [10, Theorem 2]

$$(X, X_{t}) = \frac{1}{2\pi} (\Phi, e^{-i\lambda t})_{F}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} (dM_{P}/d\mu) (dF/d\mu)^{-} (dF/d\mu) e^{i\lambda t} d\mu$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\lambda t} (dM_{P}/d\mu) d\mu$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\lambda t} dM_{P} = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\lambda t} P(\lambda) d\lambda.$$
(1)

Since $P \in \mathcal{L}$ then

$$P(\lambda) = \int_{-\infty}^{\infty} G(t) e^{-it\lambda} dt,$$

where the entries of G have bounded supports and are square-integrable w.r.t. Lebesgue measure. It then follows that

$$G(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\lambda t} P(\lambda) d\lambda.$$
⁽²⁾

By (1) and (2) we conclude that

 $(X, X_t) = G(t)$ a.e.

Therefore the entries of (X, X_i) have bounded supports and hence their supports are contained in $[-\varepsilon, \varepsilon]$ for some $\varepsilon > 0$. Since X is in \mathcal{M}_{∞} it follows that $X \in \mathcal{N}_{[-\varepsilon,\varepsilon]}$ and therefore $X \in \mathcal{N} = \bigcup_{K} \mathcal{N}_{K}$. It is clear that $M_{P_X} = M_P$ and the result follows. (Q.E.D.)

We are now ready to give a characterization for the interpolability of a SP.

Theorem 3. $(X_t)_{-\infty}^{\infty}$ is interpolable iff for any time-limited matrix-valued function P for which M_P is not a null-point in $H_{2,F}$, (M_P, M_P) is not Hellinger w.r.t. F.

Proof. (\Leftarrow) If K is any bounded measurable subset of $(-\infty, \infty)$, it is a consequence of Lemma 1 (b) and Theorem 2 (d) that $\mathcal{H}_{K} = \{0\}$. Hence by definition 1 (a) K is interpolable w.r.t. $(X_{t})_{-\infty}^{\infty}$. Since K is arbitrary it follows that $\mathcal{H} = \bigcup_{K} = \{0\}$ so that by definition 1 (b), $(X_{t})_{-\infty}^{\infty}$ is interpolable.

 (\Rightarrow) It follows that $\mathcal{N} = \{0\}$. Hence by Theorem 2 (d) range of $T = \{0\}$. The result follows from Theorem 2 (c). (Q.E.D.)

Remark 1. Since $\bigcup_{\varepsilon} \mathcal{N}_{[-\varepsilon,\varepsilon]} = \bigcup_{\kappa} \mathcal{N}_{\kappa} = \mathcal{N}$ and since by [7, Theorem 10] P is a time-limited matrix-valued function in the form $P(\lambda) = \int_{-\varepsilon}^{\varepsilon} e^{-it\lambda} G(t) dt$ if the entries of $P(\lambda)$ are integrable as well as square-integrable w.r.t. Lebesgue measure and $P(z) = o^{(\varepsilon|z|)}$, where P(z) is the unique analytic extension of $P(\lambda)$, we immediately obtain the following theorem, which generalizes the corresponding result for the unvariate case due to Karhunen [6].

H. SALEHI, On the Hellinger integrals

Theorem 4. $(X_t)_{-\infty}^{\infty}$ is interpolable iff for any analytic matrix-valued function P(z) of the form $P(z) = o(e^{s|z|})$ such that the entries of $P(\lambda)$ are integrable as well as square-integrable w.r.t. Lebesgue measure if M_P is not a null-point in $H_{2, F}$, then (M_P, M_P) is not Hellinger integrable w.r.t. F.

ACKNOWLEDGEMENT

This research was partially supported by National Science Foundation GP-7535 and GP-8614.

Michigan State University, Eeast Lansing, Michigan 48823, USA

REFERENCES

- 1, CRAMÉR, H., On the theory of stationary random processes. Ann. Math., No. 41, 215-230 (1940).
- 2. Mathematical Methods of Statistics. Princeton University Press, New Jersey, 1961.
- GRENANDER, U., and SZEGÖ, G., Toeplitz Forms and Their Applications. University of California Press, California, 1958.
- 4. GRENANDER, U., Probabilities on Algebraic Structures. Wiley, New York, 1963.
- HOBSON, E. W., On Hellinger's integrals. Proc. London Math. Soc. 2, No. 18, 249-265 (1919).
 KARRUNEN, K., Zur interpolation von stationären zufällingen funktionen. Ann. Acad. Sci.
- Fennicae, Ser. A, Math. Phys., No. 142, 3-8 (1958).
 7. PALEY, R., and WIENER, N., Fourier Transforms in the Complex Domain. Amer. Math. Soc. Colloquium Pub., No. 19, New York, 1934.
- PENROSE, R. E., A generalized inverse for matrix. Proc. Cambridge Phil. Soc., No. 51, 406-413 (1955).
- 9. ROSENBERG, M., The square-integrability of matrix-valued functions with respect to a nonnegative hermitian measure. Duke Math. J., No. 32, 291–298 (1964).
- 10. SALEHI, H., The Hellinger square-integrability of matrix-valued measures with respect to a non-negative hermitian measure. Ark. Mat. 1, No. 21, 299-303 (1967).
- Applications of the Hellinger integrals to q-variate stationary stochastic processes. Ark. för Mat. 7, No. 21, 305-311 (1967).
- 12. ZYGMUND, A., Trigonometric Series. Cambridge University Press, New York, 1959.

Tryckt den 20 december 1968