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On the remainder term in the central limit theorem 

By CiRL-GusTAV ESSEEN 

1. Snmmary  and n o t a t i o n s  

Let  X1, X2 . . . . .  X~ be independent random variables. Throughout this paper 
the following notations will be used. The random variable X~ has the distribu- 
tion function Fk(x), the characteristic function [~(t) and Var (Xk)--a~. We shall 
always assume that  E(X~)= O, a~ < c~. The normalized sum 

n 

8 n  1 

where s~ = ~ a~ has the distribution function F,(x)  and the characteristic func- 
tion fn(t). By the same 0 we shall denote generally different positive absolute 
constants and by  the same 0 generally different real or complex quantities such 
that  101~< 1. The standardized normal distribution function is denoted hy (I)(x). 

Suppose that  fls~ = E(] Xk 18) < ¢~, /c = 1, 2 . . . . .  n. I t  has been proved by  A. C. 
Berry and the present author, see e.g. Feller [1, p. 515], that  

n 

s~ ' 
- ~ < x <  oo .  ( 1 . 1 )  

If the random variables are identically distributed with the same distribution 
function F(x) then (1.1) becomes 

fla - ~ < x < ~ ,  ( 1 . 2 )  I F~(~)  - ¢(~)J < c o ~ V;~' 

where /~3 = E(I Xk ]a), as = E(X~). 
Recently Ibragimov [2] has obtained the following interesting result in the 

case of identically distributed random variables. In order tha t  

sup I_~(z ) -  ¢(x) l=  o ( ~ - ~ ) ,  ~ ~ ~ ,  

it is necessary and sufficient that  

f "  ~ x3dF(x) = f t 0(1), z x~dF(x)=O(1) as z ~ .  
- zl~>z 
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In  this note we shall prove an inequality analogous to (1.1) but  valid under 
weaker conditions, similar to the conditions (1.3) of Ibraghnov in the case of 
identically distributed random variables. The following notations will be used 
in the sequel: 

)lk = sup z ( xzdFk(x), (1.4) 
z>o dlzl~z 

Theorem 1. I /  ~ < oo /or I¢= 1, 2, . . . ,  n, then 

sup I < o (1.6) 

The proof of this theorem is for the most par t  analogous to that  of the in- 
equality (1.1). I t  is based on the use of characteristic functions and the fun- 
damental inequality (see for instance Feller [1, p. 512]) 

f :  24 (1.7) 

where T > 0 is an arbitrary parameter. 
Since absolute third order moments, however, are not assumed to be finite, 

we need some new results concerning the behaviour of in(t) in the vicinity of 
t= 0; these are stated and proved in the next  section where the proof of Theo- 
rem 1 is also given. This proof is an immediate consequence of the inequality 
(1.7) once the behaviour of In(t) about t = 0 is known. We shall not aim at getting 
as small a numerical value of the constant C in (1.6) as possible. If the ab- 
solute third order moments are finite then, as is easily seen, the inequality (1.1) 
is a corollary of Theorem 1. 

Finally we shall use Theorem 1 to obtain an estimation of supxl_~n(x)-~(x)l 
only assuming the existence of the variances. 

2. Proof of Theorem 1 

We begin by proving three a,,Yiliary results. 

Lemma 1. Le~ X be a random variable with the distribution /unction F(x) and 
and let X '  be a random variable inde~ndent o/ X and with the same distribution. 
Denote by FS(x) the distribution /unction el X - X ' .  Then 

f l ~d~(x)  < 40 ~1 ~ x2dF(z)" 
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If  F(x, y) is the distribution function of the random vector (X, X'), then 

f,=l>~ ~dF'(x)-- f f~_~>~ (x-Y)2dF(x,Y)+ f f~_~<_z(x-Y)~dF(x,Y)=A +J=. 
(2.1) 

Obviously 

(x - y)2dF(x, y) + f f ~_~z ( x -  y)2d.F(x, y) 

+ ff:x_~,>~, ( x -  y)2dF(x, y) = Z~ + g'; + g~'. 
< Z ,  Y > - - ~ .  

From the inequality ( x -  y)2 ~< 2(x~ + y2) we get 

(2.2) 

The integral ~ is estimated in a similar way. Hence we have 

Jl+ J'; <2(f  dF(x)+ f f 

dl~l~>z Ixl>~z 

Thus J1 + J~ < 4 ( x2d.F(x). (2.3) 
Ja x j~>z 

In the remaining integral J~" we have 

z<~x-y<2z.  

Hence J~' < 4z~P(X- X'  >1 z, X < z, X'  > - z) 

But f x~d.F(x) >~ zgP([ X [ >t z). 
lzl~>z 

Thus J~+ < 1 6 (  , x2dF(x). (2.4) 

I t  is easily seen that  
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From (2.2), (2.3) and (2.4) we get 

Jz ~< 20 f l  • I~  x2dF(x)" 

In a similar way 

By  (2.1) it follows that  

J, ~< 20 | ~ x~dF(z). 
J I  z I;~, 

J < 40 f ~ x~'dF(x) 
J Izl~>~ 

and the lemma is proved. 

Lemma 2. Let F(x) be a distribution ]unction, 

X=supzf,z>o x,~zx'dF(x)<°°" 
Then ~2/ ~ ~18 < 2. 

Denote by  e a parameter such that  0 <  e < 1. Then 

Thus 2 >/e ~ f l  • I ~ ,  ~dF(x)  >/e(1 - e ~) ~ /~  

But  e ( 1 - e  ~) takes its maximum 2/3 I/3 for ~= 1/I/3. Hence 

and the lemma is proved. 

Lemma 3. Let X be a random variable with the distrib~ion ]unction F(x) and 
the characteristic ]unction /(t). I t  E ( X ) =  O, E(X  z) = a s and 

;~ = sup z f ~dF(x)  < 
z > O  JI zl>~z 

then if(t) [3 ~ 1 - o~f " + 479l It 13. 

Using the distribution function FS(x) introduced in Lemma 1 we have 

I/(t) l '= l - o ~ f  + f** (cos t x -  l + ½t2x2) dFS(x). (2.5) 
J - -  ¢0 
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Denoting the integral in (2.5) by J we get 

r l / I  t [ f J -- (cos ~x- 1 + ½ t~x ~) dF~(x) + (cos t x -  1 + ½ ~2x~)dF~(x). 
J-111, l  Iz l~>l/ I t ,  I 

We apply the inequality 

cosy - 1 + ½y~<~-~4y 4 

to the first integral, the inequality cos y -  1 ~< 0 to the second integrM and obtMn 

,r < ! ¢ ( '"" ,~',~F'(~) + ½ t ~ ~ ~,~'(~). (2.6) 
24 J - l / I t  I J I  xJ~>lll~ I 

From Lemma 1 

Putting R(z) xa~>~ 

R'(z) = f x~dF'(x), 
d lxl>~z 

we have, still from Lemma 1, 

f~::;', x'aF'(x)= f:""x*d(- R'(x)) 
F l / l ' l  16of:"~lx x 

1 4 fllltl 
x'~"(x) < 7 ,l It 18. Thus ~-~t J -111  t 1 

From (2.5), (2,6), (2.7) and (2.9) we obtain the desired inequMity. 
We now proceed to the behavior of ]~(t) about ~= 0. 

(2.7) 

(2.8) 

16o~1~1 -~. 

Lemma 4. 

Ii(t)l<~-'' /or i t f < T l = - - - -  

From Lemma 3 

94 ~ ~" 

1 

~ ~ i t l S < e x  p ~2 
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Thus, since ~ ~ < 7.~ ~ 

Lemma 5. 

I L (0 - ~-'"' I < 4 ~ Is I~ -'''~ 

~or Itl<T1. 

From 

we obtain 

f~(t)=l- ½ a~$" + [lilt, (_~ fx, +_~4 #x,l dFk(x) 
d - l l l t l  \ / 

/or I t 8n~113 • 

+ fl zl>~l/i t 1( -- ~ $2ZZ + ½ g2~) dFk(z)" 

This partitioning of the domain of integration has earlier been used by Ibra- 
gimov [2, p. 571]. As in the proof of Lemma 3 we get 

pl/ l~l f l / l t . I  

where Rk(x) is defined by (2.8) and thus 

(2.10) 

From (2.10) and the definition (1.5) of Q~ it is easily seen that  

~(t)  = 1 - ½ ~ t  2 -  20@~ I t] ~ 

and thus /k (~)  = 1 -  u~, (2.11) 

where ~ - ~  ~ + 2o ~'1' 5 (2.1~> 

For l tl ~< T o we get from Lemma 2 
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1 a~ 2 1 + 2 < 1  
I ~ l < i ~ + ~ < ~  (2.13) 

and 
0- 4 ~ / ~ T : ~ +  s ~-<~ -~ 

Thus 

n 

(2.14) 

:From (2.11), (2.12), (2.13), and (2.14) we obtain 

and 

n 

t t ~ ~ ~ ~ ~k 

n 

t 2 , 21 -~ ~ t ~ 
or logh(t) = - ,~ ± ~- 0 ~ It I s = - ~ + A, (2.15) 

where ] A I < 7 for I tl < To. 

:From (2.15) we get 

n 

8 s~ s~ 
for Itl~<To 

and the lemma is proved. 
The proof of Theorem 1 is now an immediate consequence of the fundamental 

inequality (1.7), Lemma 4 and Lemma 5. Assume that  T I > T  0 (the case TI<~To 
is treated similarly). In (1.7) we choose T =  T1 and obtain 

~: \ d -  To 8n [ t [~e-t'l~dt + fro< I~ I~r, 
1) 

(, -'~'' + ~-'"~/I t I-ld~ + 

~<Cf 
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3. A generniiTation of  Theorem 1 

Various generalizations of the inequality (1.1) have recently been obtained by 
Katz  [3], Petrov [6], Studnev [7], Osipov [4], Osipov and Petrov [5] under 
weaker conditions than the finiteness of the absolute third order moments. These 
results are all based on the same method which is in short the following. The 
random variables are suitably truncated. The deviation of the distribution func- 
tion of the sum of the original variables from the normal distribution function 
is estimated by the error term in (1.1) applied to the stun of the truncated 
variables and by  the truncation error. I t  is not necessary to assume the finite- 
ness of absolute moments of any order. Proceeding in the same way we may  
easily obtain similar results using this time the inequality (1.6) from Theorem 1 
instead of the inequality (1.1). 

For the sake of simplicity we shall assume that E(X~)= o~ < c¢, though this 
is not at all necessary, see e.g. Osipov-Petrov [5]. Under this condition the 
following inequality has been given by  Studnev [7] and Osipov [4] 

f r ) 
x \Sn  1 I x l < ~  ~n 1 .]lzl>~s,~ 

The following analogous inequality contains third order but  not absolute third 
order moments. 

Theorem 2. Let E(X~) = O, E (X  2) = o~k < c~. Then 

°'r up (I; } ; supl;~(x)-C(x)] < ~  LO<.~ _zxndF,,,(x) +z 
z Izl)z 

xndFk(x))]. (3.2) 

Remark. The inequality (3.1) is clearly a corollary of (3.2). 
Sketch of the proof. We define the truncated random variables X* by 

~ n X *  Let F*(x) be the distribution function of /~1 k and 

Izl~m~ 

. 
8*n' = Var X~ = s~. - x2dFk(x) - ~ ~. 

1 I z l > a  1 

* < ~J2 and 8* > 8J2.  We distinguish between the two cases 8n 

* ~s~/2.  Then it it easily seen from (3.3) that  (a) 8~ 
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1 ~ f x2dFk(x)>~ ~. 
"Sn 1 I x l > ~  

Thus the inoquality (3.2) is true with C = 8 / 3 .  
*> s.12. In the same way as in the paper of 0sipov-Petrov [5] we get (b) s. 

n f 8n ~ -- O~lc 

n 

, F - -  , (3.4) 

In (3.4) the first term to the right is the truncation error; the inequality (1.6) 
of Theorem 1 is applied to the second term of the right-hand member. The 
desired inequality (3.2) is then easily obtained by obvious estimations. 
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