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A note on asymptotic normality  o f  sums of  higher- 
dimensionally indexed random variables 

B y  B~.I'~C.T R o s I ~  

l .  Summary and notation 

We shall consider asymptotic normality of sums of random variables when the 
domain o~ the summation index is a subset of the lattice points in some higher-dimen- 
sional space. Our main aim is to point out tha t  the idea used by the author in [6] 
to t reat  asymptotic normality of sums of "one-dimensionally" indexed random 
variables can easily be adapted to the case of higher-dimensionally indexed random 
variables. 

The course of the paper is as follows. In  section 2 we state a result about asymptotic 
normality, which is equivalent to the author's theorem A in [6]. In  the following two 
sections we illustrate the general idea by  considering two particular cases. In  section 
3 we consider general m-dependent random variables, and section 4 is devoted to 
U-statistics (see [1]) in the case ~1 =0  (according to Hoeffding's notation [1]). 

We use the following notation and conventions throughout the paper. E denotes 
expectation and a2 variance. E(X) stands for the law of the random variable, or 
vector, X. B(X1, X2, ..., X.)  is the a-algebra of events generated by the random 
variables X1, X2 ..... X~. E s denotes the conditional expectation given the a-algebra 
B. We usually write E x instead of E ~Cx). N(~, q~) denotes the normal distribution with 
mean ~ and variance a~. Convergence in distribution is denoted by ~ .  When we put  
a non-integer, 2, in a place where there should naturally be an integer we interprete 
~t as its integral part [2]. 

2. A general result about asymptotic normality 

The following theorem is equivalent to theorem A in [6]. 

Theorem 1. Let  co(n) 0 <~ -< ~ , a-~ 1}~=1 be a sequence of stochastic processes on [0,1] 
which sat is f ies  S(o n) = O, n = 1, 2 . . . . .  and the fol lowing condit ions 

(C 1) There is  a [unction Z(s), O<~s-.< 1, which  tends to 0 as s tends to 0, such that for 
0~<fl<a~< 1 we have 

lira ~(S(2 ) -  ~(~"))~ < x ( ~ -  ~), o < ~ < ~ < 1. 
n*~.], oo  

(C 2) There is  a ]unction ~(~), cont inuous  on 0 <<. ~ < 1, such that 

lim l_ ~ E I E  s(~') (~+a'~(~' - S(~ n,) - Ae(a) SY) I = 0, 0 ~< a < 1. 
A~+0 A n - + o o  
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(C 3) There is a/unct ion 0"2(0~), c,o~inuo~ on, 0 ~ ~ < 1, Such that 

A--*+O A n.-.oo 

(C 4) For every e > 0, we have 

lira 1 l~m f (n) (n) -- x2dE(S~+A - S= ) (x) = O, 0 <. a < 1. 
A-~+0 A n-.oo Jlxi>, 

Then C(8(~"))=- N(O, v2(o:)) as n ~ o o  , 0~<~<1 (2.1) 

( f - )  a2(s) exp 2 O(u) du da, 0<<.o~<1 

I lira ~(~), ~ = ~ .  

3. Asymptotic normality of  snms of  stationary m-dependent random 
variables 

The concept of m-dependence in a sequence of random variables was introduced 
in [2] where it  was also shown that ,  under general conditions, the sum of a large 
number of m-dependent random variables is appro~mate ly  normally distributed. 
A more general central | imit theorem for m-de4~endent random variables was proved 
by S. Orey in [5]. We also refer to § 13 in [6]. In  this section we generalize, in a 
straightforward way, the concept of m-dependence to higher-dimensionally indexed 
random variables and we show that  the sum of such variables is approximately 
normally distributed under certain conditions. For simplicity we shall also assume 
that  the random variables are stationary. 

Firstly some notation. Z k is the set of lattice points (points with integral coordi- 
nates) in k-dimensional space and N k is the set of lattice points with positive coordi- 
nates. Points in Z ~ will be denoted v=(v  u), ~c2) ..... vck)). We define vl+v~=(v~l)+ 
,(x) .... v[ k) -b~[ k)) and ~l-V~ is defined analogously. [l~]] = m a x  { [vo)[ i - -1 ,  2, k}. 
For subsets C and D of Z ~ we let 

The family {X~, v e N ~} is said to be stationary if for arbitrary Vl, v~ ..... vr belonging 
to N k and for every/~ = (/~(1), ..,/~(k)) such that/~(o >/0, i = 1, 2, .., k, we have 

£(X.,+. ,  X.,+~, . . . . .  X.r+.) = £(X. , ,  X. ,  . . . . .  X . ) .  

The random variables in the family (X,, v EN k} are said to be m-dependent if for all 
subsets O and D of N ~ for which d(C, D ) > m ,  we have that  {X~,vEC} and {X~, 
v E D} are independent families. (For def. of independent families see Lo6ve [3], 
Ch. V.) 

If the family {X~,~EN ~} is stationary and EX~,<oo, then there is a function 
a(. ) defined on Z ~, such that  

E ( X , ,  - E X , , )  ( X , ,  - E X ~ , )  = ~(~1 - ~ )  = ~ ( n  - v 0 .  

In  the sequel a(" ) denotes this function. 
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To get easier writing we shall, in this section, use the notation { } Z, and inside the 
parenthesis { } we indicate the domain of the summation. 

T h e o r e m  2. Let {Xv, HeN k} be a /ami ly  o/stationary, re.dependent random variables 
such tha~ EX~ < ~ , and let 

Then 

Vn=I l<y(')<n b}XX, 
t i = l ,  2 . . . . .  

We hay8 

~((Vn-EV,)/(7(Vn))=~ N(O, 1) as n-~c~. 

m k . ( i ) I \+ 
(7 

(3.1) 

(3.2) 

where a + = max (a, 0). 
Proo/. Without loss of generality we can assume that  EX~ = O, and we do so in the 

rest of the proof. We shall need the following formula: 

(3.3)  

Formula (3.3) holds generally for a stationary family if the summation to the 
right is taken over { - n ~ < u  (0 ~n~, i = 1 ,  2 ..... b}. Because of the m-dependence we 
have ~(~)=0 if Ilull > m  and we obtain (3.3). Formula (3.2) is a special case of (3.3). 

We shall apply Theorem 1 and we introduce 

~n f I ~< v (° ~< n ] 
(n) _ _  n-k/2 "~ & - X Xx,, 

f ¢t).1(~ = 2, 3 . . . . .  k 

We first verify (C 1). According to (3.3) we have for 0 ~< 8 <  a <  1 

E(S(~ ' ) -S~) )~=n-kE(  I ~, ~ X , )  
,( )=~,+~li = 2, 3 . . . . .  /c 

=f-m<<'"(')<ml ( [ ~ n ] -  [~ -~  - ] ~(1)])+ " + 
(3.4) 

By  letting n-+ ¢~ in (3.4) we deduce that  

f - m < ~(o < ml  _ 

. . . . .  k Iz(7(')  

and (C1) i s  verified. Next we shall verify tha t  (C2) is fulfilled for ~(~)--0. By 
using the fact tha t  S(~ ~) and {Xv, v (1) > an T m} are independent and the stationarity 
we obtain 

8 (n) k 2  •n+m 1 ~y(O < n 

m)=~+di  = 2, 3 . . . . .  
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~ m n - ' / ' E I  { ' a )=  1' / = 2, 3 . . . . .  

m n  -~/~ E v a ) = 1 , i = 2 , 3  . . . . .  k X ,  . (3.5) 

Now, {X,;  vc1)= 1, (v(*), v(s) . . . . .  ~(k)) EZ,-~} is a family of s ta t ionary m-dependent  
random variables. Thus, according to (3.3) we have 

E ¢ ' =  1 , i  = 2, 3 . . . . .  k I  ~ X ,  ="~ t . . . .  ~ ,  . . . ,  ~ Ir ~ , t , , ,  ~ . . . . .  

By inserting this est imate into (3.5) we obtain tha t  E I E S ~ ) ( S ~ A -  S~))I tends to 0 
as n tends to infinity. Thus (C 2) is verified. Next  we show tha t  (C 3) is fulfilled for 

(3.6) 
( i = 1 , 2  . . . . .  k ] 

We have 
S (n)- ~(n) S(~)) 2 _ S(n) ~n+m 1 ~< ~(~) ~< n 

E a (fl~+A \ , (1) f f ian+l t i=m,  o . . . . .  k 

(D } ) 2 
.t~.A] . 

t,(1)fttn+m +1[i  = 2, 3 . . . . .  k 

As S(~ ") and {X,, va)> an  + m) are independent we get 

Es(~') (S(~a-S(~'))~=n-k(E(R(~)A)2 + ES(~")(U~"))2 + 2ES~U(~n)R~'~)A). (3.7) 

(~) 
~l  ~s~ T,C,)V(,) ~ (3.8) We have ~ I . . . . . . .  a "~- V-E(U(~')) ~- ~./~(-) ~2 

By  using (3.3) one easily checks t ha t  

n - ~ E ( U ( ~ ) ) ~ O  as n-+¢o (3.9) 

~.a~ I _ _ Za(v)  a s n ~ o o .  (3.10) 
L i = 1, z . . . . .  

By  combining formulas (3.10), (3.9), (3.8) and (3.7) we see t ha t  (C 3) is fulfilled for 
a~(a) according to (3.6). Now it remains to verify (C4). We need some notation.  
For # fiZ ~ let 

H~, = {v :veZ  ~, v = # +  (2x(m+l), 2~(m+l)  . . . . .  )l~(m + 1)), 2~=0, _+1, _+2 . . . .  } 

i = 1 , 2  . . . .  k. 
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Furthermore, let 

Then we have 

T(, ~= [ l <~ v (° < n ] 
t i = 1 , 2  . . . . .  IcJ 

f l  ~<~u ~) < m +  1 

v =li=l,2 ..... k }XP':'. 
Now, according to the m-dependence, T~ ~) is a sum of independent random variables. 
By  applying the results in section 10 in [6], in particular Lemmata  10.1 and 10.7 
it is easy to complete the verification of (C 4). 

Thus, Theorem 1 applies with ~(~)=---0 and ~ (a )  according to (3.6) and (3.1) now 
follows b y  putt ing a = 1 in (2.1). Thereby Theorem 2 is proved. 

4. Asymptot ic  normal i ty  o f  U-statistics w h e n  ~1 = 0 

The concept of U-statistic was introduced by  W. Hoeffding in [l]. As far  as pos- 
sible we shall follow the notation in [1]. Let  (I)(x, y) be a symmetric function of x 
and y and let X, X' ,  X", X 1, X~ .. . .  throughout be independent random variables, all 
with the same distribution F. The U-statistic generated by  the kernel (I)(x, y) and 
the sample X 1, X2, ..., X .  from F is defined as 

n 

1 ~' ¢(X,, X~). (4.1) 
Un(F) n ( n -  1),.~-1 

Here, and in the sequel, Z '  denotes tha t  the summation does not include v =~.  Let  

0 = E ¢ ( X ,  X') ,  ~F(X, X')  = ¢ (X,  X ' )  - 0, ~F~(X) = E x ~ ( X ,  X')  

~1 = E ~ d X ) L  ~2 = B Y ( X ,  X ' )  ~ 

= E(EX'X'Ut~(X, X " )  ~F(X', X"))  ~ 

= f_:  (4.2) 

Hoeffding proved in [1] tha t  if F and (I) are fixed, and if E(@(X, X')) ~" < + ,  then 
~ ( U , -  E Un) is asymptotically N(0, 4~x)-distributed. This result, however, becomes 
trivial in the case when ~1 = 0, as the limiting distribution has zero variance in this 
case. We shall here consider the case ~x = 0  in more detail. We shall also allow F 
to vary with n. We use notations like U,(Fn), ~I(F~) etc. to indicate tha t  the quant i ty  
is computed under the assumption tha t  the X-variables have the common distribu- 
tion $',. 

Theorem 3. Let (1)(x, y) be a fixed kernel, and let Fx, F~, ... be a sequence o/distribution 
functions, such that 

~l(F,) = 0, n = l ,  2 . . . .  (4.3) 

~(F , ) />  ? > 0, n = l, 2 . . . .  (4.4) 
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f?~ f_~¢(x, y)'dF,~(z)dF,,(y)< C < ~ ,  n =  1,2 . . . .  (4.5) 

Let Un(F,,) and X(F,,) be defined according to (4.1) and (4.2). I/' 

Z(F,,)~O a~ n.--,--oo (4.6) 

£(n(U,,(F~)-EU.(F,)) =.N'O, 1' (4.7) 

Before we prove this theorem we shall derive some auxiliary results. In  Lemmata 
4 .14 .6  we assume F to be fixed. Furthermore, we shall use the notation 

k 

Z~= 7'~(X,,X~,), /¢=1 ,2  . . . . .  
,d . i - -1  

In  computing moments of the second order the following formula is crucial (cf. 
[1], p. 299). For vx 4=/~, and vs4=ps : EtF(X,,, Xa,)~F(X~, Xa,) -- 

'0  if 

= G i f  

.G if 

v,, v2, p,,  Ps are all different 

v,, *% Pv P2 contains 3 different elements 

~1, ~,  Pl, P,  contains 2 different elements. 

(4.8) 

Lemma 4.1. 

~(Zk+ m -- Zk) i = Wg[4~l{k(} + 3~ -- 4) + ('}'~ -- I) (m - 2 ) } + 2~i(2k + m -- I)]. 

Proo/. We have the following identi ty 
k k + m  k+ra 

(Z~+m-- Z~)'= ({2 Z X + 7' }'F(X. X.)? 
p-1 t~-k+l ~./*~ k+l 

/¢ k + m  k k + m  k + m  

={4 X X +4X X X' 
~'l,t,s=l /Jt,/~t--k+l f l = l  /,*l=k:+l S't,ptt--k+l 

k + m  k + m  

+ •' X' }~F(X,,, Xm) ~(X,,, Xm). (4.9) 
t,t.t.*~ - k + 1 w t . P t - k + l  

Now take expectation termwise in (4.9) and use (4.8) to simplify. Lemma 4.1 then 
follows. 

Lemma 4.2. I] ~t =0, then 

E(Z,,+,,,-Z,,p < C'm~(k ~ + m  s) E~F(X, X 'p ,  (4.10) 

where C is an absolute constant. 
k k + m  k + m  

Proot. X +., X , ) ) ' . :  
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k k + r n  m k k + m  

< t iE(7.  7 )~ + ~( ~ '  )'] = c[{ 7~ 7. 
= I ~ = k + I I..~ = 1 1.1.~2.~:.~ = I /~,.~:..u:.~4 = k + I 

+ ~" }~I'r(x~,,x~,). (4.n) 
{~..~..~..,.} i i=i 

If  too many of the ~'s a n d / s  are different, then E 1"I tF(X~ r X~) vanishes (of. 
(4.8)). Upon some thought we realize tha t  the number of non-vanishing terms in 
(4.11) does not exceed Om2(b~+m~). For all these terms we have by Sehwarz's 
inequality 

4 
] E H ~ ( x , , ,  x~,)l <<. E('r(x, x'))' 

and (4.10) follows. 
Next we shall consider some conditioning formulas. Let  B, = B(Xx, X~, ..., X,). 

The proof of the next lemma is quite straightforward, and we omit it. 

Lemma 4.3. When ~1 =0, we have/or b, re=O, 1, 2 .... 

E'~(Z~ +,# - g~) = O. 

Here we add some notation. Let  

A(X) = EXtF(X. X')~ 

and ~(X, X') = EX'X'tF(X, X")tF(X ', X~). 

Lemma 4.4. When C1=0, we have/or b, re=O, 1, 2, ... 

k k 

EBk(Zk+,,--Zk)~-----4mT.A(X~)+4m 7 '  £/(X~, X , ) +  2re(m-1)C~. (412) 
~=1 w./~=l 

Proo[. We take the conditional expectation E~k in (4.9) and we obtain, noting 
tha t  C1= 0 is equivalent to EXU.2"(X, X')--O,  

k k+rn 
EBk(Zk+m--Z~)~=4m 7. Ex~rx ' ,uF(X~, ,X)V(X, . . ,X)+E( 7/  vF(X ,X , ) )  ~ (4.13) 

~,,J,~-I ~,,,u=k+l 

which is easily simplified to (4.12) by using Lemma 4.1. 

k 
Lemma 4.5. E I ~ (A(X,) - ¢,)l < VkEtF( X,  X') ' ,  k = 1, 2 . . . . .  

Proo]: A(X~), A(X,) . . . .  are independent, equally distributed random variables 
with mean ¢,. Thus 

k k 

~< bEA(X) ~ = bE(EXW(X, X')~) ~ <~ ]~EEXW(X, X')  ~ 

and the lemma is proved. 
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Lemma 4.6. When ~ = O, we have/or k = 1, 2 . . . .  

k 

E[ ~ '  ~'/(X,, X,)[~< V2k(k-l)Z. 
n,.u - 1 

Proo[. We regard ~(x, y) as a kernel. I t  is easily checked that  E~(X, X') =0, 
and tha t  ~1(~)=0 when ~1((I))-0. Furthermore, we have ~a(~)=g((I)). From Lemma 
4.1 we get 

k /¢ 

(El ~ '  £"/(X,, X~,) l) ~ ~< E( ~..' £"/(X,, X;,)) ~ = 2k(k - l) Z 
n./* = 1 ~,~ = 1 

and the lemma is proved. 

Proo/o~ Theorem 3. First we shall prove Theorem 3 under the extra assumption 

~ ( F , ) - ~ z  as n-~oo, 0 < ~ 2 < ~ .  (4.14) 

We shall apply Theorem 1, and we introduce 

s2 '= n(u~.(F.) -EU~.(F.))=7A~)/(n - 1), 0 < a <  1. 

From Lemma 4.1 and (4.14) we conclude that  

lnn  E(S ( :  ~ -  Si'))  ~ = 2 ( a -  f~) (~ + ~) $~, 0 < fl < ~ < 1. 

Thus (C 1) is verified. In  a similar manner (C4) follows from Lemma 4.2, (4.5) 
and Lemma 10.3 in [6]. From Lemma 4.3 we conclude that  (C2) is satisfied for 
Q(~)-----~0. Next we shall verify that  (C 3) is satisfied for (~z(~) = 4 ~ ,  where ~2 is defined 
in (4.14). By virtue of Lemmata 4.4, 4.5 and 4.6 we have 

~ ( n )  

<~ l~m E E ~ (~") 1 (Z(. , _ 7,(.h9. _ A4~¢~I 
n-~ ] (n-l)'" ¢~+a). --~-, 

+ A lira E ' f~(~)(X,, X~,) + 2A~¢~. 
n -.',-~ ~, v . p = l  

< a ( ~  1- ~ c  + r~ 1- g2~(~-1)  x(F~)) + 2~'¢2= ~m¢~ (4.15) 

according to (4.5) and (4.6). Now (03) follows easily from (4.15). 
Thus, Theorem 1 applies, and we obtain 

C(n(Un(Pn) - EU,(P,~)))= £(Si')):~ N(O, f2  4o~2do~) = N(0, 2~2 ) as n-+oo (4.16) 
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Thus, Theorem 3 is proved under the extra assumption (4.14). Our next  step is to 
remove this assumption for the validity of Theorem 3. Pu t  

v,~ = n(Un(~' . )  - E U . ( F O ) / V ~ ( F . ) .  

We give an indirect proof. Thus, we assume tha t  the conditions of Theorem 3 
are met,  but  tha t  the conclusion (4.7) does not hold, i.e. 

E(Vn) ~ N(0, 1) as n-~ c~. (4.17) 

From Lemma 4.1 we conclude tha t  EV~ <~n/(n-1). Thus, in regard of (4.17)we 
can pick a subsequence such tha t  

From (4.4) and (4.5) it follows that ,  b y  restricting to a new subsequence (without 
changing notation), we can obtain tha t  

~(/~,,)-~¢~ as v-~c~, 0 < ¢ ~ < c ~ .  (4.19) 

According to (4.19) and what is already proved, it follows tha t  

£(V~)~hr(0,  1) as ~-~c~. (4.20) 

Nbw (4.18) and (4.20) contradict each other. Thereby the proof of Theorem 3 is 
complete. 

We conclude by  treating an example, whose first par t  illustrates Theorem 3. 
I ts  second par t  illustrates the well-known fact (see the paper  [4] by  yon Mieses) 
that ,  when ¢1 =0,  U-statistics can have other limiting distributions than  the normal, 
although (Un(F~)-EU~(Fn))/g(Un(F~) ) have uniformly bounded moments  of all 
orders. 

ExamTle. Let ~P(x, y)=sinxy,  and let F n be the uniform distribution over 
[ -An ,  An], A,>O, n = l ,  2 . . . . .  

a. If An~¢'o as n ~ c ~ ,  we have 

£(nUdFn) )  ~ ~V(0, 1). 

b. I f  A. -~0 as n ~  ¢~, we have 

fx e-(t+l)/2 
dt, x >~ - 1  

,X< --1 

(4.21) 

as n-> c~. (4.22) 

Veri/ication. First we note tha t  ~ l ( F n )  =0,  n = 1, 2 . . . . .  We verify (4.21) by  applying 
Theorem 3. We have 

, 
sin xy dx dy = ~ - ~ J0 u " 

¢~(F.)= ~X~ A. An 
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Thus ~(Fn) ~ ½ as A.-~ oo. (4.24) 

Furthermore, 

g(Pn) \2--Z./J-a..~-am ~2A..i -a .  

- \ 2 A . /  . I - a . a - a . 4 : \  ( x - y ) A n  (x+y)An ] 

From (4.25) it is easily deduced tha t  

Z($'.)-~ 0 as A.-~  0o. (4.26) 

(4.24) and (4.26) yield that  the conditions (4.4) and (4.6) in Theorem 3 are fulfilled. 
The verification of (4.5) is straightforward. (4.21) now follows from Theorem 3. 
Next we prove (4.22). From (4.23) we easily deduce 

~,(Fn).,.,A~/9 as A,,--+0. (4.27) 

3 
Let Q,,(.Fn) a',(,~ - a),.~_f,x,,.'-" 

According to (4.27) and Lemma 4.1 we have 

2 3 n t . 3 

(sinxy-xy)~dxdy-~O as A ,~O.  (4.28) A~(~-I )  ~ ~ a. a. 

Furthermore, 

Q.(F.) = (4.29) 
~ -  lp_:t 

According to the central limit theorem, the first term to the right in (4.29) converges 
in distribution to a g~-variable with one degree of freedom, and according to the law 
of large numbers the second term converges in probability to 1. These two facts 
easily yield that  Qn(Fn) has the distribution in (4.22) as limit distribution. From 
(4.28) we conclude tha t  nUa(Fn)/~2~/~n) and Qn(Fn) have the same limiting distribu- 
tion. Thus (4.22) is verified. 
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