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On a conjec ture  o f  V. Berns te i n  

By J. R. SHACKELL 

1. Introduction 

In  this paper,  we shall be eoncerhed with the Dirichlet series 

ane -a~` =/(s) ,  (1.1) 
n=l  

where the sequence {Pn} increases and tends to infinity with n. Let  N(r) denote the 
number  of 2n which are less than  r; then the number  

D = lira { lira sup IN(r)  - N(~r)]/[r- ~r]) (1.2) 
~->I r--~¢¢ 

is called the maximum density of the sequence (Pn}. Whenever a Diriehlet series is 
mentioned in this paper, it will always be assumed to have a sequence of exponents 
with finite max imum density. We shall be particularly interested in series of the 
form (1.1) which satisfy Ostrowski's gap condition; tha t  is to say, series which are 
such tha t  there exists an increasing sequence of integers ink) and a positive constant 
9 ,  such tha t  

2~+1 -Pn~ 1> DPn~ (1.3) 

A Dirichlet series may  converge at  no finite point in the plane, it may  converge a t  
every finite point in the plane or else there may  exist a finite number, a c such tha t  the 
series converges in the half-plane Re (8)> ac but  diverges at  every point which has 
real par t  less than  %; no other case can occur. In  the third-mentioned case, we may  
take % = 0 without loss of generality. Let  us then write 

S.(s) = ~ ame-~; (1.4) 
m~l 

we know tha t  the sequence {Sn(s)} cannot converge at  any point outside the closure 
of the region of convergence, but  it is possible tha t  a subsequence, {S~(s)) m a y  con- 
verge in a region D, larger than the region of convergence of (1.1); when this occurs, 
we say tha t  (1.1) overconverges in D. 

For power series, the phenomena of gaps and overconvergence are connected b y  
the following well-known theorems of Ostrowski (see, for example Dienes [3]). 

Theorem 1 (Ostrowski). I] a power aeries ~ anz n satisfies Ostrowski's gap condition, 
the sequence {~kanz~ ) converges in some ncighbourhood o] each regular point on She 
circle of convergence o/the aeries. 
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Theorem 2 (Ostrowski). I] { ~ a , z " }  converges in a nei~hbourhood o /a  point on the 
circle o/convergence o] the series Z anz n, Shen this series may be written as the sum o/ 
two power series, one satis]ying Ostrowski's gap condition and the other having radius 
o/ convergence /arger than ~. anz ~. 

We are interested in investigating the connection between gaps and overconver- 
gence in the more general context of Dirichlet series. I t  is, of course, well known 
tha t  Theorem 1 holds for Dirichlet series and indeed for more general series (see, for 
example,  Leont ' ev  [5]). On the other hand, Theorem 2 certainly does not  hold for 
all Dirichlet series, since examples of such series are known which show overcon- 
vergence of a character quite different from the gap-type overconvergence of power 
series. Following Bernstein [1], we shall say tha t  (Snk(s)) is a closely overconvergent 
sequence of partial  sums in the region R if the following conditions are satisfied: 

(i) 2,~+1_1]2,~ ~ 1 as k -~ oo; 

(ii) (n~+l--nk)/nk-~O as k-~ co; 

(iii) the sequence of partial sums {~,~(8)} converges whenever s belongs to R. 

We shall say tha t  the series (1.1) is closely overconvergent in R if it possesses a se- 
quence of part ial  sums closely overconvergent in R. 

V. Bernstein [1, Ch. 2] defined a number  8, called the index o[ condensation of the 
sequence {~tn}, which measures the extent to which the members of {~} cluster 
together and he showed that  close overconvergence cannot occur in any  half-plane 
larger than  Re (s)> a t - 8 ,  but tha t  with the correct choice of the sequence of coef- 
ficients {a~}, this half-plane is always a region of close overconvergence. I n  [1], 
Bernstein conjectured tha t  Theorem 2 might hold for some significant class of Dirich- 
let series. A natural  candidate for such a class is the class for which 8 =0,  since, if 
this condition is satisfied, close overconvergence cannot occur. This problem remained 
unsolved until the appearance of a paper  by  M. E. Noble [6] in which it was proved 
tha t  Theorem 2 holds for Dirichlet series satisfying the condition 

~.,~+t-~,/> q>O. (1.5) 

Noble 's  can be extended without great difficulty to the class of Dirichlet series for 
which 8 = 0  and this result is best-possible, in the sense tha t  if we are given a sequence 
{~t~} with positive index of condensation, we can choose a sequence of coefficients 
{an} such tha t  Theorem 2 does not hold for the series ~. ane -~"8. 

There remains the possibility of obtaining Theorem 2 in a modified form, valid ,for 
Dirichlet series whose sequence of exponents has positive index of condensation. 
A natural  modification is suggested when we come to consider the half-plane of 
holomorphy of the series (1.1), Let  a H denote the infimum of the numbers a such tha t  
the function defined by  (1.1) is regular in Re (8)> a; then a X is called the abscissa o/ 
holomorphy and the half-plane Re (s) > a R is called the hall.plane o/holomorphy. The 
half-plane of holomorphy is the natural  region of close overconvergence, since it 
always is a region of close overconvcrgence (Bernstein [1, Ch. 6, Th. 11]) and a 
theorem of Bourion [2] shows tha t  this cannot be true of any  larger region. Further- 
more, Theorem 1 can be obtained relative to the abscissa of holomorphy instead 
of the abscissa of convergence (Bernstein [1, Ch. 6, Th. 18]). These facts lead one to 
.suspect tha t  Theorem 2 also, might hold relative to the abscissa of holomorphy. 
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This again was conjectured by Bernstein in [1]. The main task of this paper is to 
show that  this conjecture holds in the following form. 

Theorem 3. Suppose that the series (1.1) has finite abscissa of holomorphy, a~, and 
that the maximum density o/the sequence {1~} is also finite. Suppose further, that there 
exists a sequence {S,~(s)}, of partial sums o/(1.1) which converges in some neighbour. 
hood o / a  point on the line Re(s )=am Then (1.1) may be written as the sum o[ two 
Dirichlet series, S 1 and $2, where S 1 satisfies Ostrowski's gap condition and S 2 is closely 
overconvergent in a half-plane larger than Re (s) > a H. 

We note that,  in general, it is not possible to draw the conclusion that  S~ converges 
in a half-plane larger than  the half-plane of convergence of (1.1). This is clearly 
demonstrated by  the series 

1 n~lE {e-s(1-e-s)}4"+ n=l ~ {e-(n+½)S--e-(n+½+e-n)s}' 

where Pn denotes the modulus of the largest coefficient in the expansion of ( 1 - z )  4~ 
in powers of z. However, in a certain special ease, Theorem 3 does imply that  the half- 
plane of convergence of S~ is larger than that  of the series (1.1). Let  a~ and aH 
denote respectively the abscissae of convergence and holomorphy of the series S~ 
and let (3' denote the index of condensation of the sequence of exponents of Sa. 
A theorem of V. Bernstein [1, Ch. 2, Th. 1] states that  for all Dirich]et series (D < c~), 
ac--aH<~& Now suppose that,  for the series (1.1), a t - a s = &  Then a~ ,.<(3'+a~< 
aH+ (3, since Theorem 3 shows that  ~ < a~ and obviously (3' ~< (3. Hence a~ < ~, 
which is to say that  the half-plane of convergence of S~ is larger than that  of the 
series (1.1). Thus we have the following corollary to Theorem 3. 

Corollary. I], /or the series (1.1), at--all=(3, then the series S~ has a half-plane of 
convergence larger than that o/the series (1.1). 

We remark that  we certainly have a o -a ~  =(3 in the case when (3 = 0 and so we 
obtain Noble's result in this case. 

In  our proof of Theorem 3, we shall find it necessary to consider the affect of certain 
transformations on closely overconvergent Dirichlet series. Some of the results 
obtained seem to be of sufficient interest in themselves to warrant special mention. 

Theorem 4. Suppose that/or each integer k, there are given Pk-4-1 complex numbers 

Suppose that,/or s belonging to some fixed domain D, 

mk+P k 
~. a~e -x.s <. M~(s). (1.6) 

Suppose also that we are given a sequence of function {Ck(z, s)} each being a regular 
]unction o[ z /or z in some convex domain containing the points 2~  . . . . .  2m~+v~ and 
/or s in D. Then, for s belonging to any fixed compact subset of D, 

2 anC~(In,s)e -~s  <- M~(s) sup ]C~)(~k,s)l, (1.7) 
'~k \ Pk / q<.w 

where ~k is some point belonging to the convex hull o/the points ~,,~, ..., t,~+~ and A is 
a positive constant. 
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If {2~} is an increasing sequence, we may apply Theorem 4 with C~(z, s)= 
e x p [ - z ( s - s o )  ] in order to obtain the following result. 

Theorem 5. Suppose that, /or s belonging to some neighbourhood o/the point s o = 
o'o + it o , 

I ~ '+ ' '  I 
~. a, e -~.8 < M~. 

rn k 

Then,/or every e>0 ,  and every bounded set B, there exists a ko(~ , B) such that/or k >~ 
/c0(e, B) and s belonging to B, 

[ mk+Pk 
a,  e -a-~ < Mk e -(a-a°-*)~*, 

where a = R e  (s). 
Finally, we can obtain the result of Bourion [2] mentioned above, as an immediate 

corollary of Theorem 5. 

Theorem 6. Suppose that (S,~(s)} is a closely overconvergent sequence o/partial 
sums of (1.1) in the region R and/et  ~R=infs~a (Re(s)). Then (S,~(s)} is also a closely 
overconvergent sequence o~ partial sums in the region Re (s) > aa. In  particular, the 
maximum possible region of close overconvergence o/the series (1.1) is its hall-plane o/ 
lw~norphy. 

The principle of the proof of Theorem 3 is as follows. We must divide the series 
(1.1) into two series, S 1 and $9.. The series S~ will be composed of the terms of (1.1) 
for which ~[, lies in one of the gaps. We need to prove that  S~ is closely overconvergent 
in a half-plane larger than Re (s)> a~ and hence we must define a suitable sequence 
of intervals, S, such that  

X* {a Xza~e-~ns},E (1.8) 

converges in such a half-plane, where ~* is taken over all intervals, I, of S which are 
contained in one of the gaps of S I. In  order to show that  (1.8) converges in the required 
region, we seek a method of estimating [5 no,a e- n' J. 

Suppose I = (2~k, (1 + ~)2,~) and let ~(t) be an integral function of exponential type 
which has zeros at the points of {~t~} contained in ( ~ ,  (1 ÷ ~ ) ~ ) N  C(I); a Fourier 
transform technique then gives us an estimate for I~z{a~(~ )e -~s} l .  We would like 
to then apply Theorem 4 with Ck(z, s) = 1/~(z), in order to obtain the required estimate 
for ]~ane-;~s], but unfortunately the derivatives of 1/~(z) at points of I may well 
well be too large. I t  can be proved that  these derivatives will be sufficiently small if 
the distances between I and the other intervals of S are all greater than I II2/d( I, O) 
(where II] is the length of I), but  we cannot, in general, obtain a sequence S with 
these properties. However, we can define S so that,  for any two of its intervals, 
and J ,  

d(I, J) >1 mill{[ I]~/d(I, 0), [Jl~/d(J, 0)}. 

The construction of S is given in section 2. An important  property of S is tha t  any 
interval of S intersecting a certain neighbourhood of a fixed interval, I ,  of S must 

86 



ARKIV FOR MATEM&TIK. Bd 8 nr 10 

have length not greater than ] I [/4. This allows us to define a partial ordering on S. 
Then with a modified kernal function u(t), defined in section 3, which has zeros 
sufficiently far from I,  we can obtain an estimate for ~za, u(2~)e -~s in terms of 
sums over intervals close to I ,  i.e., in terms of sums of the form ~sa ,  u(2~)e -~s where 
J is close to I .  We can then use the partial ordering and obtain inductively an esti- 
mate for ~.1anu(2n)e -~s  which is of the required form. Theorem 4 then gives us a 
suitable bound for ~za, e - ~  and the theorem follows. 

The proof of Theorem 3 has been inspired by M. E. Noble's paper [6]; in particular, 
Lemmas 6 and 8 and other parts of section 4 have been adapted from his paper. I t  
scarcely seems necessary to point out tha t  I have made liberal use of the ideas of V. 
Bernstein, as this must already be apparent to the reader. 

The author would like to express his thanks to the Royal Institute of Technology 
in Stockholm, where most of the work for this paper was performed, and in particular 
to the members of the mathematics department,  for their most cordial hospitality. 

The letter 'A' will frequently be used in this paper to denote a positive constant, 
not necessarily the same at  each appearance;/c(e) will occasionally be used in the same 
way to denote a number depending only on e. 

2. Results concerning intervals 

Following V. Bernstein, we shall give the sequence {)t~} a structure by  defining a 
sequence of intervals on the real line. We shall require our sequence of intervals to 
have certain properties not possessed by  Bernstein's intervals. If I and J are two 
intervals on the real line, we shall write d(I, J) for the quanti ty ~ x ~ i  - ~ , j I x - Y l  
and d(I, 0) for inf~z Ixl. 

We first give Bernstein's construction. He proved ([1], Ch. 2 and Ch. 6, Th. 11) 
that  for each q<l/lOD, there exists a disjoint set of intervals, E(q, {2~}) with the 
following properties: 

(i) each interval of the set E(q, {2~}) contains at least one point 2~; 

(if) if L denotes the length of some particular interval of the set and/~ denotes 
the number of points of {2,} which it contains, then 

( k + l ) q  ~<L ~<2kq; (2.1) 

(iii) if )~m ... . .  ~m+k-1 belong to the same interval of E(fl, {2~}) and z does not 
belong to that  interval, then 

[(~m--~) ... (~m+~-I --~)1 ~> ~!q~; 

(iv) if we write the intervals of E(q, {)l~}) in a sequence {In} such that  d(I~, O) 
increases with n, then the series 

{ ~ ane -'~,Zs} (2.2) 
Nml ).nelN 

converges in the half-plane of holomorphy of the function t(s), defined by  (I.1). 

We first wish to modify the set E(q, {4,}) so that  the inequality (2.1) can be 
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replaced by the equality L =2kq. In  order to achieve this, we surround each interval 
of E(q, {1,}) by a symmetrically placed interval of length 2kq; some of these new 
intervals may  intersect each other and when this occurs, we regard two mutually 
intersecting intervals as making up a combined interval. The inequality (2.1)holds 
for such a combined interval and so we may surround each of these by  an interval 
of the required length and thus continue the process. Let  R be any fixed number. 
By using (2.1) and the fact tha t  ~/<I/10D, where D is the maximum density of the 
sequence (in}, we see that  after a finite number of stages, the process does not 
change any interval intersecting (0, R) and in particular, the process cannot produce 
an interval of infinite length. Thus we obtain a new set of intervals E'(q) for which 
L =2kq. Obviously the properties (i) and (iv) hold for the intervals of E'(q) and it is 
easy to show that  (iii) holds and also the following modified version of (iii): 

(iii, a) if z does not belong to any of the intervals In1 , I n .. . . . .  Into of E'(q) and k 
denotes the number of points of {ln} in In, U ...U Into, 

m 

H H ( t u -  z) /> k!(q/4) ~. 
r = l ~ l n ~ I n r  

Lastly, density considerations show that  for the intervals of E'(q), the overconver- 
genee of the partial sums given in (iv) is close overconvergence. 

Suppose that  we are given any sequence of mutually disjoint intervals {J¢}, 
where J j = ( a j ,  aj+l~) and suppose tha t ' t he  numbers lj, j = l ,  2 . . . .  have a positive 
lower bound. We then define the intervals J~ = (a~, a~ + l~ ) as follows. Suppose that  
there exist integers M and N with M < N, such that  

d(J~,, aN) < m~. (~/a,~, l~/a,,) (2 3) 

and let M be the smallest such integer. With the choice of M now fixed, there can 
only be a finite number of possible choices of N; let us choose N as large as possible. 
We then define the sequence {I~ } by  the relations 

l~ = l  j, for j < M  or j > N  

lM = aN + l ~  - - a  M 

/ ; = 0  for M<j<~N. 

If (2.3) is not  satisfied for any M and N, then we define Z~ =l j  for all ?'. Let  us now 
take q<l/(16e4D+l) and let us consider the set of intervals E'(q)={I~}. We write 
I j  = (A j, A t +Lj) and we then form the sequence of intervals {Ij' }. From this sequence, 
we can discard any intervals of zero length and then form the sequence (Ij"}; clearly, 
we can continue this process without limit. Thus for each fixed ?', we can define the 
sequence Li, L~ ..... L~ . . . . .  Provided that  we allow the value + c~, the limit 

Lj= llm L~ (2.4) 
n.-.~, oo 

always exists, since either L~ = 0 for all but  a finite number of n or else L~ always 
increases with n. 

Lemma 1. The number Lj is/inite/or each j and Lj/Aj->O as j ~  oo. 
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I t  is this lemma which provides the basis for the construction of our required set 
of intervals. The principle of our proof of Lemma 1 is to show that,  if the result were 
false, the intervals of E'(q) would necessarily be packed closer together than is 
possible with (~,} having maximum density D. We note that  we may assume, without 
loss of generality, that  each Lj is equal to 2q, because we may replace any interval of 
length 2]¢q by ]¢ adjacent intervals of length 2q and this clearly does nob affect the 
properties of L~, i=1 ,  2 . . . . .  Having made this assumption, let us suppose that  
Lemma 1 is false. 

We can then find a positive constant e < 1 and sequences {m~}, (n~} and (N~}, 
with N~<n~, such that  

(1 +~) A,~ < L~v~ + AN~. (2.5) 

Because of the method of construction of (L~}, there exists a sequence {r~) such 
that  A,~+~+Ln~+~=ANk+L'~ and then the interval Ak=(A~, AN~+L~v~) contains 
just the intervMs Ink ..... In~+~ of E'(q). If we denote the interval between In~+r and 
In~+~+l by Q,(k), then clearly 

r k r k - 1  

IAk] = 5 L.,+~+ ~. IQ~(k)[, (2.6) 
r = O  rffiO 

where we have denoted the length of an interval J by t J I" Each Qr(/c) is contained in 
an interval of {I~ k} but not in any interval of {Ij} and hence there exists a smallest 
integer P, such that  Q~(k) is contained in an interval of (IJ'}. This implies that  Q~(k) 
lies between two intervals, 1~ -I and I~ -1, of {If  -1} which satisfy (2.3). Suppose that  
the number of intervals of E'(q) contained in I~r -1 and I~ -1 is respectively n(M) 
and n(N). We then define the order of Q~(k) to be the minimum of n(M) and n(N). 

All the Lj's are equal to 2q and hence, using (2.3), we see that  no first order Q~(]c) 
can have length greater that  4q~/An~. Therefore the sum of ~o~Lnk + r and the totallength 

r/¢ 
of all the first order Q~(k), 0~<r~<rk-1, is not greater than (1 +2q/A~)~.oL~+~. 
Similarly the addition of the total length of all the second order Q~(k)'s will increase 
this number by a factor of at most (1 +2q/A~). In general, the sum of ~ L ~ + ~  and 
the total length of all the Q/k) having order not greater than T is at  most 
(1 + 2q]A~)r ~ L~+ ~. We may assume without loss of generality, that  L~v~-<< 5An~ for 

tr]/$ t k sufficiently large; for, if LN~>5A~, then we can find an m~ <m~ and an Nk with 
Nk<~N'~<N~+I such that  

(1 +~) A,~ < 2A,~ ---. LNk' ---. 02~,~. 

With this assumption, no Qr(k) can have order greater than 2A,~/q. Hence, by (2.6), 

rk  r k  

o~/A ~,%~lq . (2.7) 
RffiO R ~O 

Let us denote by N(Ak), the number of points of {2n) in the interval Ak. Then, 
because of the method of construction of E'(q), 
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rk 

N(n,)= (U2q) Z L.,÷~ 
B=O 

and hence, by  (2.7), 

N(A,) >/Ih~l/2e'q >~ (8D + ~')  Ih~l. (2.S) 

I t  follows from the definition of D([1] Note 1) that,  given any positive e, there exists 
a k0(e ) such that  for A,,=d(A~, 0)~>k 0, 

N(Ak) ~< D[Ak[ + (d(Ak, 0 )+  ]Ak])e----(D+s)]A~] +eA,~. 

Let us choose e =@D; then, since ]Ak[/> @A,,, 

N(A~) < (D+e+e/@)]Ak] < (2+@)DIAl].  

This contradicts (2.8) and thus Lemma 1 is proved. 
Let S denote the sequence obtained by  removing all intervals of zero length from 

the sequence {(As, As +Ls)}. S is our required sequence of intervals and we shall 
proceed to obtain some of its properties. I t  is clear that  the method of construction 
of S ensures that  if IM and IN are two intervals of S, 

_ . f Ix~,l' ICNI' / d(I~,IN) ~ m m ~ - -  , (2.9) 
td(I~,0) d(I--~,0)J ~ 

We are going to define a partial ordering on the set 8. We shall suppose that  for all 
n, Ls /A s ~< ~. This involves no loss of generality since we may always ensure that  the 
inequality is satisfied by  removing a finite number of As. We shall write I p J  whenever 
I and J belong to 8 and 

J,.-,(I-~ 32d(I,0)'1" E ) * ~ ,  (2.10) 

where E = {x; I~l < ~}- w e  shall write J < I  whenever there exist intervals I =  
11, I~ .....  IM=J  of S such that I~pI~+l, 1 <~r<.M-1. 

Lemma 2. I f  I and J are intervals of S, the following statements hold: 

(i) it  I p J  and I :~J ,  then [JI <~ [I[/4; 
(ii) the relation <~is a Tartial ordering on S; 

(iii) if J <~I, then J =  I + I I [E;  
(iv) there are at most 1 I] ]q intervals J such that J ~ I, J ~= I. 

To see (i), let us first observe that  d(J, O) <.2d(I, 0), for 

d(J, O) <d(I ,  0)+  Ixl + [I[~/32d(I, O) 

< d(I, 0).(1 + ~ + 1/288), 

since [I] <~d(I, 0)/3 by  assumption. But  then, by  (2.10), 

I I I  ~ >_ I J I  ~ >_ I J I  ~ 
32-d~, O) - /d(I ,  J) >>" d(~ ,~  ~" ~ ) "  
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This proves (i), which immediately shows that  we cannot have J ~ I  and I<~J 
without h a v i n g / = J .  Part  (ii) is then obvious. Part  (iii) is trivial if J = I .  I f  J ~ I ,  
l e t / z  . . . .  , I~  be the intervals mentioned above. Then 

sup {d(x,I)} <~ I J] + d(J, IM-1) + I I~_z ] ÷ d(IM-~, IM-~) + . . .  + I I= ] ÷ d(I~,I) 
x ~ Y  

< I z 1(1/4 + .. .  + ( 1 / 4 ) " ) +  Ixl" 16d(1, 0-------3 (1 + 1//4 + . . .  + (1//4) M-l) 

<21IV3. 
This suffices to prove part  (iii) and, since part (iv) is a trivial consequence of this, we 
have proved Lemma 2. 

We next give a general lemma concerning partial orderings on finite sets. We 
shall later apply this lemma to certain subsets of S. 

Lemma 3. Suppose that A is a finite set on which is defined a partial ordering rela- 
tion <~. 11 a and b are members o / A ,  we shall write a<b  i/a<~b and a:~b. Suppose 
also that we are given a positive real.valued ]unction 2 : A ~ R and a positive real-valued 
/unction fl : A × A ~ R, such that,/or all a E A, 

2(a) ~< b <~=fl(a, b) 2(b) + r, (2.11) 

where r is a fixed real number. For each aEA,  let n(a) denote the number o/bE'A such 
that b <a. Then 

;t(a) ~<r-2 "(=) supremum {fl(a, b)fl(b, c) ... fl(y, z)}, (2.12) 

where the supremum is taken over all subsets, (b, c . . . .  y, z} o / A  such that 

z < y < . . . < c < b < a .  

To each b<a, we may apply (2.11) and obtain 

2(b) <~ ~ fl(b,c)2(c) + r. 
C<O 

On substituting this expression in (2.11), we obtain 

2(a) <~ r(1 + ~ ~ fl(a,b)fl(b,c)~(c). (2.13) 

We can now use (2.11) to estimate the numbers 2(c) which occur in (2.13). We may 
apply this technique successively until, after a finite number of steps, we obtain an 
expression of the form 

).(a),.<r{l+ ~ fl(a,b)+ . . .+  ~ ~ ... 5 fl(a,b)fl(b,c)...fl(y,z)}. (2.14) 
b < a  b < a  c < b  Z < y  

The total number of terms in the bracket on the right-hand side of (2.13) is not more 
than 

l + n + n ( n - 1 ) / / 2 + . . . + ( : ) + . . . ÷  l = 2  ~, (2.15) 

where n=n(a) .  The inequality (2.12) now follows from (2.14) and (2.15). 
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3. R e s u l t s  c o n c e r n i n g  t rans forms  

We are going to isolate certain blocks of terms from the series (1.1) by applying 
a transform. I t  is, therefore, important for us to obtain conditions under which the 
modulus of the transformed block of terms is comparable with the modulus of the 
original block. The result we require is Theorem 4. 

Prool o/ Theorem 4 

We commence by introducing some notation. Let 

~(~) = (~ /p~!) H (s-,l,,~+~). (3.~) 
1~=0 

Let b~(z, W) denote the Betel transform with respee~ to s of {P~(s) -P~(z)} / ( s -z ) .  Let  
P~ 

g~(s)---- ~ a,%+~e-:%~+~ ~, (3.2) 

and let us choose ~/to be any positive number and set 

We show that  

1 ~(s, Z) = ~-~" a/~1-g~(',l - ~) b~(z, ~)d~. 

- -  • -~m +q$ ~(s,~tm~+p)-- Pk(~+~)am~+~e • • 

On substituting (3.2) in (3.3), we obtain 

(3.3) 

(3.4) 

(3.5) 

Because Pk(s) is a polynomial, bk(z, ~) is a regular function of ~ at  every point except 
0. Hence the standard result concerning the inversion of the Borel transform (see 
[1] Note 3) tells us that  

and (3.5) then becomes 
Pk 

Ck(s,z) = ~ amk+~e-am~+P~{ Pk(2~+~) -- P~(z)}/(2m~+~ - z). (3.6) 

The equality (3.4) now follows on putting z =2m~+~ in (3.6). 
Next we require an estimate for the partial derivatives of ~bk(8, z), which is given 

by the following lemma. 

Lemma 4. Suppose that the points , ~  ..... 2~+~ satis]y the hypothese.~ o/ Theorem 4. 
Suppose that s belongs to some fixed cqm3uzct subset G of D and that z belongs to the convex 
hull, A~, o~ the points ) ~  ..... ~,~+~. Then, i/ q <~p~, 
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[ ~q~(s'Z)l <~Mk(s)" (A [Xmkt/T~) ~. (3.7) 

provided that b @ larger thaw a certain number, ko(C). 
For Re(~) >0, 

_ f "  Pk(w) - Pk(z) 
bk(z,~)- Jo ~ z  e -  W~ ~ w  . (3.8) 

If we expand P~(w) as a power series in (w-z)  and substitute the resulting expression 
in (3.8), we obtain, for Re(~)>0, 

~ p(~+~),~, ~" (w-~)~. e-~¢dw 
bk(z,¢)= E k ~ ' J0  (q+l) !  

q=0 

P~ 
= 5 ~-(q+~)P(~q+~)(z){1 - z ~ +  ... + (-z¢)q/ql}/(q+ 1) (3.9) 

q=0 

and by  analytic continuation, the same formula holds for all ¢ 40.  If X belongs to 
the set Ak+2pkE,  then by  the hypotheses of Theorem 4, the diameter of Ak is of 
the order of p~ and so ] 2 ~ + ~ - X  I 4Ap~,, for 0<r~<pk; hence 

[Pk(X) [ ~ (Ap~)~+i/ipg! ~ A  ~k. 

On applying Cauchy's inequality, we see that  for ZEA~+pkE and O~<q~<p~+l, 

I Piq'(z)l < q!A~lp~ < A~. (3.10) 

In (3.3), let us take ~=½d(C, C(D)); then, if [~[ =~1, 

I-z~l~lq!<.<(Al~.l).lq!<(Al~.,.l).~lp~!<(Al~llp~)~., (3.11) 

since we may assume that  Tk<A ]~m~]. Hence, by (3.9), (3.10) and (3.11), 

Ibm( z, ~)l <(A I~I/P~Y~, (3.12) 

for Z e Ak +p~ E and [ ~ I =~/" Now suppose that  z e A~, s e C and that 0 ~< q ~<~. Then, 
using (3.3), we see that  if k is sufficiently large, 

1 ro'b (S ¢)1 

~< 2z~M~(s) • (qt/p~) supremum { sup Ibm(Z, ¢)1} 

< M~(,).(Al~.d/p,~) ~',, 

and this completes the proof of Lemma 4. 
We now state a lemma which is due to Jensen [4]. 
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Lemma 5 (Jensen). Suppose that x x ... . .  x o are points o/the com1~lez plane and that 
F(z) is a/unction analytic in some convex domain containing these ~oints. Let us de/ine 

0 
= 

vffil 

where I-I(x)=H~=,(x-x~). Then there exists a complex number 70, with modulus not 
greater than one and a point }Q belonging to the convex hull o/the points xl, xg. . . . . .  xQ 
such that 

D [ j 
Fo = (Q_ 1)! ~o" 

Using the equality (3.4), we may write 

mk+1o k mk+P/¢ 
a,C (A,s)e (3.13) 

~rala  n--ml¢ 

Applying Lemma 5 to the right-hand side of (3.13) yields 

m~ Z~ k" 

Theorem 4 now follows on application of Lemma 4 and Leibnitz formula. 
We recall that,  in section 1, we mentioned the possibility of using a function u(t) 

which is an integral function of exponential type having zeros at the points of 
(An} contained in (2,~, (1 +~)2,~)N C(I). We shall however, use a slightly different 
function, namely one which has zeros at the points of {)~} contained in (2n~ 
(1 +fl)2n~)N C(U(I)) but not at  the points 2. contained in U(I); here we have used U(I) 
to denote the union of all the intervals of S which are less than or equal to I in the 
sense of the partial ordering of section 2. This will enable us to obtain a formula to 
which we can profitably apply Lemma 3. 

Let T~ denote the set of intervals, I of S, such that  I + 1 I  [ E is contained in 
(~n~, (1 +~)~n,) and let V(À) denote the set of intervals {J, J<~I}, whose union is 
equal to U(I). For each I 6 Tk, we define 

and 
J,(1) = T,N C(V(1)) (3.14) 

sin 2 {~(t - ~)/2,k} 
K( I ,0  = 1-[ 1 - I - -  - -  (3.15) 

where 8 is a constant to be defined later in such a manner tha t  A/ix < (3 <zt/2#. 

Lemma 6. SUVlU~e that I 6 Tk, z 61 and that Q is less than the number o/2,~ contained 
in I. Then, provided that k is ~u]/iciently large, 

[[d~ (1/K(I ,  t))]t=z I ~<exp (Ap2%). 
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Suppose that  u belongs to the interval I + ( ] I [~]32d(I, 0)) E. Then, by definition 
of V(I), u cannot belong to any interval of J~(I). Therefore, since property (iii, a) 
of section 2 holds for the intervals of S, we must have 

I I  1[-I l u - ,~n [ i> N!(q/4) N, (3.16) 

where N =hr(I) is the number of 4. contained in the intervals of Jk(I), If 4. belongs 
to some interval of Jk(I), then I 1<#/2 and hence 

_ _  . _  < ( 3 . 1 7 )  

by (3.16). Now, viewed as a function of X, (P/X) x has its maximum when X =P/e 
and therefore 

I I/K(I, u)] < exp {~z~4~,/(aq)}, (3.18) 

whenever u belongs to I +(I II~/32d( I, 0))E. Lemma 6 now follows after the applica- 
tion of Cauchy's inequality. 

Lemma 7. SupTose that IeTk and that J <I  (in the sense o/section 2). Let n(1) 
denote thenumber o/4n in U(I) and let ~(I, J)=n(I) -n(J).  Suppose also that z eJ  
and that q <n(J) .  Then,/or k su//iciently large, 

d q {g(I,t)'~] .< [ A4n. ~(,,~> 4.~ "-(') 

The proof of this lernrna is very similar to the woof of Lemma 6 and will, therefore, 
not be given. 

We may assume that  the number N(1) of the inequality (3.16) is not smaller 
than 2, :[or if N(1) < 2 for more than a finite number of k, then Theorem 3 is trivially 
true. With this assumption, ~oo [ K(I, t) [ dt < oo and hence we may set 

Oo 

k(I, x) = ~ f _  o~ K(I, t) e**~dt. 

Lemma 8. For k sul/iciently large, 

[k(I, x) l < A4nk. 
We have 

<< f_~ I K(Lu)I I k(i, )l du 

= fl.l<..nplK(Z'u)[du+ fl.l>,~.p 
< 8 4nJO + f l  -I>4~kIo (24'*J~u)Nt~)du 

and the lemma follows immediately from here, since N(I) ~> 2. 

[K(I,u)] du 

(3.19) 
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4. Completion of the proof of Theorem 3 

In  order to simplify our notation, we shall now assume that  ~H, the abscissa of 
holomorphy of the function f(s), is equal to zero and that  the sequence of partial 
sums {Snz(s)} converges in a neighbourhood of the origin. I t  is clear that  these 
assumptions involve no loss of generality. The aforementioned neighbourhood of 
the origin must contain a square of the form I a [ ~< A, I tl ~< A. Let  us choose T < A 
and let us define the number 8 of (3.15) by 

= rain(T/2, ~/2),  (4.1) 
2 ( D + l ) p  

where D is given by (1.2). Then, if IG T~, the function K(I,  t) is an integral function 
of order 1, with type not exceeding T. The theorem of Paley and Wiener ([7], p. 16) 
then assures us that  k(I, x) vanishes for lxl/> T. We define 

rt k 

R~(s) -~ /(s) - ~, an e -as" (4.2) 
1 

and ]n~(s) = R~(s) e a'~s. (4.3) 

For I G T k and ~/'> 0, we set ~7 = ~7 ' +  i~7" and then we see tha t  

--- ~ a~K(I,2~)e(a"k -~rq. 
nk+l 

But K(I,2~)= 0 whenever ,~eJk(I) and therefore, if I~k denotes the first interval of 
S such that  IN~+ IIN~IE intersects the interval [(1 +/z)2"~,~), 

f S r I~(~1 + it) k(I, t) e-*a~,tdt = 

f S  k(I't'eX"nl ~ ~" ane-a"(n+'t)ldt÷ ~ ~" anK(I'2n)e(X"-")n" 
r ( N~Nk~aGI N J IN~ g(1) 2aGl N 

(4.4) 

Lemma 9. There exists a positive number Ao=AoO 7, T, A) and a positive integer 
ko = ko07, T, A, !~) such that/or k >1 ko, 

. . . .  (~t~ -2~)~/ ~< A ~2 £ ~ - A e 2  n. ~-  
[ IN~(1 ) Znel2f~ anK(1,hn)e [ -~.z~lt., ,e . T e-½n'ua.,}. 

We are going to use the equality (4.4). We begin by obtaining an estimate for 
IR ( ll on the segment It I of the imagmary ads. We write the 
intervals of S in a sequence {Ip} such that  d(I~, 0) increases with 10 and we denote 
by m v the first integer such tha t  ~mfiI~. We recall that  I Ivl = o(~tm~ ). Let M~ be the 
smallest member of the sequence {m~} such that  2Mk ~>2~ k. Then, for Re(s) >0, we 
may write 
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Mk-1 mv+l-I 

/~k(s) = 5 an e -~s+  5 5 an e-~s. (4.5) 
nk+l mu~M k m~ 

Let C denote the disc ] s - I A  I <Al l6 ;  then C is contained in the square <A, 
Itl ~<A and hence if sEC there is a k:(A, 8) such that  for k ~>k:(A, s), 

But  C is contained in the half-plane of holomorphy of the function/(s).  Therefore 
for each sEU there is a/c2(A, 8) such that  for ]~ >~/c~.(A, s), 

I I Zane -~'' 4½. 
MS I 

Writing k ' (A,s)= max (kx, k2), we have 

M~-I ~ 1 
an e_ ~ s 

nk+l 
(4.5 a) 

for sEC and k>~k'. Let  Q(K) denote the set of points of C for which (4.5a) holds for 
all k >1 K. Q(K) is clearly closed in C and C = U ~=:Q(K). The Baire category theorem 
then tells us that  one of the sets Q(K) contains an open disc U; i.e. there is a k"(A) 
such that  (4.5a) holds for any s in U and any k>~k"(A). Similarly, we can show that  
there is an integer K'(A) and an open disc U' contained in U such that  

for m~ >~ Mk, k ~> K '  and s E U'. 
Now suppose that  Re(a) = A; then using Theorem 5 with e = ~A, we see that  

I Rk( )l 2: 
mv>~ M k 

and since lira inf (2.~.1-2my ) ~>q>0, this implies tha t  

I Rk(8) I < exp ( -  q~,,/4). (4.6) 

Let  rx denote the segment I t [ ~< A of the line a = A and let r~ denote the remaining 
par t  of the boundary of the square l a[ ~<A, It] ~<A. The inequality (4.6) gives us an 
estimate for IRk(s)] on rx and, by  hypothesis, IRk(a)]< 1 on r2, ff k is sufficiently 

• large. The Two Constants Theorem then tells us tha t  there exists w =w(A, T) with 
,0 < w < 1, such that  for k >~/c0(A ), 

sup Rk(it) <~ exp ( -- qAw2nJ4). (4.7) 
It ~<1" 
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Next, we use (4.7) to obtain an upper bound for I/~(~ +/t) l as t varies in It I ~< T. 
This will, in turn, give us an estimate for the integral on the left of the equality 
(4.4). Let  us suppose first, tha t  Re(s) >I 2s. We multiply the equality (4.5) by  e~k ~ and 
then apply Theorem 5. This yields 

{ " l <~ ea, k ~ 1 + ~ e -oq(~'-~) 
0~0 J 

and hence, for Re(8)/> 2 e and k ~> k0(, ), 

Now suppose that  0 ~< Re (s) ~< 2 e and that  I t I <~ T'. By an application of Theorem 5, 

and hence 

for k >/ko(e ). On combining (4.8) and (4.9), we see that  (4.9) holds whenever s belongs 
to the rectangle 0~Re(8)  <2~/, Itl < T '  and k>~ko(e ). But, by  (4.7), 

I s~ p't t'~'(it)] = ItI<T'sup IRk(it) <~ exp ( -- qAw)~J4). (4.10} 

Therefore, by the Two Constants Theorem, there exists a positive A0=A0( ~, T, A), 
such that,  for k sufficiently large and ~" <~ (T' - T)/2 

sup I/.~(~ + it)l <<. e x p  ( - Ao~n~). (4.11), 
Itl<~" 

By combining (4.11) with Lemma 8, we can now obtain an estimate for the integral 
on the left-hand side of (4.4). We have 

If + it)k(I,t)e-a.,~dt I <~ A2~,e-A*~,, (4.12), 

for k sufficiently large. 
We now consider the first term on the right-hand side of (4.4). Applying Theorem 

5 as above, we obtain 

:.  , , ~< e ~ ,  ' ,_ e-(~'-~)~, 

~< A exp {e:tnk + (~' - e)($n. - 2o~)}, (4.13), 
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for k>~ ko(e,~l). But, for large k , )~ , - t , ,>~/~2nk-  e2n, and therefore 

a,~e(~,,~-;t~)(n+u) ] <~ A exp {J.n~,[e - (7" - ~) (F -- e)]} y 
N>N k ;~n~llg 1 

< l e x p  ( - ~'~t.~/2), (4.14) 

provided that  we choose e ~<U'#/{2(U' +#  + 1)} and k larger than a certain ko( U,/~). 
On combining (4.14) with Lemma 8, we have, for k>~ko(~ l,/~), 

T N ~ N  k l ~ ' I  N 

Lemma 9 follows from (4.12) and (4.15). 
When we use the ordering relation defined in section 2, Lemma 9 gives 

+<~1~,~I K(J,I,~) 

+ A)~{ e-A4-k + e-n"a-d~}, (4.16) 

for any I e T,. By theorem 4, 

~ a~K(J't~)e(a'-a")'L K(I'~"~) i ] a,~.~ K(J,).,~) <~ ~ a'~K(J'~t")e(X"l'-x")n 
Inky 

In(J)) ~G.r tv<<.n(s) I ~\K(J, t ) lJe=~ 

If we substitute this expression in (4.16) and use Lemma 7, we obtain 

[ A2.~ \g(s,~)/ L \n(S)l I 
+ .f<,Z [ B )  | ~ |  [ Z a,~K(J,i,~) e(~"~-a",'7" (4.17) 

\-°nt"s )l I a,~J 

Since (4.17) holds for any choice of the interval IETk, we may apply Lemma 3, 
which yields 

Ine I 

x supremum [ t  A2n. ~(' . ' )  [ A2., ~(v.w) i ~' '  ~"<s) [ in, ~.(w)] (4.18) 
v,,<v . . . . .  .,-.<x L\~(S,J)/ ""\.a(V, W)] "\n-iT~] ""\~--O~V-~M J 

where r( I)  denotes the number of intervals of i which are less than I. We shall 
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obtain an upper bound for the supremum appearing in (4.18). Suppose that  
W < V < . . .  < J < I and let us write 

~h(I) = ~(I,  J )  + ... +~,( V, W) 

and m(I) = n(J) + ... +n(V) +n(W). (4.20) 

The quantities ~ ( I )  and re(I) depend on the choice of the intervals J ..... V, W but 
there is a number C, depending only on the sequence {2.}, such that  ~ ( I )<~CII  I 
and m(I)<~CII I. Next, we note tha t  

= \g(7) /  w)t {1+ (4.21) 

and similarly 

B---~))] " " \ ~ ]  = ~Bm(I)] n(J)!...n(W)! 

Now Lemma 2 ensures that,  if K < J < I ,  then n(K)<~n(J)/4<~n(I)/16 and hence, as 
is easily deduced, ~(J, K) <~(I, J)/2. We are, therefore, entitled to use the following 
lemma, which is easily proved by  induction. 

Lemma 10. I[ we are given n numbers, a 1 .... , a, such that,/or 1 <~r<~n-1, O<a~<~ 
at+l/2, then 

(a l+ ... + a,)[ ~< 4(a,+...+a,)" 
h i !  . . .  a,J 

On applying Lemma 10, we obtain from (4.18), (4.21) and (4.22) 

I ~ a.K(l,~)eC~.,-~.'71~ e°~..' (e-Ao'. + e-'r"~../2 }. (4.23) 

Since (4.23) holds in a neighbourhood, we may  apply Theorem 4 with Ck(z, s)= 
e -~ e(Z-~.2'~/K(I, z). We then use Lemma 6 and Leibnitz formula and we see that,  

~. a.e-:t. 8 <eA,~.k{e-a.a,,~+e-'7"~'a,,~,a}e(¢~-~,*~)('l"-~°e-;~.d, (~eI ) .  (4.24) 

We choose /z so small tha t  A l p ~ A o / 3  and then, keeping /~ fixed, we choose ~' 
larger than 6A 1. Then 

ane -~.s <~ {e-2A,~.k/8 + e-n'~'.k Is} e(~,-~,~,)¢,7"-,,) e-X.k,, 
a.et 

and hence 
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I 

y. ~.,M." j < {e-A.~.; ~ + ~-",'.~-,,,2 -~} ~-~-e, 
;laeI 

provided t h a t  a > - ~ / '  and  

sup ($~ - ~ . )  ~< 2n, m i n  (,u/12, Ao/6~7' ). 
~kel 

(4.25) 

(4.26) 

We denote  b y  Uk, the  set of I E T~ for which (4.26) holds. Then,  by  (4.25), the  double 
series 

a g -2ns 

k ~ l  _rE r]~ Lane/ J 

converges in  some half-plane of the form R e ( s ) > - d ,  (d>0) ;  here we have used 
Theorem 5. Since (4.26) gives us gaps of the  requi red  type, this suffices to prove 
Theorem 3. 
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