1.69 06 1 Communicated 9 April 1969 by LENNART CARLESON

On a problem of Smirnov

By PER ENFLO

From the theorem that every separable metric space is isometric with a subset of C(0, 1) and the theorem that all separable Banach spaces are homeomorphic it follows that every separable metric space is homeomorphic with a subset of $L_2(0, 1)$. In this paper we shall construct a countable metric space which is not uniformly homeomorphic with any subset of $L_2(0, 1)$. This gives a negative answer to a question asked by Smirnov. This question is the theme in [3] where among other things it is proved that Euclidean *n*-space is uniformly homeomorphic with a bounded subset of $L_2(0, 1)$. The question is also treated in [2] where a result in the negative direction is obtained and in [1] where a stronger result is obtained.

1. A geometric property of $L_2(0,1)$

We shall say that a set of 2n+2 points in a metric space is a double *n*-simplex if the points are written $a_1, a_2, ..., a_{n+1}, b_1, b_2, ..., b_{n+1}$. We shall call a pair of points (a_i, a_j) or (b_i, b_j) $i \neq j$ an edge and a pair of points (a_i, b_k) a connecting line. We shall say that a metric space M has generalised roundness p, if p is the supremum of the q's with the property: for every $n \ge 1$ and every double *n*-simplex in $M, \sum c_{\alpha}^{q} \ge \sum s_{\beta}^{q}$ where c_{α} runs through the lengths of all connecting lines and s_{β} runs through the lengths of all edges. In [1] we defined roundness to be the supremum of the q's for which the inequality holds for double 1-simplexes. It is obvious that the generalised roundness is not larger than the roundness. In [1] it was proved that $L_p(0, 1)$ $1 \le p \le 2$ has rundness p. If a metric space has the property that some pair of points (a_1, a_2) has a metric middle point m then its roundness and thus its generalised roundness is not larger than 2. We see this by choosing $b_1 = b_2 = m$.

Since in every double (n-1)-simplex there are n^2 connecting lines and n(n-1) edges the generalised roundness of a metric space is ≥ 0 . If in a double (n-1)-simplex we put the lengths of all connecting lines $=\frac{1}{2}$ and the lengths of all edges =1 then it is easy to see that we get a metric space with generalised roundness $-^{2}\log(1-1/n)$ which tends to 0 as $n \to \infty$. If in a double (n-1)-simplex we put instead the lengths of all connecting lines $=(1-1/n)^{1/q}, (1-1/n)^{1/q} \geq \frac{1}{2}, q > 0$, it is easy to see that we get a metric space with generalised roundness q.

Theorem 1.1. $L_2(0, 1)$ has generalised roundness 2.

Proof. Since $L_2(0, 1)$ has roundness 2, the generalised roundness is not larger than 2. Thus it is enough to prove $\sum c_{\alpha}^2 \ge \sum s_{\beta}^2$ for all double *n*-simplexes in $L_2(0, 1)$. This inequality is for a double (n-1)-simplex equivalent with the inequality

P. ENFLO, On a problem of Smirnov

$$\int_{0}^{1} \left(\sum_{\substack{1 \le i \le n \\ 1 \le i \le n}} (a_i - b_j)^2 - \sum_{1 \le i < j \le n} (a_i - a_j)^2 - \sum_{1 \le i < j \le n} (b_i - b_j)^2 \right) dx \ge 0$$

which holds since the integrand is equal to

$$(\sum_{1\leqslant i\leqslant n}a_i-\sum_{1\leqslant i\leqslant n}b_i)^2.$$

Remark. The identity above gives $\sum c_{\alpha}^2 = \sum s_{\beta}^2$ when the two simplexes have the same centre of gravity. For double 1-simplexes this is the parallellogram theorem.

2. Universal uniform embedding spaces

We shall say that a metric space M is a universal uniform embedding space if every separable metric space is uniformly homeomorphic with a subset of M. C(0, 1) is a universal uniform embedding space since every separable metric space is isometric with a subset of C(0, 1). We now prove

Theorem 2.1. Every universal uniform embedding space has generalised roundness 0.

Proof. We prove that a metric space with generalised roundness p > 0 is not a universal uniform embedding space.

Consider the metric space $M = \{\exp((2\pi ki)/2^{n+1}), k = 0, 1, 2, ..., (2^{n+1}-1)\}$ where *n* is an even number. Take the product M_n of n^n such spaces and define a metric in M_n by letting the distance between two points in M_n be the largest of the distances in the coordinate spaces. We shall say that a pair of points (a, b) in M_n is an *m*-segment if the coordinates of *a* and *b* are different in exactly n^m coordinate spaces, and the difference between the coordinates in each of these spaces is $\exp(((2\pi ki)/2^n) \times (\exp(\pi i/2^m) - 1))$ where *k* may depend on the coordinate space.

We shall consider double (n-1)-simplexes in M_n where every connecting line is an (m+1)-segment and every edge is an *m*-segment. In such a double (n-1)-simplex every connecting line has length $|\exp(\pi i/2^{m+1})-1|$ and every edge has length $|\exp(\pi i/2^m)-1|$. If there exists such a double (n-1)-simplex then, by symmetry, it follows that for fixed *m*, all *m*-segments in M_n are edges in the same number N_1 of double (n-1)-simplexes of that type and all (m+1)-segments in M_n are connecting lines in the same number N_2 of double (n-1)-simplexes of that type. For if s_1 and s_2 are two *m*-segments then there is an isometry of M_n onto itself by which s_2 is the image of s_1 and the image of each *k*-segment is a *k*-segment. We now prove the existence of such a double (n-1)-simplex, $1 \le m \le n-1$.

We consider an ordering of the coordinate spaces and divide the first n^{m+1} coordinate spaces into 2n groups with $n^m/2$ coordinate spaces in each. We let the coordinates of a point in one of the simplexes be $\exp(\pi i/2^m)$ in all coordinate spaces of one of the first n groups and be 1 in the remaining coordinate spaces of the first n groups. The coordinates are $\exp(\pi i/2^{m+1})$ in all the remaining coordinate spaces of M_n . We let the coordinates of a point in the other simplex be $\exp(\pi i/2^m)$ in all coordinate spaces of the last n groups and be 1 in the remaining coordinate spaces of M_n . The coordinates are $\exp(\pi i/2^{m+1})$ in all the remaining coordinate spaces of the last n groups. The coordinates are $\exp(\pi i/2^{m+1})$ in all the remaining coordinate spaces of the last n groups. The coordinates are $\exp(\pi i/2^{m+1})$ in all the remaining coordinate spaces of M_n . This double (n-1)-simplex has the required properties.

If M_n is embedded in a metric space B with generalised roundness p > 0 then we get $\sum d_{\alpha_1,m+1}^p \ge \sum d_{\alpha_2,m}^p$ for every double (n-1)-simplex of the type described above,

ARKIV FÖR MATEMATIK. Bd 8 nr 12

where $d_{\alpha_l,k}$ runs through the lengths of the images of k-segments. We add all these inequalities for a fixed m. Then we get an inequality where all lengths of images of m-segments appear N_1 times on the right side and all lengths of images of (m+1)segments appear N_2 times on the left side. Since there are n^2 connecting lines and n(n-1) edges in each double (n-1)-simplex we get $S(d_{\alpha,m+1}^p) \ge [(n-1)/n]S(d_{\alpha,m}^p)$ where $S(d_{\alpha,k}^p)$ is the arithmetic mean of the *p*th powers of the lengths of the images of the k-segments. If we apply this last inequality n-1 times we get $S(d_{\alpha,n}^p) \ge [(n-1)/n]S(d_{\alpha,n}^p) \ge [(n-1)/n]^{n-1}S(d_{\alpha,1}^p)$. From this we get $\sup d_{\alpha,n}^p \ge 1/e \inf d_{\alpha,1}^p$ and $\sup d_{\alpha,n} \ge (1/e)^{(1/p)}$ (inf $d_{\alpha,1}$).

Now we take the union of a countable family of sets M_n where we let n tend to infinity. We put the distance between two points in different M_n 's = 2. If this metric space were uniformly homeomorphic with some subset of B and T were a uniform homeomorphism then $\inf d_{\alpha,1} \ge \varepsilon$ for some $\varepsilon > 0$ and all spaces M_n . But then $\sup d_{\alpha,n} \ge (1/\varepsilon)^{1/p} \cdot \varepsilon$ for all n and this contradicts that T is uniformly continuous. The theorem is proved.

Remark. By a modification of the last construction of the proof we can get a metric space in which no non-void open set is uniformly homeomorphic with a subset of B.

Department of Mathematics, University of Stockholm, 113 85 Stockholm, Sweden

REFERENCES

- 1. ENFLO, P., On the non-existence of uniform homeomorphisms between L_p -spaces, Arkiv för matematik. (To appear.)
- LINDENSTRAUSS, J., On nonlinear projections in Banach spaces. The Michigan Math. Journal, 11, 263-287 (1964).
- 3. GORIN, E. A., On uniformly topological embedding of metric spaces in Euclidean and in Hilbert spaces. Uspehi Mat. Nauk 14, no. 5 (89), 129–134 (1959).

Tryckt den 18 december 1969

Uppsala 1969. Almqvist & Wiksells Boktryckeri AB