ARKIV FÖR MATEMATIK Band 8 nr 15

On the joint distribution of crossings of high multiple levels by a stationary Gaussian process

By Clifford Qualls

1. Introduction

Let $\{\xi(t),-\infty<t<\infty\}$ be a real stationary Gaussian process with zero mean function and having continuous sample paths with probability one. Denote the covariance function by r (taking $r(0)=1$ for convenience), and the corresponding spectral distribution function by F. Let μ be the expected number of upcrossings of the level u by $\xi(t)$ in a t-interval of length 1.

Under certain conditions, H. Cramér [2, pp. 258 ff.] has shown that the number of upcrossings by $\xi(t)$ during a t-interval of length T of a single level tending to infinity is asymptotically Poisson distributed with parameter τ, provided T is chosen tending to infinity according to $T=\tau / \mu$. Cramér's conditions for validity have been weakened, in slightly different directions, by Belayev [1] and the author [3].

In this paper we show that a multivariate Poisson distribution is obtained in the analogous situation for upcrossings of multiple levels. The conditions for validity are the weakened ones of [3]. For the following precise statement of the result we need some notation. Let $0<p_{i} \leqslant p_{l-1} \leqslant \ldots \leqslant p_{1} \leqslant p_{0}=1$, and consider the levels $u, u-\left(\ln p_{1}\right) / u, \ldots, u-\left(\ln p_{l}\right) / u$, and the t-interval $(0, T)$ where $T=\tau / \mu, \tau>0$.

Let $N_{0}, N_{1}, \ldots, N_{l}$ be the numbers of upcrossings by $\xi(t)$ during time T of these $l+1$ levels in the order listed.

Theorem 1.1. If the stationary Gaussian process $\xi(t)$ satisfies
(1) $\lambda_{2}=-r^{\prime \prime}(0)$ exists and $\int_{0}^{\delta}\left(\lambda_{2}+r^{\prime \prime}(t)\right) / t d t<\infty$, for some $\delta>0$,
or equivalently, $\int_{0}^{\infty} \log (1+\lambda) \lambda^{2} d F(\lambda)<\infty$, and
(2) $r(t)=0\left(t^{-\alpha}\right)$ as $t \rightarrow \infty$ for some $\alpha>0$,
then
c. Qualls, Joint distribution of crossings

$$
\lim _{u \rightarrow \infty} P\left\{N_{i}=k_{i}, i=0, \ldots, l\right\}=\left\{\begin{array}{l}
p\left(k_{0} ; \tau\right) \prod_{i-1}^{l} b\left(k_{i} ; k_{i-1}, p_{i} / p_{i-1}\right) \\
\left(i f 0 \leqslant k_{l} \leqslant \ldots \leqslant k_{0} \text { and } k_{i} \text { are integers }\right) \\
0 \text { otherwise }
\end{array}\right.
$$

In this theorem $p(k ; \tau)$ and $b(r ; n, p)$ are Poisson and binomial probabilities respectively.
The proof of this theorem is accomplished by dividing $(0, T)$ alternately into two types of subintervals. The t_{1}-intervals are chosen long enough to have one upcrossing of the different levels with appropriate small probabilities, but not more than one upcrossing. The interspaced t_{2}-intervals are chosen short enough to have no upcrossings, but long enough that the upcrossings of different t_{1}-intervals are asymptotically independent. This binomial situation leads to the Poisson distribution in the limit. This is the method of proof used by Cramér.

In the concluding remarks we note that the multiple levels given above are the only meaningful choices.

2. Preliminaires

Choose β such that $0<\left(k_{0}+\ldots+k_{l}+4\right) \beta<\alpha<1$. Let $M=\left[T \mu^{-\beta}\right]$ where [] denotes the greatest integer function, $q=T / M$. Let $m_{1}=\left[\mu^{-1}\right], t_{1}=m_{1} q, m_{2}=\left[\mu^{\beta-1}\right]$, $t_{2}=m_{2} q$, and $n=\left[M /\left(m_{1}+m_{2}\right)\right]+1$. Note that as $u \rightarrow \infty, q \sim \mu^{\beta} \rightarrow 0, t_{1} \sim \mu^{\beta-1} \rightarrow \infty$, $t_{2} \sim \mu^{2 \beta-1} \rightarrow \infty$, and $n \sim \tau \mu^{-\beta} \rightarrow \infty$. Let $\xi_{q}(t)=\xi(t)$ for $t=k q, k=0, \ldots, M$ and be the linear interpolation between the $\xi(k q)$. Let N_{i}^{α} be the number of upcrossings of the i th level by $\xi_{q}(t)$ during $(0, T)$.

Lemma 2.1. If $\xi(t)$ satisfy the condition that $r^{\prime \prime}(0)$ exists, then $\lim _{u \rightarrow \infty}\left(P\left\{N_{i}=k_{i}\right.\right.$, $\left.i=0, \ldots, l\}-P\left\{N_{i}^{q}=k_{l}, i=0, \ldots, l\right\}\right)=0$. The proof follows easily from the single level proof [see 2, p. 260].

Lemma 2.2. Under conditions 1) and 2) of Theorem 1.1, we have as $u \rightarrow \infty$

$$
\begin{aligned}
& P\left\{N_{i}^{q}\left(t_{1}\right)=0\right\}=1-p_{i} q+o(q) \\
& P\left\{N_{i}^{q}\left(t_{1}\right)=1\right\}=p_{i} q+o(q) .
\end{aligned}
$$

Proof. For any non-negative integer valued random variable ν, we have

$$
E v-E \nu(v-1) \leqslant P\{\nu=1\} \leqslant 1-P\{\nu=0\} \leqslant E v
$$

Take $\nu=N_{i}^{q}\left(t_{1}\right)$, and divide the above string of inequalities by $p_{i} q$. Note that a modification of lemma 2.1 of [3] gives $E N_{i}^{q}(q)=p_{i} q \mu+o(q \mu)$ and therefore

$$
E N_{i}^{q}\left(t_{1}\right)=p_{i} q+o(q)
$$

as $u \rightarrow \infty$. The final and crucial step is to apply a modification of theorem 2.2 of [3], which_states ($1 / q) E \nu(\nu-1) \rightarrow 0$ as $u \rightarrow \infty$. Q.E.D.

We shall need the following additional notation.
On the ($0, T$) interval mark off intervals of lengths t_{1} and t_{2} alternately, beginning with a t_{1}-interval. Define for $r=1,2, \ldots, n$ and $i=0, \ldots, l$
${ }_{i} c_{r}=\left\{\right.$ exactly one ξ_{q} upcrossing of the i th level in the r th t_{1}-interval $\}$
${ }_{i} d_{r}=\left\{\right.$ at least one ξ_{q} upcrossing of the i th level in the r th t_{1}-interval $\}$
${ }_{i} e_{r}=\left\{\xi(\nu q)>u-\ln p_{i} / u\right.$ for at least one νq in the closed r th t_{1}-interval $\}$
${ }_{i} C_{k_{i}}=\left\{{ }_{i} c_{r}\right.$ occurs in exactly k_{i} of the $n t_{1}$-intervals of $(0, T)$ and ${ }_{i} c_{r}^{*}$ occurs in the remaining $n-k_{i} t_{1}$-intervals $\}$
$\left.\begin{array}{l}{ }_{i} D_{n_{i}} \\ { }_{i} E_{k_{i}}\end{array}\right\}$ similarly defined.

3. Proof of Theorem 1.1

Lemma 3.1. Under conditions 1) and 2) of theorem 1.1, we have

$$
\lim _{u \rightarrow \infty}\left[P\left\{N_{i}^{q}=k_{i}, i=0, \ldots, l\right\}-P\left(\bigcap_{i=0}^{l}{ }_{i} E_{k_{i}}\right)\right]=0
$$

Proof. We shall proof

$$
\begin{aligned}
& \Delta_{1}=P\left\{N^{q}=k_{i}, i=0, \ldots, l\right\}-P\left(\bigcap_{i=0}^{l} C_{i} C_{k_{i}}\right), \\
& \Delta_{2}=P\left(\bigcap_{i=0}^{l}{ }_{i} C_{k_{i}}\right)-P\left(\bigcap_{i=0}^{l}{ }_{i} D_{k_{i}}\right), \\
& \Delta_{3}=P\left(\bigcap_{i=0}^{l}{ }_{i} D_{k_{i}}\right)-P\left(\bigcap_{i=0}^{l}{ }_{i} E_{k_{i}}\right)
\end{aligned}
$$

and
all approach zero as $u \rightarrow \infty$. First, we need only consider upcrossings in the t_{1} intervals. Since

$$
1-P\left\{N_{i}^{a}\left(t_{2}\right)=0\right\} \leqslant E N_{i}^{q}\left(t_{2}\right)=p_{i} t_{2} \mu+o\left(t_{2} \mu\right)=0\left(t_{2} \mu\right)
$$

P \{at least one ξ_{q} upcrossing of at least one level in at least one of the $n t_{2}$-intervals of $(0, T)\}=0\left(n \cdot l \cdot t_{2} \mu\right)=0\left(\mu^{\beta}\right)$, which approaches zero as $u \rightarrow \infty$. Second, P (more than one ξ_{q} upcrossing in at least one of the $n \cdot(l+1) t_{1}$-intervals $\}=n \cdot(l+1) \cdot o(q)=o(n q)=$ $o(1)$ as $u \rightarrow \infty$. These facts show that $\Delta_{1} \rightarrow 0$ and $\Delta_{2} \rightarrow 0$ as $u \rightarrow \infty$.

To evaluate Δ_{3}, we see that the event $\bigcap_{i=0}^{l}{ }_{i} E_{k_{i}}$ is the union of $\binom{n}{k_{0}}\binom{n}{k_{1}} \ldots\binom{n}{k_{l}}$ different combinations of the more elementary events ${ }_{i} e_{r}$. Without loss of generality consider the particular combination

$$
G={ }_{0} e_{1} \cdots{ }_{0} e_{k_{0} 0} e_{k_{0}+1}^{*} \cdots{ }_{0} e_{n}^{*} \cdots{ }_{l} e_{1} \cdots{ }_{l} e_{k_{l}} e_{k_{l}+1}^{*} \cdots{ }_{l} e_{n}^{*}
$$

The event $\bigcap_{i=0}^{l} D_{k_{i}}$ can be similarly decomposed with H corresponding to the event G with e's replaced by d 's.

Now ${ }_{i} d_{r} \subset{ }_{i} e_{r}, e_{i}^{*} \subset{ }_{i} d_{r}^{*}$, and ${ }_{i} d_{r}^{*}-{ }_{i} e_{r}^{*}={ }_{i} e_{r}-{ }_{i} d_{r}$, so it is easy to show that ${ }_{i} e_{r} A-$ ${ }_{i} d_{r} B \subset\left({ }_{i} e_{r}-{ }_{i} d_{r}\right) \cup(A-B),{ }_{i} e_{r}^{*} A-{ }_{i} d_{r}^{*} B \subset A-B,{ }_{i} d_{r}^{*} A-{ }_{i} e_{r}^{*} B \subset\left({ }_{i} e_{r}-{ }_{i} d_{r}\right) \cup(A-B)$, and

C. Qualls, Joint distribution of crossings

${ }_{i} d_{r} A-{ }_{i} e_{r} B \subset A-B$. Therefore $G-H \subset \bigcup_{i=0}^{l} \quad \bigcup_{r=1}^{k_{i}}\left({ }_{i} e_{r}-{ }_{i} d_{r}\right)$, and $H-G \subset \bigcup_{i=0}^{l}$ $\bigcup_{r=k_{i}+1}^{n}\left({ }_{i} e_{r}-{ }_{i} d_{r}\right)$. Consequently

$$
\begin{aligned}
|P H-P G| & \leqslant P(H-G)+P(G-H) \\
& \leqslant \sum_{i=0}^{l} \sum_{r=1}^{n} P\left({ }_{i} e_{r}-d_{i} d_{r}\right) \leqslant(l+1) n P\left({ }_{i} g_{r}\right),
\end{aligned}
$$

where ${ }_{i} g_{r}=\left\{\xi\left(\nu_{r} g\right) \geqslant u-\ln p_{i} / u\right\}, \nu_{r} q$ is the left end point of the r th t_{1}-interval, and ${ }_{i} e_{r}-{ }_{i} d_{r} \subset{ }_{i} g_{r}$.

Finally since $P\left(g_{t}\right)=0\left(u^{-1} \exp \left\{-u^{2} / 2\right\}\right)$ and $\binom{n}{k_{i}}=0\left(n^{k_{i}}\right)$ we have

$$
\begin{aligned}
\Delta_{3} & =0\left(n^{\left(\Sigma k_{i}+1\right)} u^{-1} \exp \left\{-u^{2} / 2\right\}\right) \\
& =0\left(\exp \left\{-\frac{1-\left(\Sigma k_{i}+1\right) \beta}{2} u^{2}\right\}\right)
\end{aligned}
$$

which approaches zero as $u \rightarrow \infty$ by the choice of β. Q.E.D.
The events ${ }_{i} E_{k_{i}}$ have the important simplifying property that ${ }_{i} e_{r} \subset_{x} e_{r}$, if $\varkappa<i$. Therefore we need only consider the case when $0 \leqslant k_{l} \leqslant \ldots \leqslant k_{0}$, since $G=\phi$ otherwise.

Further, in light of Lemma 2.1, Lemma 3.1, and the fact that Theorem 1.1 has been established for the single level [3], it suffices to show

Lemma 3.2. For $0 \leqslant k_{i} \leqslant \ldots \leqslant k_{0}, k_{i}$ integers, we have

$$
P\left[i E_{k_{i}} / \bigcap_{j=0}^{i-1}, E_{k_{j}}\right] \rightarrow b\left(k_{i} ; k_{i-1}, p_{i} / p_{i-1}\right) \quad \text { as } \quad u \rightarrow \infty
$$

Proof. Since ${ }_{j} e_{r} \subset_{k} e_{r}$ for $k<j$, the conditioning event $\bigcap_{j=0}^{i-1}{ }_{j} E_{k j}$ simplifies to a union of $\binom{n}{k_{0}}\binom{k_{0}}{k_{1}} \cdots\binom{k_{i-2}}{k_{i-1}}$ disjoint events G_{ϕ} where $G_{\phi}=\bigcap_{r=1}^{n} g_{r}$ and g_{r} equals e_{r}^{*} for $n-k_{0}$ of the $n r$-subscripts, and equals ${ }_{j} e_{r+1} e_{r}^{*}$ for $k_{j}-k_{j+1}$ of the remaining $k_{j} r$-subscripts ($0 \leqslant j \leqslant i-2$), and equals ${ }_{i-1} e_{r}$ for the remaining $k_{i-1} r$-subscripts. Now suppose $P\left[{ }_{i} E_{k_{i}} / G_{\phi}\right] \rightarrow b$ as $u \rightarrow \infty$ uniformly for all permutations (or better partitions) ϕ. Since $\bigcap_{j=0}^{i=1}{ }_{j} E_{k_{j}}=\biguplus_{\phi} G_{\phi}$ and

$$
P\left[E_{k_{i}} / \bigcup_{\phi} G_{\phi}\right]-b=\frac{\sum_{\phi}\left\{P\left[i E_{k_{i}} / G_{\phi}\right]-b\right\} P G_{\phi}}{\sum_{\phi} P G_{\phi}}
$$

it follows that $\left|P\left[{ }_{i} E_{k_{i}} / G_{\phi}\right]-b\right|<\varepsilon$ for all ϕ implies $\left|P\left[{ }_{i} E_{k_{i}} / \cup_{\phi} G_{\phi}\right]-b\right|<\varepsilon$.
Therefore we need only show $P\left[{ }_{i} E_{k_{i}} / G_{\phi}\right] \rightarrow b\left(k_{i} ; k_{i-1}, p_{i} / p_{i-1}\right)$ uniformly in ϕ. For convenience in notation in the remainder of this proof, we show

$$
P\left[{ }_{i} E_{k_{i}} / G\right] \rightarrow b\left(k_{i} ; k_{i-1}, p_{i} / p_{i-1}\right)
$$

for the particular $G=\bigcap_{r=1}^{n} g_{r}$ where g_{r} is ${ }_{i-1} e_{r}$ for $r \leqslant k_{i-1}, j e_{r j+1} e_{r}^{*}$ for $k_{j+2}<r \leqslant k_{j}$ $(0 \leqslant j \leqslant i-2)$, and ${ }_{0} e_{r}^{*}$ for $r>k_{0}$; and then note these calculations apply in a uniform manner to all G_{ϕ}. One other reduction can be made along these lines. Since ${ }_{i} E_{k_{i}} \cap G$ is a finite union of $\binom{k_{i-1}}{k_{i}}$ disjoint events and $b\left(k_{i}, k_{i-1}, p_{i} / p_{i-1}\right)$ is the sum of $\binom{k_{i-1}}{k_{i}}$ equal probabilities, we show without loss of generality that

$$
\begin{align*}
P\left[i, ~ e_{1} \ldots e_{i} e_{k_{i}-1} e_{k_{i}+1} e_{k_{i}+1}^{*} \cdots{ }_{i-1} e_{i_{i} i-1}\right. & \left.e_{k_{i-1}}^{*} g_{k_{i}-1}+1 \ldots g_{n}\right] / P G \\
& \rightarrow\left(p_{i} / p_{i-1}\right)^{k_{i}}\left(1-p_{i} / p_{i-1}\right)^{k_{i-1}-k_{i}}
\end{align*}
$$

Since the events g_{r} that determine both the numerator and denominator of (\dagger) depend only on two levels at a time, it turns out that all calculations typical of (\dagger) are shown even if we only demonstrate (\dagger) for $i=1$. Therefore consider

$$
\Delta=P K-\pi_{1}^{k_{1}}\left(\pi_{0}-\pi_{1}\right)^{k_{0}-k_{1}}\left(1-\pi_{0}\right)^{n-k_{0}}
$$

where the event

$$
K={ }_{1} e_{1} \cdots{ }_{1} e_{k_{1}} e_{k_{k_{1}+1}} e_{k_{k_{1}+1}}^{*} \cdots{ }_{0} e_{k_{0}} e_{k_{0} 0}^{*} e^{*} e_{k+1} \cdots \rho_{n}^{*}
$$

and $\pi_{i}=P\left\{\left\{_{i} e_{r}\right.\right.$. Stationarity of $\xi(t)$ assures π_{i} is independent of r. Suppose there are L points of the form νq belonging to the n closed t_{1}-intervals of ($0, T$), then $(n-1)\left(m_{1}+1\right)<L \leqslant n\left(m_{1}+1\right)$. The corresponding L random variables $\xi(\nu q)$ have a Gaussian density $f_{1}\left(y_{1}, \ldots, y_{L}\right)$ and covariance matrix Λ_{1}. So

$$
P K=\int_{K} f_{1}\left(y_{1}, \ldots, y_{L}\right) d y_{1} \ldots d y_{L} \equiv F(1)
$$

Now if the random variables $\xi(v q)$ corresponding to points $v q$ belonging to different t_{1}-intervals were independent, the corresponding covariances would be zero. Let Λ_{0} be the resulting covariance matrix obtained from Λ_{1} by zeroing out these covariances and $f_{0}\left(y_{1}, \ldots, y_{L}\right)$ the corresponding Gaussian density. Now, by independence, f_{0} factors and

$$
\begin{aligned}
F(0) & \equiv \int_{K} f_{0}\left(y_{1}, \ldots, y_{L}\right) d y_{1} \ldots d y_{L} \\
& =P\left({ }_{1} e_{1}\right) \ldots P\left(e_{1} e_{k_{1}}\right) P\left(e_{k_{1}+1} e_{k_{1}+1}^{*}\right) \ldots P\left(e_{0} e_{k_{1}} e_{k_{k_{0}}^{*}}^{*}\right) P\left({ }_{0} e_{k_{0}+1}^{*}\right) \ldots P\left({ }_{0} e_{n}^{*}\right) \\
& =\pi_{1}^{k_{1}}\left(\pi_{0}-\pi_{1}\right)^{k_{0}-k_{1}}\left(1-\pi_{0}\right)^{n-k_{0}} .
\end{aligned}
$$

Actually $P\left({ }_{0} e_{n}^{*}\right)=1-P\left(0_{0} e_{n}\right) \neq 1-\pi_{0}$ since the nth t_{1}-interval may be incomplete; but both approach 1 as $u \rightarrow \infty$, therefore we may take $\Delta=F(1)-F(0)$.

Now define $F(h)=\int_{K} f_{h}\left(y_{1}, \ldots, y_{L}\right) d y_{1} \ldots d y_{L}$, where f_{h} is the Gaussian density corresponding to the symmetric positive definite matrix $\Lambda_{h}=h \Lambda_{1}+(1-h) \Lambda_{0}$, $0 \leqslant h \leqslant 1$. So we have

$$
\begin{equation*}
F^{\prime}(h)=\sum \varrho_{i j} \int_{K} \frac{\partial f_{n}}{\partial \lambda_{i j}} d y_{1} \ldots d y_{L}=\sum \varrho_{i j} \int_{K} \frac{\partial^{2} f_{h}}{\partial y_{i} \partial y_{j}} d y_{1} \ldots d y_{L} \tag{*}
\end{equation*}
$$

where $\Lambda_{1}=\left(\varrho_{i j}\right), \Lambda_{h}=\left(\lambda_{i j}\right)$, and Σ extends over all $i<j$ for which the corresponding νq points belong to different t_{1}-intervals. The identity $\partial f_{h} / \partial \lambda_{i j}=\partial^{2} f_{h} / \partial y_{i} \partial y_{j}$ can be checked by differentiating the Fourier transform inversion formula for t_{h}.

In order to estimate the summands of $F^{\prime}(h)$, we wish to carry out the integration over K with respect to y_{i} and then y_{j}. There are three cases for the first integration

$$
\begin{equation*}
\int_{0 e_{T}^{*} \dot{R}} \frac{\partial^{2} f_{h}}{\partial y_{i} d y_{j}} d y_{i} d y_{j} d y^{\prime}=\int_{0 e_{r}^{*} \dot{R}} \frac{\partial f_{h}\left(y_{i}=u\right)}{\partial y_{j}} d y_{j} d y^{\prime} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\varepsilon_{1} e_{r} \hat{\mathbb{K}}} \frac{\partial^{2} f_{h}}{\partial y_{i} \partial y_{j}} d y_{i} d y_{j} d y^{\prime}=-\int_{\mathbb{I}_{\dot{r}}^{*} \dot{K}} \frac{\partial f_{h}\left(y_{i}=u_{1}\right)}{\partial y_{j}} d y_{j} d y^{\prime} \tag{ii}
\end{equation*}
$$

since the l.h.s. (left-hand side) minus the r.h.s. is an integral equal to zero.

$$
\begin{aligned}
& -\int_{0^{e} \dot{F} \dot{Z}} \frac{\partial f_{h}\left(y_{i}=u\right)}{\partial y_{j}} d y_{j} d y^{\prime}
\end{aligned}
$$

since the l.h.s. plus the second term of the r.h.s. with the use of case (i) and ${ }_{0} e_{r}^{*}=$ ${ }_{0} e_{r}^{*} e_{1} e_{r}^{*}$ is equal to the first term of the r.h.s. Here $d y^{\prime}=d y_{1} \ldots \hat{d y}_{i} \ldots \hat{d y_{j}} \ldots d y_{L}, u_{1}=$ $u-\ln p_{1} / u, \hat{K}$ is the event K with the e factors referring to the r th t_{1}-interval being deleted, and y_{i} corresponds to a $\xi(\nu q)$ belonging to the r th t_{1}-interval, and y_{j} corresponds to a different t_{1}-interval.

For the double integration with respect to y_{i} and y_{j}, there are six different cases. With y_{i} corresponding to the r th t_{1}-interval and y_{j} to the s th $(s \neq r)$, the cases are, according to the event being integrated:

$$
A={ }_{0} e_{r}^{*} e_{s}^{*}, B={ }_{1} e_{r 1} e_{s} ; C={ }_{1} e_{\tau 0} e_{s}^{*}, D={ }_{0} e_{r_{1}} e_{r}^{*} e_{0} e_{s}^{*}, E={ }_{1} e_{r 0} e_{s} e_{s}^{*},
$$

and $F={ }_{0} e_{r 1} e_{r}^{*} e_{{ }_{r 1}} e_{s}^{*}$. Cases A, B, and C are treated by Cramér [2, p. 268] for a single level. Applying cases (i), (ii) and (iii) and similar techniques for the second integration with respect to y_{j}, we obtain

Case D

$$
\begin{aligned}
& \int_{D \dot{K}} \frac{\partial^{2} f_{h}}{\partial y_{i} \partial y_{j}} d y_{i} d y_{j} d y^{\prime}=\int_{1 e_{\vec{r}}^{*} e_{j}^{*} \bar{K}} f_{h}\left(y_{1}=u_{1}, y_{j}=u\right) d y^{\prime} \\
& -\int_{\operatorname{De}_{r}^{*} 0_{i}^{*} \hat{R}} f_{h}\left(y_{i}=u, y_{j}=u\right) d y^{\prime},
\end{aligned}
$$

Case E

$$
\begin{aligned}
\int_{E \hat{K}} \frac{\partial^{2} f_{h}}{\partial y_{i} \partial y_{j}} d y_{i} d y_{j} d y^{\prime} & =\int_{1 e_{\cdot}^{*} \cdot e_{s}^{*} \hat{K}} f_{h}\left(y_{i}=u, y_{j}=u\right) d y^{\prime} \\
& -\int_{1 e_{s}^{*} e_{s}^{*} \hat{E}} f_{h}\left(y_{i}=u_{1}, y_{j}=u_{1}\right) d y^{\prime}
\end{aligned}
$$

Case F

$$
\begin{aligned}
& \int_{F \hat{K}} \frac{\partial^{2} f_{h}}{\partial y_{i} d y_{j}} d y_{i} d y_{j} d y^{\prime}=\int_{1_{r} e_{1}^{*} e_{s}^{\hat{K}}} f_{h}\left(y_{i}=u_{1}, y_{j}=u_{1}\right) d y^{\prime} \\
& -\int_{1 e_{F}^{*} e_{8}^{*} \hat{R}} f_{h}\left(y_{i}=u_{1}, y_{j}=u\right) d y^{\prime}-\int_{e_{\gamma}^{*} e_{3}^{*} \hat{R}} f_{h}\left(y_{i}=u, y_{j}=u_{1}\right) d y^{\prime} \\
& +\int_{o_{\sigma}^{e_{0}^{*} 0_{8}^{*} \hat{R}}} f_{h}\left(y_{i}=u, y_{j}=u\right) d y^{\prime} .
\end{aligned}
$$

Here \hat{K} is the event K with factors in both r and s deleted. In all six cases

$$
\begin{aligned}
\left|\int_{K} \frac{\partial^{2} f_{h}}{\partial y_{i} \partial y_{j}} d y_{i} d y_{j} d y^{\prime}\right| & \leqslant 4 \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f_{h}\left(y_{i}=u, y_{j}=u\right) d y^{\prime} \\
& \leqslant \frac{4}{2 \pi \sqrt{1-h^{2} \varrho_{i j}^{2}}} \exp \left\{-\frac{u^{2}}{1+h\left|\varrho_{i j}\right|}\right\}
\end{aligned}
$$

where $\varrho_{i j}$ was replaced by $\left|\varrho_{i j}\right|$.
Now by condition 2) of Theorem 1.1, we have

$$
\left|\varrho_{i j}\right|=\left|r\left(\nu_{i} q-v_{j} q\right)\right|<C t_{2}^{-\alpha} \text { for sufficiently large } u
$$

since $v_{i} q$ and $v_{j} q$ are separated by at least a t_{2}-interval.

Also

$$
\frac{4}{2 \pi \sqrt{1-h^{2} \varrho_{i j}^{2}}} \exp \left\{-\frac{u^{2}}{1+h \mid \varrho_{i j}}\right\} \sim \frac{2}{\pi} e^{-u^{2}} \quad \text { as } \quad u \rightarrow \infty
$$

Since there are less than $L^{2} \leqslant n^{2}\left(m_{1}+1\right)^{2}$ covariances $\varrho_{i j}$, we obtain from the equation $\left(^{*}\right)$,

$$
\left|F^{\prime}(h)\right| \leqslant C^{\prime \prime} n^{2} m_{1}^{2} t_{2}^{-\alpha} e^{-u^{2}}<C^{\prime} \mu^{\alpha-4 \beta}
$$

for u sufficiently large.
In order to see that the constant C^{\prime} does not depend on which G_{ϕ} was used, consider equation $\left(^{*}\right)$. The summation was over all t_{1}-intervals and $\varrho_{i j}$ was estimated independent of which pair of t_{1}-intervals were referred to by i and j, so neither depends on the permutation ϕ of the t_{1}-intervals. For the integration over K, which depends on which G_{ϕ} was used, cases A through D are estimated in terms of $\varrho_{i j}$ but otherwise the estimates are independent of K.

C. Qualls, Joint distribution of crossings

Therefore $|\Delta|=|F(1)-F(0)|=\left|\int_{0}^{1} F^{\prime}(h) d h\right|<C^{\prime} \mu^{\alpha-4 \beta}$, which approaches zero as $u \rightarrow \infty$ for our choice of β, and C^{\prime} does not depend on ϕ. Finally, the l.h.s. of statement (\dagger) with $i=1$ is equal to $P K / P\left[0{ }_{0}{ }_{1} \ldots{ }_{0} e_{k_{0}}{ }_{0} e_{k_{0}+1}^{*} \ldots{ }_{0} e_{n}^{*}\right]$, and can be replaced by

$$
\frac{\pi_{1}^{k_{1}}\left(\pi_{0}-\pi_{1}\right)^{k_{0}-k_{1}}\left(1-\pi_{0}\right)^{n-k_{0}}+0\left(\mu^{\alpha-4 \beta}\right)}{\pi_{0}^{\kappa_{0}}\left(1-\pi_{0}\right)^{n-k_{0}}+0\left(\mu^{\alpha-4 \beta}\right)} .
$$

Since $\pi_{i}=P\left\{{ }_{i} e_{r}\right\}$ differs from $P\left\{\left\{_{i} d_{r}\right\}\right.$ by less than $P\left\{g_{r}\right\}=0\left(u^{-1} \exp \left\{-u^{2} / 2\right\}\right)$ as in the final lines of the proof of Lemma 3.1, we have $\pi_{i} \sim p_{i} q$ as $u \rightarrow \infty$ by Lemma 2.2. Since $n \sim \tau \mu^{-\beta}, q \sim \mu^{\beta},\left(1-\pi_{0}\right)^{n} \sim e^{-\tau}$, and $\pi_{0}^{k_{0}} \sim \mu^{\beta k_{0}}$, we divide the above expression by $\pi_{0}^{k_{0}}\left(1-\pi_{0}\right)^{n-k_{0}}$ to obtain

$$
\frac{\left(\frac{\pi_{1}}{\pi_{0}}\right)^{k_{1}}\left(1-\frac{\pi_{1}}{\pi_{0}}\right)^{k_{0}-k_{1}}+0\left(u^{\alpha-\left(k_{0}+4\right) \beta}\right)}{1+0\left(\mu^{\alpha-\left(k_{0}+4\right) \beta}\right)}
$$

Now $\pi_{i} / \pi_{i-1} \rightarrow p_{i} / p_{i-1}$ and by our choice of β the error terms approach zero as $u \rightarrow \infty$ to establish statement (\dagger) with $i=1$ uniformly in ϕ.

The general case $i>1$ differs slightly from $1=i$ in cases A through D by added notation and in the fact that the density f_{h} is evaluated at differing levels u_{j}. In estimating formula (*) we replace all levels by the least one u, and consequently the l.h.s. of (\dagger) can be replaced by

$$
\frac{\pi_{i}^{k_{i}}\left(\pi_{i-1}-\pi_{i}\right)^{k_{i}-1-k_{i}} \ldots\left(\pi_{0}-\pi_{1}\right)^{k_{0}-k_{1}}\left(1-\pi_{0}\right)^{n-k_{0}}+0\left(\mu^{\alpha-4 \beta}\right)}{\pi_{i-1}^{k_{i}-1}\left(\pi_{i-2}-\pi_{i-1}\right)^{k_{i}-2-k_{i}-1} \ldots\left(\pi_{0}-\pi_{1}\right)^{k_{0}-k_{1}}\left(1-\pi_{0}\right)^{n-k_{0}}+0\left(\mu^{\alpha-4 \beta}\right)}
$$

where the error terms again imply a constant C^{\prime} which doesn't depend on ϕ. Since $\left(\pi_{j}-\pi_{j+1}\right)^{k_{j}-k_{j}-1} \sim C^{n} q^{k_{j}-k_{j}-1}$, the above expression becomes

$$
\frac{\left(\frac{\pi_{i}}{\pi_{i-1}}\right)^{k_{i}}\left(1-\frac{\pi_{i}}{\pi_{i-1}}\right)^{k_{i-1}-k_{i}}+0\left(\mu^{\alpha-\left(k_{0}+4\right) \beta}\right)}{1+0\left(\pi^{\alpha-\left\{k_{0}+4\right) \beta}\right)}
$$

Taking the limit, one establishes statement (\dagger) uniformly in ϕ, Lemma 3.2, and consequently Theorem 1.I. Q.E.D.

4. Comments

Note that the choice of levels in the form $u+k / u$ is comprehensive. If the levels were written as $u+f_{i}(u) / u, f_{i}(u)>0$, then we would consider the limiting behavior of $f_{i}(u)$ as $u \rightarrow \infty$. For $f_{i}(u)$ having a limit and treating degenerate cases separately, we may replace $f_{i}(u)$ by its limit in Theorem 1.1. If $f_{i}(u)$ oscillates, then there is no limiting distribution of the number of upcrossings.

In the particular case of two levels u and $u+\varepsilon, \varepsilon>0$, there are asymptotically no upcrossings of $u+\varepsilon$ during ($0, T$). This is easily proved by showing the expected number of upcrossings of the level $u+\varepsilon$ during time T approaches zero as $u \rightarrow \infty$.

It is easy to check that the number of downcrossings is equal to the number of upcrossings, and consequently, the limiting multivariate distribution of the numbers of downcrossings of multiple levels is also given by Theorem 1.1.

AGKNOWLEDGEMENTS

This paper is based on part of the author's doctoral dissertation completed June, 1967 at the University of California at Riverside under the direction of Professor Howard G. Tucker.

This research was also partially supported by the National Science Foundation, Grant GP 8290.
Dept. of Mathematics and Statistics, University of New Mexico, Albuquerque, N.M. 87106, U.S.A.

REFERENGES

I. Belayev, Yo. K., On the number of intersections of a level by a Gaussian stochastic process, II. Th. Prob. Appl. 12.3, 392-404 (1967) (English translation).
2. Cramér, H., and Leadbetter, M. R., Stationary and Related Stochastic Processes. Wiley, New York 1967.
3. Qualls, C., On a limit distribution of high level crossings of a stationary Gaussian process. Ann. Math. Statist. 39.6, 2108-2113 (1968).

