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On the joint distribution of crossings of  high multiple levels 
by a stationary Gaussian process 

BY CLIFFORD QUALLS 

1. Introduction 

Let {}(t), - ~ < t < ~ }  be a real stationary Ganssian process with zero mean 
function and having continuous sample paths with probability one. Denote the 
covariance function by r (taking r(0)=1 for convenience), and the corresponding 
spectral distribution function by F. Let/~ be the expected number of upcrossings 
of the level u by ~(t) in a t-interval of length 1. 

Under certain conditions, H. Cramdr [2, pp. 258 ff.] has shown that  the number 
of upcrossings by ~(t) during a t-interval of length T of a single level tending to 
infinity is asymptotically Poisson distributed with parameter ~, provided T is chosen 
tending to infinity according to T='c/# .  Cramdr's conditions for validity have been 
weakened, in slightly different directions, by Belayer [1] and the author [3]. 

In this paper we show that  a multivariate Poisson distribution is obtained in the 
analogous situation for upcrossings of multiple levels. The conditions for validity 
are the weakened ones of [3]. For the following precise statement of the result we 
need some notation. Let O<p~<~pz_z<~...<~pl<~po=l, and consider the levels 
u, u - ( l n p l ) / u ,  ..., u - ( i n p z ) / u ,  and the t-interval (0, T) where T=~/ t t ,  ~>0.  

Let _hT0, 2/1, ..., Nz be the numbers of upcrossings by }(t) during time T of these 
l + 1 levels in the order listed. 

Theorem 1.1. I]  the stationary Gaussian process ~(t) 8atis/ies 

(1) t~ = - r" (O) exists and ~ (l~ + r" (t) )/t dt < ~ , ]or some (~>0, 

foo or equivalently, log (1 + )t) l~dF(;t) < ~ ,  and 

(2) r(t) = O(t -~) as t-+ ¢¢ /or some a > O, 

then 
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l 

?(k0; T) 1-[ b(k~; k,_~, pJp,_~) 
i - 1  

lira P{2Y~ = kt, i = 0 . . . . .  l} = (if 0 < k~ <~ <.< k o and k~ are integers) 

0 ot~ruriee 

In this theorem lo(k; ~) and b(r; n,p) are Poisson and binomial probabilities respectively. 
The proof of this theorem is accomplished by dividing (0, T) alternately into two 

types of subintervals. The ti-intervals are chosen long enough to have one uperossing 
of the different levels with appropriate small probabilities, but not more than one 
uperossing. The interspaced t2-intervals are chosen short enough to have no upcross- 
ings, but  long enough that  the upcrossings of different tl-intervals are asymptotically 
independent. This binomial situation leads to the Poisson distribution in the limit. 
This is the method of proof used by Cramdr. 

In  the concluding remarks we note that  the multiple levels given above are the 
only meaningful choices. 

2. l~ellminaizes 

Choose fl such that  O<(ko+. . .+kz+4) f l<a<l .  Let M=[T/x-~] where []  de- 
notes the greatest integer function, q = TIM. Let m i =[#-i] ,  ti =mlq, m,  = [#B-i], 
t2=m~q, and n=[M/ (ml+m2)]+l .  Note that  as u-+co, q,~juP-~0, t l ~ # P - - l - ' > c o  , 
t~ /xaP- i~co ,  and n-¢~#-~-+co. Let ~¢(t)=~(t) for t=kq,  k=O ..... M and be the 
linear interpolation between the ~(kq). Let zV~ be the number of upcrossings of the 
ith level by  ~¢(t) during (0, T). 

Lemma 2.1. I /  ~(t) satis/y the condition that r"(O) exists, then limu_~¢¢ (P{N~ =ki, 
i =0, ..., l } - P ( N ~  =b~, i =0, ..., 1})=0. The proof follows easily from the single level 
proof [see 2, p. 260]. 

Lemma 2.2. Under conditions 1) and 2) o/Theorem 1.1, we have as u ~ o ¢  

P {N~(tl) = 0 } = 1 - p ,  q + o(q) 

P{iv~(tl) = I } =p,q + o(q). 

Proo/. For any non-negative integer valued random variable v, we have 

E v -  Eu(v-  1) ~<P(v = 1 } ~< 1 - P { v  = 0} < Eu. 

Take v=N~(tl), and divide the above string of inequalities by yp~q. Note that  a 
modification of lemma 2.1 of [3] gives ENd(q)=p~q# ÷o(q/~) and therefore 

ElY,(h) =p ,q  + o(q), 

as u->co. The final and crucial step is to apply a modification of theorem 2.2 of [3], 
which'states (1/q)Ev(v-1)-+o as u-+co. Q.E.D: 
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We  shall need the  following addi t ional  nota t ion.  
On the  (0, T) in te rva l  m a r k  off intervals  of lengths t i and  t~ al ternately,  beginning 

wi th  a t i- interval.  Define for  r =  l ,  2 . . . .  , n and  i = O  . . . . .  1 

,Cr 

,d~ 

, e r  

,Ck, 

,D,,} 

= {exact ly  one ~q upcrossing of the  i th  level in the  r th  t i - interval  } 

= (a t  least  one Sq upcrossing of the  i th  level in the  r th  t i - interval  } 

= { ~ ( ~ q ) > u - l n p J u  for a t  least  one vq in the  closed r th  t i - interval  } 

= (,c~ occurs in exact ly/¢,  of the  n t i - intervals  of (0, T) and  ,c* occurs in the 
remaining  n - ki ti-intervals} 

s imilar ly  defined. 

3. P r o o f  o f  T h e o r e m  1 . l  

L e m m a  3.1. Under conditions 1) and 2) o / t heorem 1.1, we have 

l 
l im [P{hr~ = ~,  i = 0 . . . . .  l} - P(  N ,Ek,)] = 0. 

u-~c~ i ~ 0  

Proo/ .  We shall proof  
l 

A1 = P{N q = ~,, i = 0, ..., l } -  P( A ,c~,), 
/ = 0  

t l 

A2=P( n n 
, = 0  , =0 

l 

a n d  A s = P (  n , D k , ) - P (  n 
, =0 , =0 

all approach  zero as u--> oo. First,  we need only  consider upcrossings in the t i- 
intervals .  Since 

1 -B{N~(t~) =0}  ~< EN~(t~) =p~t2~  +o( t~#)  =0(t~ #), 

P { a t  least  one Sq upcrossing of a t  least  one level in a t  least  one of the  n Q-intervals 
of (0, T ) }  = O(n. 1.t 2/u) = 0(#D), which approaches  zero as u-+ oo. Second, P { m o r e  than  
one ~a upcrossing in a t  least  one of the  n .  (l + 1) t i - intervals  } = n .  (l + 1). o (q )=o(nq )=  
o(1) as u ~ .  These facts  show t h a t  Ai-+0 and  A ~ 0  as u - + ~ .  

To eva lua te  A3, we see t ha t  the  event  n;o0 is the union of k0 /~1 kz 

different  combinat ions  of the more e lementa ry  events  ~e~. Wi thou t  loss of general i ty  
consider the  par t icular  combinat ion 

$ $ $ * 

G = e e l . . .  0ek0 o e k o + l  . . .  o e n . . ,  l e i . . ,  lekl  l e k l + l  . .  • l e n .  

The  even t  n~=0 ,Dk, can be similarly decomposed  with  H corresponding to the  

e v e n t  G wi th  e's replaced by  d's. 

N o w  ,dr C ,e~, ie~* c ,d~, and ,d~ - ~e~ = ~e r -  ,d ,  so it is easy to  show tha t  ,e~A - 
~d~ B c (,e~ - ,dr) U (A - B), ,e; A - ,d~B c A - B ,  ,d: A - ,e~ B c (,er - ,dr) U (A - B) ,  and 
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~ d , A - ~ e r B = A - B .  Therefore (7-H~[,.J~=o U~L1 (~er-~dr), and / / - G ~ U ~ = o  
U ~-~+1 (,er - ,dr). Consequently 

IPH - Pal < P ( H -  a) + P(G-  H) 

<~ Y. ~.P(,er-- etr)< (l + l)nP(,gr),  
t = 0  r= l  

where a ,  = {~(vrg) >~u-ln pdu}, vrq is the left end point of the rth tl-interval , and 
~er - ¢t, = at. 

Finally since P(,gr)ffiO(u-l exp { -u ' / , ) )  and (;,)=O(n~) we have 

A 3 = 0 ( n  ('Ek'+l) l/~ -1 e x p  { --  U'~]2}) 

= 0(exp { 1 - ( Z k i +  1)~ 
2 " } )  

which approaches zero as u-~oo by  the choice of ft. Q.E.D. 
The events tEk~ have the important simplifying property that  terc~er, if ~ < i .  

Therefore we need only consider the case when 0 ~</¢z <... <k0, since G = ¢  otherwise. 
Further, in light of Lemma 2.1, Lemma 3.1, and the fact that  Theorem 1.1 has been 

established for the single level [3], it suffices to show 

Lemma 3.2. For 0 <kz ~< ... <ko, ]¢~ integers, we have 

i -1  
P[,E~,,/jO ° ,E,~;,] --,- b ( / c , ; / ¢ , _  1, p,lp,-1) a s  u - ~  o o .  

Proo/. Since f r= ,e~  for k < j ,  the conditioning event i-I Aj-o~E~ simplifies to a 

un ionof  k0 kl ""~]¢~-1] 

* for k j-/~j+l of the remaining for n - /% of the n r-subscripts, and equals jet j+ler 
kj r-subscripts (0 < ]  ~< i - 2 ) ,  and equals ~_ler for the remaining k~-i r-subscripts. Now 
suppose P[~E~/G¢] ~b as u-* c~ uniformly for all permutations (or better partitions) 
4. Since ~-1 [7 j=o jE~ = ~ ÷ G~ and 

{P[,E~;IG~] - b} PG~ 

e[,EgyG, j - b =  2 Re, ' 

it follows that  [P[,Ek,/G,] - b[ < e for all ~ implies [P[,gk,[ [:J ¢ G,] - b] < e. 
Therefore we need only show P[tE~/G,]-->b(ki; kt_l, iv,/p~_x) uniformly in ¢. For 

convenience in notation in the remainder of this proof, we show 

P[tEkdG]+b(k,; k t_  1, lo i /Pi-1)  
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* for /c~+1 < r ~< b~ for the particular G=  f ~  9~ where 9~ is ~_~e~ for r~</c~_~, ~e~ ~+~e, 
* for r > b0; and then note these calculations apply in a uniform (0~<~<i-2) ,  and oe~ 

manner to all G~. One other reduction can be made along these lines. Since ~E~ fi G 

is a finite union of /¢~ 
\ / \ ' - ~  l 

equal probabilities, we show without loss of generality that  

~* * (t) P[,e~ ... ,e~,~_~e~,+~ ~ ~,+~ ... ~_~e~,_~ ~e~,_~ g~,_~+~ ... g~]/PG 

-~ (pt/pt-1)k' (1 - ~/p~_~)~'-'-~'. 

Since the events gr tha t  determine both the numerator and denominator of (~) 
depend only on two levels at  a time, it turns out that  all calculations typical of (t} 
are shown even if we only demonstrate (I") for i = 1. Therefore consider 

A = PK - ~z~' (~Zo - ~i) k°-k' (I - ~o) ~-~°, 

where the event 

* e* * K = lel .,. l~kl oekz+l le~x+l ... oeko leko o /~+i • • • oen 

and ~z~ =P{te~}. Stationarity of ~(t) assures z~ is independent of r. Suppose there 
are L points of the form ~q belonging to the n closed t~-intervals of (0, T), then 
(n - 1) (m 1 + 1) < L  <. n{m 1 + 1). The corresponding L random variables ~:(~q) have a 
Gaussian density ~1{Yl, --., YL) and covariance matrix Ap So 

P K  = f /~(y~ . . . . .  YL) dye . . ,  dyL~F(1) .  

Now if the random variables ~(vq) corresponding to points vq belonging to different 
tl-intervals were independent, the corresponding covariances would be zero. Let  Ao 
be the resulting covariance matrix obtained from A 1 by  zeroing out these covariances 
and [o(Yl ..... YL) the corresponding Gaussian density. Now, by  independence, I0 
factors and 

F(O)---- f x]o(Yl . . . . .  YL) dyl ... dyL 

= P( le l ) . . .  P(lek,) P(oek,+l le~,+1) ... P(o%o 1e'o) P(oe~o+l) ... P(o e*) 

= ~' (~o - ~i) ko-k' (I - ~o) ~-~. 

Actually P(o e*) =1-P(oe~)  . 1 - r ~  0 since the nth tl-interval may be incomplete; but  
both approach 1 as u - ~ ,  therefore we may take A = F ( 1 ) - F ( 0 ) .  

Now define F(h )=Sz]h (y  1 . . . . .  yL)dyl ...dyL, where ]~ is the Gaussian density 
corresponding to the symmetric positive definite matrix A n = h A l + ( 1 - h ) A o ,  
0 ~ h ~ 1. So we have 
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(*) F' (h) = ~ ~ f ~ ~ dyx ... dy~ = ~ ~¢ f ~ ~yt~J--~a dy~ ... 

where Ax = (q,~), A~ = (t,~), and Z extends over all i <]  for which the corresponding 
vq points belong to different t~-intervais. The identity O/a/~2~=~/a/Oy~y~ can be 
checked by  differentiating the Fourier transform inversion formula for ]a. 

In  order to estimate the summands of F'(h), we wish to carry out the integration 
over K with respect to y~ and then yj. There are three cases for the first integration 

(i) , [ ah(y ,=u)  
J o~k ~y, dyj J .e*k i~y~ 

(ii) f ,  ~ dy~dyjdy'= - f ,  ~]~'(Y'=Ul) dy~dy', 
~,k Y' Oy~ e*~k Oyj 

since the 1.h.s. (left-hand side) minus the r.h.s, is an integral equal to zero. 

(ui) f .  a~h , f~ o/,,(y,=uO dyfly' 

- foe?k ~/~'(Y~i~yj= u) dyj dy' 

since the 1.h.s. plus the second term of the r.h.s, with the use of case (i) and 0e~ * = 
0e* le* is equal to the first term of the r.h.s. Here dy'--dy 1 ... dy~ ... dyj ... dyL, u 1 = 
u--lnTl[u , ]~ is the event K with the e factors referring to the r th tl-interval being 
deleted, and Y, corresponds to a ~(~q) belonging to the r th  tl-interval, and yj cor- 
responds to a different tl-interval. 

For the double integration with respect to Yt and yj, there are six different cases. 
With y~ corresponding to the r th  tl-interval and y~ to the sth (s 4r) ,  the eases are, 
according to the event being integrated: 

__ ~ $ * $ * * 
A - oe¢ oee, B = let les; C = le,.oes ,D  = oer let oes, E = let oes les, 

* * Cases A, B, and C are treated by  Cramdr [2, p. 268] for a and F = oer let oer lee. 
single level. Applying cases (i), (ii) and (iii) and similar techniques for the second 
integration with respect to yj, we obtain 

Case D fD Zfa dyidyfly' f ,  * e*" fh(Yl=~'YJ=u) dy' 

fm I .e:k fh(Y, = u, yj = u) dy  , 
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Case E 
f ~k OY~ Oy~ 

- -  dy~dy~dy' = f ~e*,~k. ]h(Y~ = u, yj = u) dy' 

f ,~. .. /a(Y~ = ul, Yj = ul) 
@', 

8 les K 

Case .F f p  ~ / a  dy, dyjdy" f /a(y,=ul,  y j=ul )dy '  k ~Y~ dyj e* e* r l  s K 

-- ~ ° .  e.k ]h(Y~ = ul' YI = u ) d y ' - -  f o /h(Y, = ~, Y]~ ~1)dy' 
erl sit" 

+ f fh(Y~ = u, y~ = u) dy'. 
Jo Cr oes ~" 

H e r e / ~  is the event K with factors in both r and s deleted. In  all six cases 

I f - f  ° dyt dycdy' <~ 4 _: ... ~ [a(Yi= u, y¢= u) dy 

~< 4 .... exp { 1 u~ 

where ~tj was replaced by  ]~ i j [ -  
Now by  condition 2) of Theorem 1.1, we have 

IQ*J] = Ir(v,q-v,q) l < C t ~  for sufficiently large u, 

since v~q and vjq are separated by  at  least a t2-interval. 

- e -u' a s  u - ~ .  Also 2rcV1 -h2@~ exp 1 + 7~ 

Since there are less than L ~ <~n2(ml + 1) 2 eovariances @~j, we obtain from the equation 
(*), 

]Y(h)[ < O~ ~ t . ~ = e  -~' < O'# ~-'~, 

for u sufficiently large. 
In  order to see tha t  the constant C' does not depend on which G¢ was used, con- 

sider equation (*). The summation was over all tl-intervals and Q~j was est imated 
independent of which pair of tl-intervals were referred to by  i and j, so neither de- 
pends on the permutat ion ¢ of the tl-intervals. For  the integration over K, which 
depends on which O¢ was used, cases A through D are estimated in terms of Qis 
but  otherwise the estimates are independent of K.  
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Therefore IAI = = I ?  which approaches z e r o  a s  

u ~  ~ for our choice of fl, and C' does not depend on ¢. Finally, the 1.h.s. of state- 
ment  (~) with i = 1 is equal to PK]P[oe ~ ... * * 0eko 0ek0+~ ... 0e.], and can be replaced by  

n~,(n o -- nl)k'-kl(1 -- n0)n-k0 + 0(/~ ~-4B) 

_ g o ) . - k .  + 

Since n ,=P( ,e~}  differs from P(~d,} by less than  P(~q~} =0(u  -1 exp ( -u~/2})  as in 
the final lines of the proof of Lemma 3.1, we have n,,..p~q as u ~  ~ by  Lemma  2.2. 
Since n~T/~-P, qN/~p, ( 1 - g o ) ' N e  -~, and n~'~/~P k°, we divide the above expression 
by  n~°(1 -no)  "-k° to obtain 

\no/ \ no/ 
1 + 0(# ~-(k'÷4)~) 

Now nJn~_l~p~[pi_l  and by our choice of ~ the error terms approach zero as u-~ c~ 
to establish s ta tement  (t) with i = 1 -n l formly in ¢. 

The general case i > 1 differs slightly from 1 =i  in cases A through D by  added 
notat ion and in the fact that  the dens i ty / a  is evaluated a t  differing levels uj. In  
estimating formula (*) we replace all levels b y  the least one u, and consequently 
the 1.h.s. of (t) can be replaced by  

ntkt (hi_ 1 -- h i )h - l -  ki... (n 0 -- nl)~.-kl ( 1 -- g0) a-k° ~- 0(fi g- 4 fl) 

~_~(n~-2 -- n~-l) ~-~-  k ' - '  .-. (go -- n,)k'-k'(1 -- go).-k. + 0(/~-4~) 

where the error terms again imply a constant C" which doesn't  depend on ¢. Since 
(g j -n j+ l )k~-~- l~  O'q ~-k~-~, the above expression becomes 

1 + 0(~ ~-(k°+4)~) 

Taking the limit, one establishes s ta tement  (t) nniformly in ¢, Lemma 3.2, and 
consequently Theorem 1.I. Q.E.D. 

4. Comments 

Note tha t  the choice of levels in the form u + k]u is comprehensive. I f  the levels 
were wri t ten as u+/~(u)[u, f t(u)>0,  then we would consider the limiting behavior 
of/~(u) as u-~ ~ .  For / t (u )  having a limit and treating degenerate cases separately, 
we m a y  replace/ t(u)  b y  its limit in Theorem 1.1. If/~(u) oscillates, then there is no 
limiting dish'ihution of the number  of upcrossings. 

In  the particular case of two levels u and u +e, e >0,  there are asymptotical ly no 
upcrossings of u + e  during (0, T). This is easily proved by  showing the expected 
number  of upcrossings of the level u + e  during t ime T approaches zero as u - ~ .  
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I t  is easy to check t h a t  the  n u m b e r  of 4owncrossings is equal  to the n u m b e r  of 
upcrossings, and  consequent ly ,  the  ] imit ing mu l t i va r i a t e  dis t r ibut ion of the number s  
of downcrossings of mul t ip le  levels  is also g iven b y  Theorem 1.1. 
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