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Necessary and sufficient conditions for the hyperbolicity 
o f  polynomials with hyperbolic principal part 

B y  S. LEIF SVENSSOI~ 

O. Introduction 

Let P(~)=ZI~I<m c ~  ~ be a complex polynomial of degree m in the complex 
variables ~ = (21 ..... ~d+l), and let Pm(~) = ~l~lffim c ~  ~ be its principal part. Let  (x 1 ..... 
Xa+l) be real variables, and put  D~ =~/i~x k. A distribution E(x) on R ~+1 is said to be 
a fundamental solution of the differential operator P(D) if P(D) E(x) =~(x), the Dirac 
distribution. The operator P(D) is said to be hyperbolic if it has a fundamental solu- 
tion E with support in a proper cone K having its vertex at the origin (G&rding [5]). 
Let  N E R  d+l be such that  the halfspace <x,N>=xlNl+x~N~.+...+xa+iNd+l>O 
contains/~ = K -  {0}. Then 

P~(N) 40, P(~+irN) 4:0 if ~ e R  d+l, v e R ,  I~[ >% (0.1) 

for some %. Conversely, this condition imphes that  P(D) has a fundamental solution 
with support in some K such that <x, N> >0 on K (G£rding [5], [4]). 

When (0.1) holds, we say that  P is hyperbolic with respect to N and denote by 
Hyp N the corresponding class of polynomials. 

I t  follows that  Pm is in Hyp N if P is, and that  a homogeneous hyperbolic poly- 
nomial has only real characteristics. We shall, conversely, consider the problem of 
characterizing the lower order terms one may add to a homogeneous hyperbolic 
polynomial without loss of the hyperbolicity. In  the case d = 1, this problem has 
been solved completely by  A. Lax [8]. A generalization of A. Lax's condition was 
given by HSrmander in [6]. His generahzed condition is necessary but not sufficient 
when d > 1. 

A sufficient condition by G&rding [4] for a polynomial P to belong to Hyp N, 
if its principal part  P~ does, is that  the roots a of _P(a(rN+i~)) =0  tend to zero, uni- 
formly in ~ e R a+l, when T-+ + ~ .  G&rding conjectured that  this condition would be 
necessary too. (See footnote, page 50 in G£rding [4].) 

In  section 1 of this paper we shall prove G&rding's conjecture. We use a sufficient 
condition by HSrmander [6], which can be shown to be equivalent to that  of G&rding, 
namely that  P is weaker than Pro, i.e. that  for some constant C we have 

[P(~) ] -< C?,.(~), ~ e R  d+l. 

Here, when Q is a polynomial, we put  

~(a) = (~la=Q(~)l~) ~, a= (a/a~ ..... a/a~.+,). 
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Our proof consists of essentially two steps. First, by use of the Puiseux series ex- 
pansion and the Newton algorithm, we prove that  if P E H y p  N and if r-+~(r) is a 
real curve, meromorphic in a neighborhood of r =0,  then we have 

P(~(r)) -- O(1)/~m(~(r)) when r-+0. (0.2) 

Then Seidenberg's lemma enables us to prove that  if P is weaker than Pm along any 
curve ~(r), meromorphic in a neighborhood of r=O in the sense of (0.2), then P is 
weaker than  P~. 

Several, mutually equivalent, sufficient conditions for hyperbolicity were given 
by 1KcCarthy and Pederson in [8]. In  section 2 we give a brief discussion of these 
conditions which are, in fact, equivalent to those of G£rding and HSrmander. 

In  section 3 we consider HSrmander's generalization of A. Lax's condition. 
Section 4 which was added on November 7th, 1968--consists of an application 

to hyperbolic systems of the results of section 1. 
I am deeply grateful to J. ~riberg and L. G£rding for valuable advice and kind 

interest in my  work. The subject of this paper was suggested to me by  J. Friberg. 
The starting point of the investigation was an idea of his tha t  in the case d = 2 one 
would get enough information to solve the problem by use of the Puiseux series 
expansion. An idea by  L. G£rding inspired me to the proof of Lemma 1.2. I also 
want to thank L. HSrmander who has read the manuscript and suggested valuable 
improvements. 

1. The necessity of Gt~rdlng's condition 

Our main tool in this section is the Puiseux series expansion of the zeros of poly- 
nomials ~0~j~<mcj(r)T t, where the c s are Puiseux series of the real variable r. We shall 
also make use of the Newton algorithm to compute the first non-vanishing term in 
such expansions. For an account of these matters we refer to e.g. Friberg [2]. When 
we use the notation r 11~, where p is a positive integer, we shall always mean the value 
taken by  the branch of the function r-~r 1/~ with 0 ~< arg rU~< 2~/p. By  the lower 
Newton polygon of a polynomial ~.~,a~,~r ~' in T whose coefficients are of the type 
described above, we shall mean the set of all (~t,/~) for which there is a p '  <~u such 
that  (2, # ')  belongs to the convex hull (in R ~) of {(~t, ju)la~ ~ 40}. 

Lemma 1.1. /~et PmE Hyp N be homogeneous of degree m and let ~(r)= ~,~>~,~,r ~, 
where the ~/~ER ~+1, be meromorphic in a neighborhood of r = O. Then we can write 

Pm(y(r) + zN) = P~(N) ~ ( ~ -  5 c,.,rJ), 

where ~ j~ j, c:.j r are meronwrphic in a neighborhood of r = 0 and c~.~ e R, ] >1 £, 1 <~ i <. m. 

Proof. Since, by the hyperbolicity, P~ ( N ) 4  0, we can write 

Pm(~(r) + vN) =Pm (N) ~ ( v -  ~ (r)). 

The zeros v, can be represented by  Puiseux series expansions 

~ ( r ) =  X ~',.~ r~l~, l < i ~<m,  

in a neighborhood of r =0.  Hence with this representation the T~ are meromorphic 
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functions of r t/~, for some positive integer n, in a neighborhood of rZ/n=0. Since 
P=EHyp  N and is homogeneous, it follows that  ~(r), 1 <~i<.m, are real for real r. 
Let  1 < i  ~<m and assume that  7,.~or v°/~ is the first term in ~(r) which takes non-real 
values in every real neighborhood of r=0 .  Then we can choose arg r=q~t in such a 
way that  arg r~.~,r ~°/~ =arg  r~.~, +qPozg/n =~k~ for any integer k. Since we have 

v~(r)= ~ Z~.~rVln+~.v~r~°/n(l+o(1)) when r ~ 0 ,  

it follows that  if we choose arg r as above and [r I sufficiently small, we have 
Im z~(r)#0 which is a contradiction. Hence all the terms r~.vr ~l~ must be real, and 
this gives eventually tha t  r~.v=0 if n is not a divisor of 1o and that  r~.,j=c,,~eR, 
n] >tp,. 

Theorem 1.1. Let P=~o<.~<,~PkEHyp N, where Pk(~)=~l=l=~e~, and let 
~/(r)-=~>~o~,r ~, where WeR~+,, be meromor10hic in a neighborhood o/ r=O. Then 
the lower Newton 10olygon o/Pm(u(r)+vN) contains the lower Ne~on polygons o] 
v~Pm_k(~l(r) + ZN), 0 < k <~ m. 

Proo/. Let P~_ ~ (~/(r) + zN) = ~a, u a~a~ T~r u, 0 < k ~< m. 

Since Pro(N)00, it follows that  the point (m, O) belongs to the lower Newton 
polygon of PmOT(r)+TN). For every integer ], let nj be the uniquely determined 
integer for which 

ao~,=O if / ~<n j -2 ] ,  

aoa~ ~ 0  for some (2, kt) with #=nj -2] .  (1.1) 

Now, in view of Lemma 1.1, the non-vertical line segments of the boundary of the 
lower Newton polygon of P~(~(r)+TN) have slopes given by  integers. Hence the 
lines/x =nj -2]  constitute in an obvious way the lower Newton polygon of Pm(~(r) + 
TN). I t  is further clear that  what we shaft prove is that  

a,~,=O if i~<n~-(X+k)] for some],  O<~k~m. (1.2) 

We assume that  (1.2) is false. Then, since (m, 0) belongs to the Newton polygon 
of P~(~(r) +TN), it is clear that  there is a smallest integer 10 such that  

a , ~ , ~ 0  forsome (k,~,#) with # < n v - ( 2 + k ) l  O. 

Since this means that  a~a~40 for some (k,~,bt) with k(=l~+10k<%-~10, we can 
choose a real c 4 0  so that  

c~a~,~u:#O for some (~t,/~') with / , t '<n~-2p. (1.3) 
kt+l~k=/~' 

With this c we write 

Q(v, r) = cr%VmP(c-~r-V(~(r) + ~N)). (1.4) 

For reasons of homogeneity we get 

Q(v, r)= ~ c~rV~Pm_~(~(r) + ~N) 
O<~k<~ m 
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(0,.~) 

Fig. 1. The Newton polygon belonging to Prn (~(r) + vN). 

Hence we have, by a simple computation, 

Q(~, r)= ~ ~"(  ~ c~a~). (1.5) 

In view of (1.4), the hyperbolicity of P gives that  the imaginary parts of the zeros 
T of Q(T, r) are O(r ~) when r-*0. In order to get a contradiction, we shall s tudy the 
Newton polygon of Q(r, r). 

By the definition of 10 we have that  akx~,=O if F<n~_l-(2+k)(10-1), i.e. if 
/~+10k<n~_l-Jl(10-1)+k. Hence we have 

ckak~=O if /~ '<n,_ l - -2(p--1) ,  (1.6) 
/~+10k =/J" 

~. c~ak~=ao~,, if p'=nv_l-~(10-1  ). (1.7) 

Let 2=)~ be the smallest integer such that  aoa~:~0 for F=n~_l-2(10-1). By (1.5) 
it is clear that  {1.3), (1.6), and {1.7) give direct information about the lower 
Newton polygon of Q(~, r). We put  A~={()t,/~) I/~<n,_x-~t(p-1)}, A~={(~, ~)I~.< 
)~,/u =n~_x --]~(10 - 1)}, and A a = {(2, F)I ~t <)~, np_x -2(T - 1) <F  <n~ -21o}. I t  is clear, 
by the definition of )~ and n~ that  the point ()~, n~_x-)~(p-1)) is the intersection 
between the lines F =n~_~-]~(p- 1) and # =nr-]tl~. Hence it follows that  

{(,I,F)I/~<nr-2p}c_A~t)A~UA a. (See Fig. 1.) 

Now it is clear by (1.6) that  no points of the Newton polygon of Q(v, r) lie in A r By 
(1.7) and the definition of )~ no such points belong to A~ either. But by  (1.3) at least 
one point of the lower Newton polygon of Q(v, r) is in ((~t,/~) I/~ <n,-~t10 } and thus 
in A a. Therefore there must he a line segment of the boundary of the lower Newton 
polygon of Q(~, r) starting in a point in A a and ending in ()~, nr_x-)~(p-1)) .  I t  is 
then clear tha t  this line segment will have slope - q, where 10 - 1 < q <p.  But this 
means tha t  there is a root ~(r) of Q(v, r) --0 such that  ~(r) =brq(1 +o(1)) when r ~ 0  
for some b~0 .  We have r -~ I m ~ ( r ) = I m  r - ~ ( r ) = I m  (brq-~)(1 +o(1)) when r-~0 
through real values. Since 10 - 1 < q <10, it follows that  Im brq-~--and consequently 
r -~ Im , ( r )~ i s  not bounded in any neighborhood of r =0. Hence we have reached a 
contradiction, and the theorem is proved. 
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I ~ (4,0) 

l~ig. 2. The Newton polygon belonging to r~ + 4( 1 + r~)½ ra + (4 + 3r a) r ~ - 2r~( 1 + r~) ½ v. The Newton 
polygon belonging to the lower order term of degree 3 must lie in the shaded region if we shall 

not loose the hyperbolicity. 

Example. Consider the  po lyaomia t  

P((~I, &, ~)) = (~ - ~ -  ~)  (~  - ~ -  2~)  + l~ 5 .  

(Due to P. D. Lax;  see Courant  and  A. Lax  [1].) 
We  p u t  ~7(r)=((1 +r~) ½, 1, r). Then  we have  P(u(r)+7(1, 0, 0)) = ~ + 4 ( 1  +r~)½~a+ 

(4 + 3r ~) C - 2r~(1 + r ~) ½ ~ + r. W e  see t h a t  the  lower order  t e r m  contr ibutes  the  point  
(0, 1). B y  the  figure and  Theorem 1.1 we see t h a t  P is not  hyperbol ic  wi th  respect  
to (1, 0, 0) a l though its principal  pa r t  is. 

Theorem 1.2. Let P E Hyp N, let P,~ be the principal part o] P, and let ~ (r) = ~v>~,, ~ Y  , 
where ~ ,ER d+I, be meremorphic in a neighborhood o/r---O. Then we have 

P(n(r))=O(1)Pm(B(r))  when  r~O. (1.8) 

Proo/. Le t  #0 be the  least  integer such t h a t  (2, #0) belongs to the  Newton  polygon 
of Pm(B(r) + x N )  for  some ~. (The existence of ju o is dea r ,  since Pro(N) :4=0 and since 
is meromorphie . )  I t  is obvious  t h a t  (~o,/~0) is a ve r t ex  of the  lower Newton  po lygon  
of Pm(v(r) +xN) for  s o m e ~  0. P u t  

(~, N)  = 5 ~v .a /~ . .  ~v = (N~ . . . . .  N ~ , ) .  
l ~ d + l  

B y  Tay to r ' s  fo rmula  and  the  chain rule we have  

Pm(u(r) + ~N) = ~ (~, N~JPm (~(r))v~/i!. 
0<~1<~ m 

Thus,  b y  the  definit ion of (~0,/~0), we have  with  some b 0 :~ 0, 

(~, ~?)XoP~(~(r))=r'(bo + o(1)) when r -~0 .  (1.9) 

We wri te  P = ~0~< ~.<< m P~, where P~(~) = ~l~lffi ~ c~ ~ .  Le t  0 ~</c ~< m and assume t h a t  
for  some b~ =~ 0 and  some integer #~ we have  

Pm_~(~7(r)) = r ~ (b~ +o(1)) when  r-~0.  (1.10) 

I t  is clear t hen  t h a t  (0, #~) belongs to the  Newton  polygon of P,~_~(u(r) +~/V) so tha t ,  
b y  Theo rem 1.1, #~/>#0- Hence  we have,  b y  (1.9) and  (1.10), 

P,~_~OT(r))=O(1)(~,N)~oPm(~?(r)) when  r-~0. (1.11) 
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I f  Pm_~(~(r)) is identically zero, (1.11) is trivial. Since, by  definition, P~(~(r))= 
(~[~P~(~(r))l~)½, it is obvious that  (~, N)a°P~(~(r))=O(1)PmO?(r)) when r-~0. 
Hence we have 

P,,_~(~(r))=O(1)_PmO?(r)) when r ~ 0 ,  O<k<~m. 

By the triangle inequality we get (1.8), and the proof is complete. 

Remark. I t  may seem that  we have used only a small part  of Theorem 1.1 in the 
proof. We have only used what we know about the Newton polygons of Pm_~(~(r) ÷~N) 
in relation to the line ~u =n o of the proof of Theorem 1.1. But  it is clear that  in order 
to get any  information about this we must first examine the relations between the 
Newton polygons of P~_~ 0?(r) ÷~N) and the lines p =n~-~?', for ~ < 0. 

Lemma 1.2. Let Qi and Q~ be complex polynomials in d + 1 variables, Q~ not identically 
zero. Assume tha~ for any curve ~?(r)=~>~o~r ' ,  where ~ R  a+~, meromorphic in a 
neighborhood o / r  = 0, we have 

Qi(~(r))=O(1)Q~(~(r)) when r~O. (1.12) 

Then we have with a con~tan~ C 

[Q,(~:)l <'C[Q2(})I, ~ eR~+~" (1.13) 

Proo I. Denote by  B the set {}eR~+~IQ~(})~=0}. Since Q~ is not  identically zero, 
it follows that  B is a dense subset of R ~+~. Assume that  

Consider the system 

~uP s IQ~ (~)/Q2 (~)1 = + ~ .  (1 .14)  

I Q~(~)I~-sl Q~(~)I~= o, IQ~(~)I~>O (1.15) 

We observe that  ]QI(~)I~-s]Q~(~)I 2 and IQ~(~)I 2 are real polynomials in ~e R  d+l, 
sER.  Seidenberg's theorem (see e.g. Gorin [3]) asserts then for every j, 1 ~<?'~<d+l, 
the existence of a condition Hi, consisting of a finite number of systems of 
polynomial equations hk.j(~l ..... ~j, s )=0,  l<~k<~k~, and polynomial inequalities 
hk.j(~l ..... ~j, s )>0,  k~ <k<~k~, such that  for every (~1 . . . .  , tj, s )ER j+l the following 
conditions are equivalent: 

I. There exist real ~J+l ..... ~d+i so that  (~, s), ~ = (~:1 ..... ~+1), is a solution of the 
system (1.15). 

1I. The condition Hj  is satisfied by  (~1, ..., ~J, s); i.e. (~1 ..... ~j, s) satisfies at least 
one of the systems in the condition. 

Assume that  for some j, 1 ~<j ~<d + 1, we have found Puiseux series 71(8) . . . .  7t_1(8), 
convergent and real for all large real s, such that  the system (1.15) has real solutions 
~---(71(s), ..., ?j-l(s), ~ ..... ~d+l) for some arbitrarily large s. If  j =1, we mean by 
this tha t  the system (1.15) has real solutions ~ for some arbitrarily large real s. Hence, 
in view of (1.14), the assumption is correct when j =  1. We study the Puiseux series 
expansions of the roots ~j of the equations h~.j(rl(s) ..... 7j-l(s), ~j, s)=O, 1 <<.k<~kj, 
for large real s. Everyone of these expansions is a meromorphic function of s 1/~ 

150 



AI{K1T FOIl M.~TEM~TIKo B d  8 n r  17 

in a neighborhood of s 1' '  = ~ ,  for some positive integer p. In  particular it is either 
real or non.real for all sufficiently large real s. Let  #l(s) ..... #j(s) be the different real 
expansions, continuous and arranged so tha t  #l(s)<#2(s)<. . .  <#~(s) for so<s. We 
m a y  assume s o so~ large tha t  these are the only possible real roots of the equations 
h~.j(rl(s) ..... rj-l(s), ~j, 8)=0 if so<s. We put  # 0 = - ~  and#j+1 = + ~ .  We observe 
tha t  if the condition Hj  is satisfied by  some (rl(s) . . . .  , r~-l(s), ~j, s) with s>s  o and 
#z-l(s)<~j<#z(s),  for some l, l~< l~<J+l ,  then it is satisfied by  all such (rl(s) .. . . .  
rj-l(s), ~ ,  s). I f  the condition Hj  is satisfied by  some (rl(s), ..., rj_l(s), ~j, s) with s > s  o 
and ~t=#~ for some l, 1 <~l<~J, then it is satisfied b y  all such (r~(s) . . . .  , r~-l(S), ~i, s). 
(Cf. the proof of Lemma 2.1 in the appendix of HSrmander  [6].) Fur ther  it is clear 
tha t  if 1 < l ~< J + 1, we can always find a Puiseux series ~ so tha t  #~_~(s) < ~ ( s )  <#~(s) 
for s>s  o. (Take e.g. (#~_~ +~)/2  if 1 < l < J ,  # 1 - 1  and  #~+1.) 

Now it follows f rom the assumption tha t  the condition H i is satisfied by  some 
(~,~(s) . . . .  , rt-~(s), ~:~, s) with s>s  o and real ~.  Hence it follows from the discussion 
above tha t  there exists a Puiseux series ;,~, convergent and real for s > s  0, so tha t  
(rx(s) ... . .  r~(s), s) satisfies the condition H~ for s>s  o. This means tha t  the system 
(1.15) has real solutions (r~(s) ..... r~(s), ~+1 ....  , ~+~) for s > s  0. Since the assumption 
is correct if ?'=1, we can thus in a finite number  of steps prove the existence of a 
function r(s) = (r~(s) ..... r~+~(s)), meromorphie of s ~/q in a neighborhood of s 1]q -~- 0<3 

for some positive integer q, and real for all large real s, so that  ~ = r(s) solves the system 
(1.15) for all sufficiently large s. We put  s =r - ~  and ~(r) =~(r-2q). Then ~7 becomes 
meromorphic in a neighborhood of r=O, real for real r, and 

I = I r l  - °  

in a deleted neighborhood of r = 0 .  But  this contradicts (1.12). Hence we must  have 
with a constant C 

IQ,( )I < ~eB. 

But, since B is a dense subset of R ~+~, it follows by  continuity tha t  this inequality 
is valid for all ~ ~ R ~+~. The proof is complete. 

Theorem 1.3. Let P be a polynomial with principal part P,~EHyp N.  Each o/ the 
/oUowing conditions is necessary and su//icient /or P to belong to Hyp N. 

I.  (G&rding [4]) 
The roots a o] the equation P(a(TN +i~))=O tend to zero, uni]ormly in ~ER ~+1, 
when ~-->- + c~. 

I I .  (H6rmander [6] Theorem 5.5.7) 
P is weaker than P , ,  

Proo/. The necessity of I I  is immediate from Theorem 1.2 and Lemma 1.2. 

To see tha t  H implies I, we write P = ~o<k<m Pk, where P~(~) = ~..l~l=k C~, and 
observe tha t  by the proof of Theorem 5.5.7 in HSrmander  [6] it follows t h a t / I  implies 
tha t  there exists a number  C so that  

I I '  [~kPm_~(i~N+~)/Pm(i~N+~)[<C if ~ > 1  and ~ e R  a+l, 0~</c~<m. 

(Cf. Theorem 1.1.) We consider the polynomial in 

Z ~m-k (vkp,n_ k (iT:N- ~)/Pm (iTN-- ~)). 
O ~ k ~ m  

(1.16) 
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The coefficient of the leading term in (1.16) is 1. Hence, in view of II ' ,  the zeros of 
(1.16) are bounded for x/> 1, ~ e R ~+1. But  since, for z i> 1, and ~ E R ~+~, 

P(a(3hr + i~))= 3-~Pm (i3hr- ~) 
O<~k<~m 

it follows that  

( - iza)m-k(~Pm_~ (i3hr-- 8)/Pm ( i3hr-  ~)), 

I '  the roots a of P(a(3N+i~)) are O(T-I), uniformly in ~ER a+l, when 3-+ + c~. 

That  I '  implies I is trivial. 
Assume now that  P fulfills condition I. Take 30 so that  the least upper bound of 

the absolute values of the roots a of P(a(vhr+i~)) is <1 for z>3o, ~ER d+l. Then 
P(i(31V +/~)) =P(i3hr-~)  :~0 for 3 >x  0, ~ E R ~+1. Since it is sufficient for hyperbolicity, 
that  the imaginary parts of the characteristics are bounded from above (see e.g. 
HSrmander [6]), i t  follows that  P e Hyp hr. The proof is complete. 

Remark,. I '  and II" are of course also necessary and sufficient conditions for 
hyperbolicity. 

2. Further necessary and sufficient conditions 

Let Q(3)--AI-I~-I (3-3~) be a complex polynomial. We consider the Lagrange 
interpolation polynomials QI(3)= Q(3)/1-~(3-3t) where i runs through a subset I 
of {1,. . . ,m}. When I = { i } ,  we write Q~=Q~, l<i<~m.  We shall also n e e d t h e  
polynomials (McCarthy and Pederson [9]) 

L~ (Q, ~) = ~[  Q~ (3)[ ~, 
lz. 

where the summation goes over all I = I x with k elements, O </¢ ~< m. 
Let  Pm E Hyp h r be homogeneous of degree m. Denote by h r± the plane perpendicular 

to h r. We consider for each ~ Ehr ± the polynomials in 3, P~)(3; ~) = (~/Ov)~Pm(~ +zhr). 
These polynomials have only real roots, in view of the hyperbolicity of Pro. We 
define in the natural  way for each ~Ehr ±, (P~))z~(3; ~) and Lk(P~); 3, ~), O<~k<~m-j. 

We shall need the simple fact (McCarthy and Pederson [9]) that  if Q(3) is a complex 
polynomial of degree m with m real zeros, then we have 

]Q(v+ia)[ 2= ~ L~(Q;3)oa~,3ER, aER.  
O ~ k ~ m  

This is easily proved, e.g. by  induction with respect to the degree ot Q. 
We shall also need the following lemma which is due to McCarthy and Pederson [9]. 

Lemma 2.1. Let Q(3) be a polynomial o/degree m with m real zeros. Then we have 

( m - r ) ! ( k - r ) ! <  L~ (Q; 3) 
~!~  ~ L~_r (q(');3) < 

(k - 1 - r) ! (~ - r) r 
", r<k .  

(k-1)~k! 

Proo/. I t  suffices to assume Q real. We have 

[Q(3+ia)l  2= ~. L~(Q;T)ozk, 3ER, aER. 
O<~ k<~ rn 

(2.1) 
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~ 0 2 
We apply ~ + ~  to both sides of (2.1) and get 

4] Q'('~ + ia)I ~ -- Z (L~(Q; ~)" a 2~ + 2]¢ (2k - 1) L~(Q; 7) oa~-2). 
O~k~m 

But  Q' too has only real zeros, and therefore 

I Q'(v + ia)[~ = ~ L~(Q'; 3) o a~. 
O~k~m-1 

From (2.2) and (2.3) we get 

4L~(Q'; 7) = L~(Q; ~)" + (2k + 2) (2k + 1) L~+~(Q; 7). 

Now it follows immediately from the definition of L~ that 

L ~ ( Q ;  ~ ) "  = 2 ~ " ~ " ((Q,~(~)) + Q~(~)Q,~(~)). 

Differentiating Q~ yields 

Q~(~) = Qz~ ~ ( 7 -  ~)-~ 
~¢/~ 

and 

Q~(~) = Qi~(-c) [( ~ (7 - ~i)-1)2 _ ~ (7 - ~i)-~]. 
l¢Ik i¢Ik 

Hence we have 

L~(Q; ~)" = ~. (Q~(~))~ (4 ( ~. ( 7 -  ~,)-~)~ - 2 ~ ( 7 -  ~,)-~). 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Since there are b + 1 subsets of each Ik+l with/c elements, it follows that 

Lk+1(Q; 7)= 1/(k + 1)~. ~ (Q~ (T))2/(v - T~) ~. (2.6) 
I~ ~¢I~ 

Substitution of (2.5) and (2.6) into (2.4) Rives 

L~(¢'; 7) = ~ (¢~,(~))~ [( ~ (7 - ~)- i  )~ + k 2 ( 7 -  ~)-21. 
i~ ~¢i~ ~¢i~ 

From Schwarz's inequality and (2.6) it follows that 

k(k+ 1) L~+I(Q; 7) = k~. (Q~k (~)) ~ ~. (T -  ~) -~ 

~<Lk(Q'; ~) 

~< ~ (Q,, (~))2 [ (m- / c )  Z (1: - T,) -2 + b ~ ('~ - ~,)-2] 
Ik t¢Ik l¢/~ 

~< m(k + 1)Lk+I(Q; 7). 

Hence we have 

1~ink<<. L~(Q; ~) - < l / k ( k - 1 ) .  
L~-I(Q'; ~:)"~ 
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s. L. svEr~ssor¢. Conditions for the hyperbolicity of polynomials 

If we replace Q with Q(~), ] = 1, 2 . . . . .  r -  1 and multiply the inequalities thus ob- 
tained, we get the wanted inequality. 

Theorem 2.1. Let P = ~o<~m P~, where P~(~) = ~1~1_~ c~ ~,  be a polynomial with 
principal ~art Pm E Hyp N. Then the ]oUowing conditions are equivalent. 

I P is weaker than pm 

I' P,~_~ is weaker than <0, N> ~- ~ Pa = P~-  ~), 1 <~ k ~ m, 

I I  (Peyser [12]) 

We can write 

Pm-k(TN + ~) = l~j<<.~_k + lbkJ(~) (P~-~))~ (v, ~), 7ER, t e n  ±, 0 < k < m, 

where the b~ are bounded/or t E N  ±. 

I I I  (McCarthy and Pederson [9]) 

There exists a number C such that 

IPm~(TN +~)I~<~CZk(Pz; 7, t), 7eR,  ~ e N  ±, O~k<m.  

Remark. I I  and H I  are the two main conditions among the several equivalent 
conditions of McCarthy and Pederson [9]. 

Proof We observe that  it follows from the proof of Theorem 5.5.7 in tISrmander 
[6] that  P is weaker than Pz,  where P a  E t typ  N, if and only if there exists a number 
O such that  

7eR, te~v ±, 0<k<m. 

Hence, by (2.1), P is weaker than P~ if and only if there is a C such that  

[pm_k(xN+~)]2<<.C ~. Lk(Pa;7,~) ,TER,~eNz,  O<k<m. (2.7) 
O~ k<~ m 

Assume tha t  P is weaker than Pro, hence fulfills the condition (2.7). We observe 
that  Lq(Pm; 7, ~) is homogeneous in 7 and ~ of degree 2(m-q) .  Let O~k<m.  The 
homogeneity of Pm-~ and Lq(Pa; 7, 2) gives 

I Pm-k(7N + t)[2 = ]r ]2(m-k)[Pm_k(r-~(~N + ~))]2 

<<.ClriU(a-k) Z Lq(Pm;r-17, r - l t )  
O ~ q ~ m  

=C ~ [r]2'q-k'Lq(Pm;7,~),TER,~eNZ, r#-O. (2.8) 
O~ q<~ m 

We write 

Pm ((a+ 7 ) N +  ~:) -- P,,, (N) f i  (a - a~), TER, aER, ~EN ±, 
t - 1  

where (r 1 ~< I~,[~< ... ~<]am[, and observe that  the largest term in Lq(Pm;'7, 2) is  
Pa(N) ~IT~-q+lla~ 3, O<<q<.m. We separate two cases. If  7 e R  and ~EN z are such 

that  a~+l • O, it follows trivially that  
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Hence we have with some constant C', independent of T and ~, 

2 ( q - k )  . I ]o~+~[ Lq(Pm, T,~)<.C Lk(Pm; T, ~ ), O<~q<~m. 

We put r = a,+l in (2.8) and get 

IPm-k(TN+~)[  ~ < v  5 -k+l- |t2(q-k)Lq(P,,;7:,~) 

<. CC'(m+ 1)Lk(P~; 3, ~). 

If  ~ER and ~EN ± are such that  ak+l = 0, it follows that  Lq(Pm; % ~)= O, 0 <~ q < k. 
Hence we have in this case 

k+l~q~m 

We let r-~0, and get P,~_k(~N+~)=0. 
Hence we have in both cases 

]Pm_k(TN+~)]~<~CC'(m+I)Lk(Pm; % ~), TeR,  ~ e N  ±, 

and we have proved that  I implies III .  
That  H I  and I I  are equivMent has been proved by McCarthy and Pederson [9]. 

We indicate the proof. By I I I  and Lemma 2.1 we get 

] P,~_,(vN + ~) I S <~ CLI(P~-I); 3, .$), 

z. ((P~-')j(v;~))L ~eN ±, veR, l < k < m .  
l ~ j ~ r n -  k + l  

But then it follows easily that  for each ~EN ± we can write 

P~-k  (~N+ ~) = ~ bkj(~)(P~-l))j(v;~), 
l<~.i<~rn-k+l 

with ]bkj (~) [~ < C, 1 ~</c < m. 

.Assume, now, that  P fulfills the condition II.  Then we get 

But  since r. ,o(~-,). ~ - - ~  ,3, } ) -<IP~-X)( (~+i )N+}) I  ~, I '  follows immediately. 

That  I '  imphes I is trivial. 

3. A necessary condition for hyperbolicity 

Theorem 3.1. (H6rmander [6] Theorem 5.5.8.) Let P E Hyp IV and let Pm be the princi- 
Tal part o/P. Then the degree of P('~ + ~) with respect So T/or a/ixed real ~ and indeter- 
minate ~ never exceeds that o/Pm('~+N). 

Proof. Immediate consequence of Theorem 1.1. 
A condition equivalent to the one given in Theorem 3.1 is given by the following 

theorem of 1%. N. Pederson [I0]. 
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s. L. SVENSSOr~, Conditions for the hyperbolicity of polynomials 

Theorem 3.2. Let P=~;o~k<.mPkEHyp N, where Pk(~)= ~ l ~ l : k c ~ .  Then we have, 
/or every ~ER a+l, that if 

(8, N) 'P~ (~) = o /or  i < 
then also 

a'Pm_k(~)=O/or ] a [ < v - k ,  0 < k < m .  

Proo/ o/ the equivalence. Let ~ER a+x. We observe that  

P= ( ~  +_,v) = Y. (8, N>JP,. ( ~ ) / i  ! 
0<~t<~ ra 

= Y ( a , N ) ' P ~ ( # ) ~ - J / j ! , ~ E R .  
0~1<~ m 

Hence the degree of Pm ( ~  + N) with respect to T is less than  or equal to m - ~  if 
and only if (8, N)JPm (~) = 0, 0 <~ j ~< ~. On the other hand we have 

0~k~<m-I~l 

= ~ v~( Y. O=P,+I~I(~)n~/~!),zER,~7~R a+x. 
0~<i~< m 0~<1~1~ m - t  

Hence the degree of P(v~+~?) with respect to v is less than or equal to m - ~  ~or 
all ~7 ~R a+x if and only if 

O~PI+~=~ (~),f /a t = 0, ~eR ~+1, 0 < m -  7"< ~. 
0~< [al ~< m - t  

But  this is equivalent to O~P~_~ (~)= 0 if lu[ < ~ -  k. 

The conditions of Theorem 3.1 and 3.2 are, however, not sufficient for hyperbolicity. 
We consider once more the polynomial 

(~ - ~ - ~) (~ - ~ P(( 'K,  ~I ,  ~2)) 2 2 2 2 2 2 = - 2 ~ . )  + ~ ~. 

The principal par t  is clearly hyperbolic with respect to (1, 0, 0), and has simple 
characteristics everywhere except for ~ = 0  where it has double characteristics. The 
lower order t e rm is zero when ~ = 0 so the condition of Theorem 2.2 is fulfilled. 
However, we can see by  the example after Theorem 1.1 tha t  the polynomial P is not 
hyperbolic with respect to (1, 0, 0). 

4. An applieation to hyperbolic systemsX 

We consider r xr  matrices Q(~)--(qm(~)) where the elements qjk of Q are poly- 
nomials in ~ = (~1 .. . .  , ~a+i). We let I denote the r × r unit matrix.  The operator Q(D) 
is hyperbolic ff it has a fundamental  solution E with support  in a proper cone K, 
tha t  is, if there is a matr ix  E = (Era) where the E m are distributions with support  in 
K such tha t  

Q(D) ~ ~e E -- 0I. 

a T h i s  s e c t i o n  w a s  a d d e d  t o  t h e  p a p e r  o n  N o v e m b e r  7 th ,  1968. 
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The matrix Q is hyperbolic if and only if the polynomial det Q is hyperbolic. In  fact, 
if det Q is hyperbolic and if F is a fundamental solution of det Q(D) with support 
in some proper cone K, then we have 

Q(D) ~ ~e C°Q(D) ~ ~e F I  = ((det Q(D)) ~ ~e F) I = 6I. 

But this means that  ¢°Q(D)O~eFI is a fundamental solution of Q(D) with suppor~ 
in K. Assume on the other hand that  Q is hyperbolic and let E be a ftmdamental 
solution of Q(D) with support in some proper cone K. We observe that  all scalar 
distributions with support in K constitute an associative and commutative convolu- 
tion algebra. In  view of this fact it follows that  Q(D)6~eE=6I implies tha t  
(det Q(D))(~-(det E ) = 5  where det E means the convolution determinant. Since 
the support of det E lies in K, it follows that  det Q(D) is hyperbolic. 1 

By this discussion it is clear that  we should call Q hyperbolic with respect to 
N E R ~+1 if and only if the polynomial det Q is in Hyp h r. We define Hyp,  N to be 
the set of all polynomial matrices Q of type r × r such that  det Q is in Hyp h r. 

Let  
Q(~) =A(~) + B(~) (4.1) 

be r x r-matrices where the elements a m of A are homogeneous polynomials in 
of degree mj+nk, and where the elements b m of B are polynomials of degree< 
m~+n~, ], k =1 ..... r. All the mj and n~ are integers, not necessarily >~ 0. We shall say 
that  the zero polynomial is a polynomial of any degree (even negative). We call 

d + l  • Q =A + B strongly hyperbolic with respect to 2V E R if A + B' is in Hypr N for 
any choice of the lower order matrix B' (Yamaguti an4 Kasahara [14], Strang [13]). 

Assume that  the matr ix A of (4.1) is in Hyp,  N. In  particular this implies that  
det A is not identically zero, and it follows easily that  the principal par t  of det Q 
is det A. But  then we get immediately from Theorem 1.3 the following theorem. 

Theorem 4.1. Let Q=A + B be a matrix o/ the type (4.1), and assume that A is in 
HyprN. Then Q is in HyprN i/and only i/ 

det Q(~ + iN)/det A(~ + iN) = det( I  + B(~ + iN) A-I(~ + iN)) 

is bounded/or real ~. 

The condition of Theorem 4.1 means that  the product of all the eigenvalues of 
Q(~+iN)A-I(~+iN) is bounded for real ~. When all the mj+nk of (4.1) are equal to 
1, it is easy to prove that  even the individual eigenvalues must be botmded. For the 
proof we shall need the following lemma. 

Lemma 4.1. Let P = ~o<~ k< m Pe E Hyp N, where the Pk are homogeneous polynomials 
in ~ERa+l o/ degree k. Then there is a number C such that 

Pm(~+iN)+ ~ z~Pk(~+iN)#O i/ ~eR ~+~ and ~ Iz~[<C. 
O<~ k~  ra-1 O<~ k~  m - 1  

Proo/. By Theorem 1.3 it follows that  there is a number C 1 > 0 such that  

IPk(~+iN)[/IPm(~+iN)[<~C1 if ~6Rd+~,O<~k<~m. 

1 This very short proof is due to L. G£rding. 
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By the triangle inequality we get 

[p~(~ + iN) + F ~P~(#+ihr)[~lPm(#+iN)l-o~m_~]z~P~(#+ihr) [ 
O~k~rn-1 

>~[Pm(~+ihr)l(1-C~ .- Y- Iz~l) 
O,~k~<rn-1 

O<~k<~m-1 

Theorem 4.2. Let Q(~)=A(~)+ B be a r x r matrix, where the elements a~ o / A  are 
homogeneous polynomials ol degree one in ~=(~  ..... ~a+~), and where the elements 
b~ o/ B are comTlex numbers. Assume that A is in HyprN. Then Q is in Hyprhr i/ 
and only i/the spectral radius o/BA-I(~ +iN) is bounded/or real ~. 

Proo[. If the spectral radius of BA-I(~ + iN) is bounded, then the same is true of 
the spectral radius of I + BA-I(~ +iN). Hence det (1 + BA-I(~ +iN)) is then bounded 
for real ~ which in view of Theorem 4.1 means that  Q is hyperbolic. 

Assume, on the other hand, that  Q is in Hyp~ h r. Then we have, by Lemma 4.1, 

det (~I + BA-~(~ + iN)) = ]t ~ det (A(~ + iN) +2-~B)/det A-~(~ + iN) ~= 0 

for all real ~ if ]21-1 is sufficiently small. But this means that  the eigenvalues of 
BA-I(~ +iN) are bounded for real ~. 

Remark. I t  is easy to see that  if r > 1, the necessary and sufficient condition on B 
given by Theorem 4.2 is strictly weaker than the sufficient condition used by Kop£Sek 
and Sueh£ [7] to define a class of first-order hyperbolic systems of the type (4.1). 
Their condition is that  if (¢°A(~))B =(bjk(~)), then (see Theorem 2.1, II) 

~ ( ~  + vN) = l<~<mT~k(~) (det A), (~; ~) 

with bounded functions 7~ k, rER, ~EN ±, ?', k = 1 . . . . .  n. In view of Theorem 2.1 it 
follows that  this condition is equivalent to the condition that  

IIA-~(~ + iN) B II = II (det (A (~ + iN))) -~ (°°A (~ + iN)) BII 

is bounded for real ~. This implies of course that  the spectral radius of BA-I(~+iN) 
is bounded for real ~:. 

Example 1. The following example of a non-hyperbohe matrix is due to Petrowsky 
[11]. The matrix 

( -~1+~ -~3 0 ) 
Q(~) --- - ~3 ~1 - ~3 

0 1 - ~1 

is not hyperbolic with respect to (1, 0, 0) although the corresponding matrix A is. 
In fact a simple computation shows that  the only non-zero eigenvalue of BA-I(~ + iN) 
is 

-~3(~1 + i -~ , ) / (~1  +i)  ( (~ + i ) ~ -  (~  + i ) ~ - ~ ) .  
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If we put fl=O and we get 

which is clearly not bounded. 

Example 2. Consider the matrix 

The matrix A is clearly hyperbolic with respect to N =  (1,O). 
Let further 

A simple computation yields 

Since 52(51+i-52)-2 is not bounded for real 5 ,  as is seen by putting El=l2, i t  follows 
that neither (1 BA-l([ + iN)  I( nor (1 A-I(( + iN)  B (1 is bounded for real 5. But the 
eigenvalues of BA-'([+iN) are 0 and (t1+i-E2)-1. It follows that the spectral 
radius of BA-l(E + iN)  is bounded for real 5,  and hence that A + B is in Hyp, N. 

Example 3. The condition of Theorem 4.2 is of course always sufficient for hyper- 
bolicity, but in general not necessary if some mj+nk is different from one. Consider 
e.g. the matrix 

A is hyperbolic with respect to N = (1, O ) ,  and we may put n, = 2, n, = 1, and 
m, = m, = 0 .  Set 



s. L. SVE~SSOr¢, Conditions for the hyperbolicity of polynomials 

We put  ~ = (~ + i - -  ~s)-l. A computation yields immediately 

B(~+iN) A - i ( ~ + i N ) = (  ~ ' "  -~,~ ) 
,1+'fl - ~ , l ~ - ~ a + ~  " 

Further we get 

det (~I + B(~ + iN) A -1(~" ~_ iN)) =~ + 2(~ - ~ )  + ~,~a. 

Now it is clear, by  putting ~ = ~ ,  tha t  }~?a is not bounded for real ~. Since the 
coefficients of the polynomial in ~ are not bounded for real }, we see that  the zeros 
cannot be bounded either. Thus the spectral radius of B(} +{N)A-I(~ +iN) is not 
bounded. But  det (I + B(} + iN) A-~(} + iN)) = 1 +~ is bounded for real ~, and thus 
A + B is in Hyp~ N. 

Theorem 4.1 makes it  easy to derive necessary and sufficient conditions for the 
matrix A of (4.1) to be strongly hyperbolic. 

Theorem 4.3. Let A be the matrix o/ (4.1). I t  A is strongly hyTerbolic with respect to 
N 6 R ~+~, it/oUows that the matrix A-I(~ +iN) -- (c~(~:)) exists/or all real ~, and that there 
is a number O such that 

[cm(})[ ~-<O(1 + ]}[)1-~,-,~ (4.2) 

i / } e R  ~+1 and m~+n~>0, ~, k = l  ..... r. On the other hand, i/ (4.2) is valid/or real 
and all ], k = 1 ..... r, it/ollows that A is strongly hyperbolic. 

Proo/. Assume first tha t  A is strongly hyperbolic with respect to N. Then, in 
particular, A is in Hypr N, and it follows that  A-I(~ + iN) exists for all real }. ~ t h e r ,  
A + B is in Hyp,  N for any  choice of the lower order matr ix B. We choose B with 
only one non-zero element, say bye, l~<p~<r, 1 <~q<.r. I t  is easy to see that  the 
condition of Theorem 4.1 for our choice of B means that  t l  +bp¢(}+iN)cqv(})[ is 
bounded for real ~, and this implies tha t  bpq(~+iN)%p(~) is bounded for real }. But 
we may choose any polynomial of degree <~.m~+n~-i for b~q. I t  follows tha t  

Ic~(})l<~C(l+l}l),-~,-~ if ~ e R  '+1 and m~+nq>0. 

Assume, on the other hand, that  A-I(~ + iN) exists for all real $ and that  l cjk(~) I ~< 
0(1 + ]}1) 1-m~-~ if }ER d+l, ~, k = l  ..... r. Let  B be any lower order matrix. Since the 
elements b~ of B are polynomials of degree --<mj + n  k -  1, it follows that  for some 
constant 01 

Ib~(}+iN) I <o, . (1+  I~l)".,+".,-", ~ e ~  ~+'-, j, ~ = 1  . . . . .  r. 

Hence we have for the elements of B(~ + iN) A-I(~ + iN) 

b,,,(} + iN) I ~< 02(1 +1 }1 )m,-mm, ~eRa+~, ~, k- -  1 . . . . .  r. 

In  particular the elements on the main diagonal ( j=k)  are bounded by  a constant, 
and this property is not altered by  adding a constant to those elements. Hence, if 
I + B(} + iN) A-I(} + iN) = (d~(})), we have 

Id~(})l < 0 , ( 1 +  t ~ l r ,  -~'~, ~ R  '~+~, j, ~ = 1  ... . .  r. 

160 



But then it follows, quite trivially, that det (I+ B(S+iN) A-l([+iN)) is bounded 
for real 5. 

It remains only to prove that A is in Hyp, N. But this is clear since the existence 
of A-l(E+iN) means that det A(E+iN) +O for real 5. From the homogeneity it 
follows that det A(E + izN) +O if E Rd+' and z E R - (0). In particular we have 
det A(iN) +0, and it follows that det A(N) +O. Thus A is in Hyp, N. By Theorem4.1 
it follows that A + B is in Hyp, N too. Hence A is strongly hyperbolic with respect 
to N. The proof is complete. 

When A is a 1 x 1-matrix, i.e. a polynomial of degree m, the condition of the 
theorem is simply 

If all the mi + nk of 
expressed as 

I A(t+iN) 1 2C(1+ IEI)m-l, E E  R"~. 

(4.1) are equal to a common integer m,, the condition can be 

llA-l(E + i N ) l l ~  C(l + It1 E E  ~ ~ + l ,  
or if m, = 1, simply 

Because A(t +izN) is homogeneous in and z, the last inequality is equivalent to 

which is essentially the condition for strong hyperbolicity, derived by Strang in [13]. 
A couple of examples will show that it is not necessary for strong hyperbolicity that 

(4.2) is valid for all j, k = 1, . . . , r in the case when some m, + n, G 0, and that it is not 
sufficient that (4.2) is valid for all j, k with m, +n, >0. 

Example I. Put 

Then AisinHyp,NwhereN=(l,O). Wemaytakeml=l, m,=O, nl=O, andn,=l. 
It is easy to see that A + B is in Hyp, N for any choice of the lower order matrix 

This means that A is strongly hyperbolic with respect to N. But if we compute the 
c,,, corresponding to A, we find that c12(t) = -&(t, + i - 5,) -2. In  particular we have 
that c12((t2, &)) =Of. We see that c,, does not fulfill the condition (4.2). 

Example 2. Consider the matrix 

A is clearly hyperbolic with respect to N=(l ,  O), and we may put m, =1, m,=O, 
m,=l, n,=l, n,=l ,  and n,=O. We have mk+ni>O, except for the case k=2, j=3. 
We compute A-l(t + iN), and get, with 7 = (El +i --O,)-l, 



S. L. SVENSSOH, Conditions for the hyperbolicity of polynomials 

We see that all the elements cjk, except c,,, fulfill the condition (4.2). However, A 
is not strongly hyperbolic, as is seen by choosing as lower order matrix 

We get 

Hence it follows that det (I+ BA-l(E+iN)) = 1 +&S(E1+i)-l, and this is clearly not 
bounded for real E ,  so by Theorem 4.1 A + B is not hyperbolic. 
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