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S u b h a r m o n i c  funct ions  in a circle 

B y  ULF HELLST~r~, Bo  KJELr,BErtC and  FOLK~ NO~STAD 

1. Introduction 

Let u(z) be a subharmonic function of a complex variable z, defined in a circular 
region t zl <R.  Let 

re(r) = inf u(z), M(r) = max u(z), M(R) = sup u(z). 
Izl~r Izl=r Izl<~ 

A condition of the type re(r) <~ cos zt2M(r), (1) 

where 2 is a number in the interval 0 <2 < 1, has been found to give consequences 
concerning the variation of M(r)/r~. If  u(z) is subharmonie in the entire plane and if 
(1) holds for all r>0 ,  then M(r)/r a has a positive limit when r ~  (see [1, 2, 4, 6]). 
An essential part of the proof of this is to show that,  with a given value of M(R) /R  ~, 
the quotient M(r)/r a must be bounded for 0 < r  < R. We shall here make a closer 
study of this problem. 

The special ease 2 =½ has long been known, this being the Milloux-Schmidt in- 
equality (see, for example [5], p. 108-109): 

where Uo(r ) 4M(R) arctan V r (2) M(r) < Uo (r), 

One consequence of (2) is that  
M(r) <~ 4 M(R) 

V ~  " (~) 

In the general case 0 <2 < 1, we prove the following. 

Theorem 
Suppose that u(z) is subharmonic /or [z I < R  and that 0 < M ( R ) < ~ .  Let 2 be a 
/ixed number in the interval 0 < ] t < l  and suppose that condition (1) is saris/led/or 
0 <r < R. Then there is an extremal subharmonic/unction, 

~2 fzlata-1 t 1-~ ] 
U(z)=Re{2M(R)  t a n ~  j ° -~--~t~ dtl, largz[~z~, (4) 

/or which (1) holds with equality and such that 

M(r) <~ U(r). (5) 

* Manuscript part ly rewritten, final shape 5 June 1969. 
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The inequality (3) corresl~onds to 

tan ~--~ 
M(r) 2 M(R) 

r~ ~< ~ - -  R ~ ,  (6) 

2 

where the constant is best possible. 

Condition (1) is trivially satisfied if M(R) ~ 0; hence it is only in the case M(R) > 0 
tha t  consequences of (1) can he proved. 

Notice that  we must have u(0) ~<0, because, if u(0) =lira supz-~o u(z) =a, it follows 
from (1) and (2) tha t  the same lim sup must be less than or equal to aces ~t2, which 
implies tha t  a < 0. 

In  the first version of the manuscript of this paper (by Hellsten and Kjellberg) 
only estimates of U(r) and of the constant in (6) were given. The explicit formula 
(4) and the exact value of the constant (see section 7) are a later contribution by 
Norstad. 

2. An associated function 

In  many problems on analytic functions, it is often advantageous to form an auxi- 
liary function by making a circular projection of the zero points upon a certain radius. 
The new function takes its minimum on this radius and its maximum on the opposite 
radius. Here, we shall make the analogous transformation from u(z) to an associated 
subharmonie function u*(z). A subharmonie function which is bounded above for 
I z[ < R can be written in the form (concerning this section, see, for example [7], 
IV.10): 

u(z) = ul(z ) +us(z), (7) 
where 

R ( z - ~ )  1 l "+" R~-[z[  ~ 

The functions p(~) and v(R e ia) correspond to positive mass-distributions over I zl < R 
and ]z I = R, respectively; u2(z ) is harmonic for ]z I < R. 

We now construct an associated subharmonic function 

u*(z) = u~(z) + u~(z), (s) 
where 

* f f l  1 IR(z+l~l)]d u2(z)=M(R) •1 (Z) = o g  2 ~ ( ~ ) '  * 
2 ~  I R + z [  ~ _ 

The potential function u~(z) has its whole mass concentrated on the segment - R < 
z~<0, while u~(z) has its mass at the point z = - R .  On Iz[ =R,  z : ~ - R ,  we have 
u~(z) =0 and u~(z} =M(R).  The function u*(z) is harmonic in the region D~ which is 
obtained by cutting Izl < R  along ( - R ,  0). For Izl =r, 0 < r < R ,  we have u*(-r)<. 
u*(z) <u*(r). 
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3. The eo~n~fions between u (~) and u* (~) 

From the definition of u*(z) it follows that  for 0 < r < R 

u*(-r)  <m(r) <~M(r) < u*(r) <~M(R), (9) 

(see an analogous derivation in [5], for example). 
As is usual in such cases, we require here a further relation, namely 

u * ( - r )  + u*(r) <re(r) + M(r ) ,  (10) 

for 0 < r  < R. We begin by showing that  

u*(-r)  +u*(r) <~u(-z) +u(z), (11) 

for any z on I z ] = r. Let us put z = r e ~. We prove the relation by dividing up u and u* 
according to (7) and (8) and deriving separate inequalities, which together give (11). 
We consider first 

ul( - z) + u~(z) - u~( - r) - u~(r) 

= " 

R-4- z - ~  - rag{ - ~ -  r~T~ ] } d#(~) ~> 0' 

where the inequality follows from a well-known elementary property of the mapping 
function w(z) = [e(z-a)]/(e ~-za). Next 

U2(--Z)+U.2(Z ) -  2 ( - - r ) - - u 2 (  ) 

R ' - r '  f+"f 1 1 O. 
- -~ J_, ,L(R2+r' )~-4R'r  ' (R'÷r')2-4R2r~cos('O-q)Tj 

The proof of (11) is then complete. Since u ( - z )  can be made sufficiently near m(r) by 
suitable choice of z and u(z)<M(r), (10) follows. 

Finally, it is seen from (9) and (10) that  

u*(- r )  - c o s  z2u*(r) = u*(-r)  + u*(r) - (1 + cos ~2)u*(r) 

4 re(r) + M(r) - (1 + cos 7t~) M(r) = m(r) - cos ~ M ( r )  <~ O, (12) 
by (1). 

Observe that,  just as (1) implies that  u(0) ~<0, (12) implies that  u*(O) ~0. 

4. Representation formulae 

We now require representation formulae in the simple case of harmonic functions 
which are bounded from above and are representable as integrals of their boundary 
values. Let H(z) be such a harmonic function in the half-disc Izl <R,  I m z > 0 .  
Its value for z = ir is (see, for example [3], p. 2) 

;+2 fo H(ir) = K(r, t) H(t) dt + S(r, q~) H(R e t~) dqJ 

= K(r, t) {H(t) + H( - t)} dt + S(r, ~o) I t (R e ~) d% (13) 

187 



U .  H E L L S T E N  et al., Subharmonic functions in  a circle 

/ 

i 

Fig. 1. 

r 1 R ~ 
where K(r , t )=~ lt~_~r9 " R , - ~ r ~  } 

2Rr(R ~ - r 2) sin 
and S(r, q)) = zc(R 4 + r4 + 2R~r ~ cos 2~0)" 

Consider next, the region DR consisting of the circle I z[ < R cut along ( - R ,  0). 
In what follows, we shall only be interested in the symmetric ease when H(z) =H(5). 
In particular H(z) then has the same limit H ( - t )  whether z approaches the cut 
( - R ,  0) from above or below. By means of a simple square root transformation, we 
obtain from (13): 

H(r) = jo"Q(r, t) H ( - t )  dt + j :  T(r, of) H(Re '~) dq~, (14) 

1 , }  
where Q(r, ~) = - ~ t  t + r R 2 + rt 

I/~ (R - rl cos  (~0/2/ 
and T(r, ~) ~(R ~ + r ~ - 2_Rr cos ~)" 

We shall also require a further representation formula for H(z) in Dn. This is obtained 
by first applying the counterpart of (13) in the half-disc [z[ <R,  Re z>0.  

R r +,,/2 I 
~v + 2) H(Re'~) dyJ. (15) H(r)=2 fo K(r, ~) H(iz)d~ + J_,, S[r,  

Then r is replaced by v in the formula (13) and the resulting expansion for H(iT) 
is inserted in (15). This gives 

H(r) = f~L(r, 1) (H(t) + H( - t)} dt 

+ iV(r,V)B(R~'~)dv+J_.,S(r,W+~. H(R,'ndv, (16) 
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I: where L(r, t) = 2 K(r, T) K(~, t) dT 

fo" and N'(r, ~o) = 2 K(r, ~') S@, ~o) d~. 

We observe tha t  the functions K, S, Q, T, L and N above are non-negative. 

5. In tegral  inequalities for u*(r )  

We now return to our consideration of the function u*(z), which is subharmonie 
for Iz] < R  and bounded above by  M(R). I t  is harmonic in DR and has a constant 
value, M(R), on [z[ = R except for the point z = - R. By (12), u * ( - t )  < cos ~).u*(t). 
On combining this with (14), we obtain the integral inequality 

u*(r) <. cos x~2 Q(r, t) u*(t) dt + h(r), (17) 

where h(r)=M(R)f[;T(r 'qD)dq~=4M(R)arctant/R " z ~  

We also need an integral inequality in which cos z~)l is replaced by  a factor which is 
positive in the whole interval 0 < 2 < 1 .  For this we use (16) instead of (14) and we 
obtain 

£ u*(r) <~ (1 + cos ~;t) L(r, t) u*(t) dt+ k(r), (18) 

where 

6. Two integral equations 

Let us consider the integral equation which corresponds to (17) i.e. 

U(r) = cos ~r~ Q(r, t) U(t) dt + h(r). (19) 

As is clear f rom the definition in (14), Q(r, t) has a singularity a t  t =0.  In  spite of this, 
the usual method of solution by successive approximation works well here. We 
perform this step by  step. 

(a) Either b y  direct calculation or by  setting H(z) - 1 in (14), it is seen tha t  

f RQ(r,t) < dt 1 (20) 
0 

for any  r in the interval 0 < r < R. 
(b) Let  q(r) be continuous and bounded, [q(r)] < C  for 0 < r < R .  The integral 

operator 

f :  QCr, t) qJ(t) = ¢plCr) dt 
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gives a function 9x(r) with the same properties. The continuity requires no comment 
and ]~l(r)l <C  follows from (20) and the fact tha t  Q(r, t )>0 .  H one wishes to have 
continuity in the closed interval 0 ~< r ~< R one must define ~1(0)=~(0) and ~I(R) =0, 
since 

f: f: -- lim Q(r, t) d$ = 0 lira Q(r, t) dt 1, 
r - - ~  r---.O 

for each (~, 0 < ~ < R, and further 

lira,~R f :  Q(r'Odg=O" 

(c) Denote by Q¢1), Q¢2) . . . . .  Qc,) . . . .  the successive kernels: 

@1, (r, t) = Q(r, t) 

Q¢"~(r, t) = f :  Q¢"-l~ (r, v) q(v, t) d, ,  n =2 ,  3 . . . . .  

(d) Set cos ~2 =/~ and consider the series 

f; fo' U(r)=h(r)+p Q(r, 0 h(#) d~ + ... +/~" Q<n) (r, g) h(t)  d# "k- . . . .  (21) 

By (b) and the definition of h(r) in (17), the terms in this series are continuous and 
have values smaller than the terms of the series 

M(R) +M(R)]~[ +M(R)I~I~ +... +M(R) I~ l "+  .... 

which converges for < 1 with sum M(R)/(1- I 1). The series (21) therefore con- 
verges uniformly in r for each p such that  I/~1 < 1. 

Thus, for each p in [p] <1,  U(r) is defined and continuous in 0~<r<R,  with 
U(0) ~h(0)/(1 - p ) - - 0  and U(R)=M(R). 

(e) By  inserting the series (21) into (19) in which we may then integrate term by 
term, we see that  U(r), defined by  (21), satisfies the integral equation (19). In  the 
usual way (the difference between two solutions satisfies (19) and (21) with h(r)=0) 
it is seen that  the solution is unique within the class of bounded continuous functions. 

Finally, we write down the integral equation corresponding to the inequality (18), 
namely 

f0' U(r)=(1 + cost;t)  L(r,O U(Od~ +k(r). (22) 

The existence of a unique solution can be shown in a way analogous to that  used 
with (19). However, this working does not need to be performed here; what is required 
in what follows is to show that  the same function U(r) which satisfies (19) also 
satisfies (22). 
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7. U s e  o f  Four ier  t rans forms  

By the transformations r = R e  -~, t = R e  -~ the integral equation (19) takes the 
form 

~(z) = I ~ { K 0 ( z -  s) - K0(x + s)} ~(8) dz + g(x), (23) 
3 0  

where qo(x) = U(Re -z) is to be determined and 

Ko(u ) cos g~t 1 4M(R) arctan e -z{2 
2coshu/2 '  g(x)- ~ 

We now extend the definition of ~0(x) and g(x) to negative values of x by pre- 
scribing them to be odd functions. The origin turns out to be a point of discontinu- 
ity. By analogy with the case for equations of the Wiener-Hopf type the equation 
(23) then can be written 

cp(x) = f ?~.Ko(x - s) cp( s) ds + g(x ). (24) 

Introducing Fourier transforms we obtain 

¢(t) = ~o(t) ¢(t) + ~(t) 

The formal solution 

q~(x)=lzt f?c¢l #_(--~o(t) e-'~tdt 

(25) 

(26) 

gives us in this case the desired solution. In fact 

~(t) 2iM(R)(1 1 ) ,  cos~;t 
- t cosh zti -~°(t) = cosh ~tt' ~< cos 32 < 1. 

To evaluate the integral by means of residue calculus for x > 0, an interval on 
the real axis is completed by a half-circle in the lower half-plane. The denominator 
1 - J~0(t) has two sequences of zeros there, { (2-  2n)i}~=: and { ( - ~ t -  2n)i}n~-_0 • The 
result is 

2M(R) 1 - c o s ~ t I ~  e -xc~+2n) ~ e-xc-~+~n)~ 
~0(x) - ~ -  ; i ~  t ~_o ~+2,~ ~ : - - 7 7 ~ j  (27) 

This gives 

U(r)-2M(R)l-c°s~2~ sin zc2 {~0 (r/R)2n+~2n + 2 ,-: ~ (r/R)2"-x:'~ J (28) 

or U(r)-2M(R) tan _t~ dr. (29) 
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The result can also be writ ten 

U(r) =2MIR) tan ~ {(r/R)~- ~ ;IR tl-~-tl+~dt } =~ (30) 

The integral of the right-hand side is never negative, i.e. we have the inequality 

U(r) 2 .  n~. M(R) 
H ~< ~-~ ~an ~ ~-2 • (31) 

8. An ex~remal subharmonle  funct ion  

The result (29) of the preceding section suggests a s tudy of the function 

w(z) 2M(R) ~2 C z/R ~ - 1  --  tl-Jl tan~j0 1--~ ~' 

which is analytic in DR. I n  fact, a straight-forward computat ion shows tha t  
Re w( - r) = cos ~2 Re w(r) and tha t  the variation of w(z) on the arc I z I = R, z * - R 
is purely imaginary, i.e. Re w(z) is constant on the arc. Hence the function U(z) = 
Re w(z) is harmonic in D~, has constant boundary value M(R) on ] z I = R, z =~ - R, 
as w(R)= M(R), and satisfies U ( -  r ) =  cos ~U(r). Furthermore,  substitute H(z) for 
U(z) in (16) of section 4 and there results (22), i.e. U(r) satisfies (22) as well as (19). 

We shall now show tha t  U(r) majorizes u*(r), which in turn majorizes M(r), 
by  (9). ~Te use the formulae containing the positive factor 1 + cos ~2. On subtracting 
(18) f rom (22), we obtain 

U(r)  - u*(r) >1 (1 + c o s  ~ a )  L(r, t) { ~](t) - u * ( 0 }  dr. (32) 

The function ~(r)= U(r)-u*(r) is not necessarily continuous for 0 ~ r  ~< R, since it 
can happen tha t  u*(0) = - ~ .  However, it is lower semi-continuous and consequently 
takes a minimum value, m, in the interval. Further  ~(0)/>0 and ~2(R) =0.  The mini- 
mum m cannot be negative; for assume this were the case. Let  to, 0 < r  0 < R, be the 
value of r which gives the minimum. Substitution in (32) then gives 

m>~ (1 + cos ~[) L(ro, t)~2(t)dt>~m(l+cos~t ) L(ro, t)dt. (33) 

However, by  setting H ( z ) = l  in (16), we see tha t  

2 L(ro, t) dt < 1, i.e. L(ro, t) dt < I. 
0 

This contradicts the assumption tha t  m < 0  in (33). Hence 

U(r)-u*(r) >10, i.e. u*(r) < U(r). 

192 



ARKIV FOR MATEMATIK. Bd 8 nr  19 

Since M(r)  ~u*(r) ,  we have  p roved  t h a t  

M(r) < U(r), (5) 

a n d  recal l ing (31), we o b t a i n  (6). 
I t  r ema ins  to  show t h a t  U(z) is subharmonic  for  ]z I < R. Since U(z) is ha rmonic  

in Do, i t  r ema ins  on ly  to  consider  U(z) local ly  on the  segment  - R  < z ~< 0. A cal-  
cu la t ion  shows t h a t  a t  each po in t  of the  segment  i ts  inner  no rma l  de r iva t ives  in  
bo th  u p w a r d  and  down-ward  di rect ions  are pos i t ive  (and of course equal  because  
of the  s y m m e t r y  of U(z)). Con t inua t ion  of U(z) f rom above  the  segment  gives, in a 
disc I z + r I < ~, a ha rmonic  func t ion  which is less t h a n  U(z) in the  lower half  of the  
disc. Thus  a local  condi t ion  for s u b h a r m o n i c i t y  of U(z) is sa t is f ied a t  z = - r .  A 
check shows t h a t  the  m e a n  of U(z) on a circle cen t red  a t  the  origin is posi t ive .  
Since U ( 0 ) =  0, a local condi t ion  for s u b h a r m o n i c i t y  is sa t i s f ied  also a t  the  origin.  

W e  have  thus  found  an  ex t r ema l  solut ion U(z) to  the  problem,  given in t he  in- 
t r oduc t i on ,  of f inding the  m a x i m u m  value  of M(r). 

The Royal Institut~ of Technology, S-IO0 gg Stockholm 70, Sweden 
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