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Hardy-fields 

B y  GtrN~Aa SJSDIN 

Introduction 

In  his work [1] Ha rdy  discusses the problem of describing how rapidly a function 
]:R 1 ~ R1, where/~1 is the system of real numbers,  tends to infinity. This is a special 
ease of the more general problem to describe how such a function behaves in the 
vicinity of + ¢~. For simplicity we write ~ instead of + oo in the sequel. We will 
only be interested in functions tha t  are infinitely differentiable in a neighborbood 
of oo. Thus let 

C ~ =  {fir is a real-valued function such tha t  its domain lies in R x and contains 
a neighborhood of c~ in which f is infinitely differentiable}. 

To discuss the above problem we are natural ly led to considering two functions 
/, g belonging to C ¢° as essentially equal, w r i t t e n / N g ,  if they are equal in a neigh- 
borhood of 0% i.e. if there is a number  _h r such tha t  ](x) =g(x) for x>~N. I t  is obvious 
tha t  -~ is an equivalence relation and tha t  the equivalence classes are the same as 
the residue classes of the ideal 1-= {/I/NO} in the ring C ~. Let  R=C°°/I and let 
I(/) denote the residue class of / with respect to I .  Then R is a ring with differ- 
entiation where (I([))'= I(/') and it can be said to represent all the ways a rune. 
tion in C °~ can behave in a neighborhood of oo. 

The concept, Hardy-field, which will be studied in this paper, was essentially 
introduced in [I] but was, as far as I know, first formally defined in [2]. The defini- 
tion given in [2] is equivalent to the following. 

Definition, A field H contained in R, such that yEH implies that y'EH, is said to 
be a Hardy.field. 

An example of a subset of R, which constitutes a Hardy-field,  is the set of residue 
classes of the rational functions. 

An intersection of an arbi t rary non-empty family of Hardy-fields is a Hardy-field. 
Thus if A = R and if there is a Hardy-field containing both a given Hardy-field H 
and the set A then there is also a smallest Hardy-field, denoted by  H {A }, containing 
both H and A. If H{A} exists then A is said to be adjoinable to H. I f  A = {a 1, ..., an} 
then we write H{A}=H{al,  ..., a~} instead of H{{a 1 . . . .  , a~}} and we say tha t  
al .. . . .  an are adjoinable to H. 

I t  will be one of the main concerns in this work to extend a given Hardy-field in 
such a way tha t  the extension has nice algebraic and analytic properties. A natural  
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and impor tant  means to extend a Hardy-field is the method of adjunetion as de- 
scribed above. Thus i t  will be impor tant  to have conditions on A and H tha t  guarantee 
the existence of H{A} .  The following result is of tha t  nature. I t  is proved in [2]. 

Theorem. L a  H be a Hardy-]ield and suppose that y' = a y ÷ b  where a, bEH, yER.  
Then y is adioinable to H. 

Several partial  orderings can be defined in R. The one which will be most  frequently 
used in this paper  is defined by  letting I ( f ) < I ( g )  mean tha t  f(x)<g(x) in a neigh- 
borhood of oo. This definition is obviously independent of the choice of the represen- 
tat ives ] and g. I t  is easy to see tha t  if H is a Hardy-field then  H with the restriction 
of < to H is a total ly ordered field. 

Ha rdy  and Bourbaki use Hardy-fields as "scales" of the order of increase of 
a function in C% To decide how far-reaching such scales are one faces a number  of 
problems. Given a Hardy-field H there might for instance exist functions in C ~ 
tha t  increase more rapidly than  any  of the representatives of any  element in H. 
More precisely, is there an element a e R  such tha t  a > h  for all hEH~. I f  th is is  the 
case H is said to be bounded and a is said to be an upper bound for H which will 
be writ ten a > H. On the other hand if no such element exists, then H is said to be 
unbounded. Thus a natural  and important  problem would be to decide whether or 
not  there are unbounded Hardy-fields. A related problem is to decide whether there 
is a Hardy-field H such that  for each a E R there is an h E H such tha t  a < h. Such a 
Hardy-field will be said to be eofinal with R or simply eofinal. I t  follows immediately 
from the definitions tha t  a cofinal Hardy-field is unbounded. These two problems 
will be of major  interest in the sequel and we shall prove tha t  there are in fact un. 
bounded Hardy-fields and tha t  the continuum hypothesis implies the existence of 
cofinal Hardy-fields. 

From Zorn's l emma it follows in the usual way tha t  each Hardy-field is contained 
in a maximal  Hardy-field. The theorem above and some theorems which will be 
proved later on shows tha t  a mammal  Hardy-field is unbounded, real-closed and 
closed under the solution of differential equations of the type above. However  we 
shall prove tha t  there is no unique maximal  Hardy-field, i.e. there is no greatest 
Hardy-field. When we have obtained this result we conclude the paper  with an 
investigation of the properties of the intersection of all maximal  Hardy-fields. We 
show tha t  this intersection is a Hardy-field which is closed under composition and 
bounded, in fact we can give a countable subset of it such tha t  each element in 
the intersection is less than  some element in the countable subset. 

For  later convenience we now make a few observations and introduce some 
terminology. 

The symbol F(A)  will denote field-exteusion and the symbol F[A] ring-extension 
of the field F with respect to A. For example it  is easy to see tha t  in Bourbaki 's  
theorem above H{y}  =H(y). The transcendental elements will be denoted by  X or 
X~. An element y E R is said to be comparable to 0 if y > 0, y - - 0  or y <0.  Suppose 
tha t  H is a Hardy-field and tha t  a E R  is such tha t  p(a, a', .... a end) is comparable to 
0 for each n and each p E H [ X  o . . . .  , Xn]. Then it  follows from the rules of differentia- 
tion tha t  H(a} exists and consists of all elements r(a, a', .... a (~) where n~>0 and 
rEH(Xo . . . .  , Xn) is such tha t  i t  can be writ ten p/q, with p,  qEH[X 0, ..., X~] and 
q(a, a ' ,  .... dn))=~0. I f  y is comparable to 0 then  lYl will denote y if y > 0  and - y  
if y < 0 .  

By  abuse of language the residue class of the function/( t)  = o for all t will also be 
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denoted by  c and the residue class of the function/(t)  = t  for all t will be denoted by  
x. Similarly if a = I(/) then exp a will denote I ( exp / )  and log a is analogously de- 
fined. 

§ 1. Real-closed Hardy-fields 

The object of this par t  is to give a result on extensions of Hardy-fields related 
to algebraic properties. The partial ordering < plays a minor role in this section 
but  the results given here will be of help later on when a more explicit s tudy of 
the ordering < is made. 

First we give an extension-theorem of algebraic nature. 

Theorem 1. Let H be a Hardy-/ield and let H* = {a[a E R and a is algebraic over H}. 
Then H* is a Hardy-/ield. Furthermore, H* is real-closed, i.e. each 19olynomial o/odd 
degree over H* has a zero in H* and each 19ositive element in H* has a square.root in 
H* and consequently H*( ¢----1) is algebraically closed. 

The proof of this theorem is contained in the following lemmas. 

Lemma 1. H* is a Hardy-]ield. 

Proo]. Exact ly  as in the classical field-theory one proves tha t  H* is a field. Let  
aEH* and let qEH[X] be of minimal degree such tha t  q(a)=0. Thus q'(a)~=0 since 
the characteristic of H is 0. Let  q(X)=b ,X~÷. . .  ÷b o. Differentiating, one obtains 

a'q'(a) +ql(a) = 0 

where ql(X) =b; X ~ + ... ÷bo. Consequently ql EH[X] 

a '  - - ql (a) 
q' (a) e H(a) c H*. 

Thus it follows tha t  H* is a Hardy-field. 
To prove tha t  H* is real-closed we shall need the following well-known result. 

Lemma 2. Suppose that p(X)  is a polynomial o /odd  degree with real coe//icients. 
Then the real zeros o/19(X) are analytic ]unctions o] the coe//icients o/19 at each point 
where the discriminant o/ p is di//erent /tom O. 

Furthermore,  we shall need 

Lemma 3. Let H be a Hardy-field. Then each 19olynomial over H o] odd degree has 
a zero in R and each positive element o / H  has a square-root in R. 

Proo/. Let  19 E H[ Y] be of odd degree. I t  is enough to assume tha t  19 is irreducible. 
Let  

T(Y) = b, Yn÷. . .  ÷bo, b~ ~=0. 

Let  D be the discriminant of 19. Since 19 is irreducible we can conclude tha t  D ~:0. 
Let  bi =I(]~), 0 <<.i <.n, and let 
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P.(r) =/=(x) r ~ +. . .  +/0(x). 

Let  F(x) be the discriminant of Pz. Then I ( F ) =  D. Thus there is an N such tha t  
/~(x)~=0, F(x)#O for z>~N a n d / ~ E C ~ [ N , ~ ) ,  O<~i<~n. Let, for z>~N, d(x) be the 
greatest  real zero of Pz. Then it follows from lemma 2 tha t  dECk[N, ¢¢). Conse- 
quently l(d) E R is a zero of p. 

Le t  a E H be such tha t  a > 0. Let  a = I(/). Thus there is an N such tha t  / E C~[N, ~ )  
a n d / ( x )  > 0  when x>~N. Therefore V]EC~[N,~)  and a=I([)=I((V]) 2) =I(~/])~ i.e. 
a has a square-root in R. 

Proo/o t theorem 1. The only thing tha t  remains to be proved is tha t  H* is real- 
closed. Suppose tha t  p fiH*[X] is of odd degree. Then according to Lemma 3 there 
is an element hER such that  to(a)=0. But  a is then algebraic over H* and therefore 
also over H. Consequently aEH* i.e. p has a zero in H*. 

Suppose tha t  afiH* and tha t  a > 0 .  Thus according to Lemma 3 there is an element 
bER such tha t  bZ=a. But then b is algebraic over H* and it follows as above tha t  
b EH*. Consequently H* is real-closed. 

§ 2. Linearly dosed Hardy-fields 

Theorem 1 gives a possibility to extend an arbi t rary  Hardy-field in such a way 
tha t  the extension has nice algebraic properties. We will now give a result which 
enables us to extend a Hardy-field in such a way tha t  the extension has certain 
pleasant properties related to the solution of linear differential equations. This 
result will be strongly connected with the above mentioned theorem in [2]. First 
we give a definition. 

Definition. A Hardy-field H is said to be linearly closed i[ for any a, b E H we have 
that y' =ay +b implies that yEH. 

Let  H be a Hardy-field. Then y E R is said to be connected to H by  the chain 
Yl ... . .  y,,  where y,~=y, if there are a~,b~, l~<i~<n, such tha t  y~=a~y~+bt, where 
ax, b, 6H, a~, b~ EH {y, .. . .  , y~_,}. The extensions H {yl . . . .  , yt_x} exist according to the 
theorem in the introduction. 

We can now state 

Proposition 1. Let H be a Hardy.field and let L(H) be the set o/ all y E R such that y 
is connected to H by a chain. Then L(H) is a linearly closed Hardy.field and is further- 
more the smallest linearly closed Hardy.field containing H. 

Proo/. I t  follows from the definition of L(H) tha t  it is contained in each linearly 
closed Hardy-field containing H. Thus it  will be sufficient to prove tha t  L(H) is a 
linearly closed Hardy-field. Suppose tha t  y, z EL(H), where z #0.  Let  Yl ... . .  ym and 
z 1 . . . .  , zn be chains connecting y and z respectively to H. Consequently 

y, z E H { y l  . . . . .  Ym, zl . . . . .  zn} 

so tha t  y - z ,  y/z, y'EL(H).  Thus L(H) is a Hardy-field. Suppose tha t  u ' = y u + z ,  
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where z may  now be 0. Then u is connected to H by the chain Yl ..... Ym, zl ..... zn, u. 
Hence u EL(H). Consequently L(H) is linearly closed. 

We will now combine Theorems 1 and 2 in order to give an extension of a Hardy- 
field that  has both the algebraic property of Theorem 1 and the analytic property 
of Proposition 1. 

Proposition 2. Let H be a Hardy-field. Let H 1 =L(H), H~ =H~ and let H,~ be induc- 
tively defined by H~+I=L(H~n ), H2,+2--H~+l. Let Irl= UF H,. Then 1~1 is a linearly 
closed and real.closed Hardy.field containing H and is furthermore the smallest Hardy- 
]ield with these properties. 

The proof is obvious. 

§ 3. Boundedness of Hardy-field extensions 

In  this and the following sections we will consider problems concerning the partial 
ordering < in R. We wish to establish the existence of unbounded and, if possible, 
even cofinal Hardy-fields. 

To get an idea of the properties of the ordering < and for later use the following 
lemma will be helpful. 

Lemma 4. Any countable set in R is bounded. 

Proo/. Let A = (a,}~, a~ E R. Let a, = I(/~), /,~ E C ~. Let Nn be a real number such 
t h a t / , E C ~ [ N , ,  c¢). Let 

g. (x) i/~ (N.) ,  x < N~. 

Thus a, =I(gn). The functions g. are continuous for all x ER r I t  is then a well- 
known result that  there is a funct ion/E C¢°[0, ~ )  such that  1(/)> I(/n) for all n/> 1 
(see e.g. [1] page 8 where a theorem by du Bois-Reymond is proved that  immediately 
implies the above statement). Hence I(]) is an upper bound for A. Similarly one 
can construct a lower bound for A. 

In  the following let b > A where b E R, A c R denote that  b > a for all a E A and 
let b>~A, b <A,  b<A be defined similarly. Let  A <B ,  where A, B c  R, denote tha t  
there is an element b E B such that  A < b. Let A ~< B denote that  for each a E A there 
is an element b E B such that  a ~< b. Let A ~- B denote that  A ~< B and B ~< A are both 
valid. Let a.~b, where a, bER, mean that  n a < b  for all natural numbers n. 
Generally a symbol $ means that  $ is not valid. 

First we will examine whether the extension-theorems developed so far will yield 
an unbounded Hardy-field. The answer is in the negative which the following theorem 
expresses. 

Theorem 2. Suppose that H is a bounded Hardy-field. Then ~ is bounded. 

The proof of this theorem is contained in the following lemmas. 

Lemma 5. Let H be a Hardy.]ield. Then H ~ H*. 
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Proo/. We have  H c  H*. Thus  H ~<H*. Suppose t h a t  yEH*. We m a y  suppose t h a t  
=i=0. L e t  p(X)=anXn+... +ao,  an # 0 ,  a o . . . .  , a n E H  be such t h a t  lo(y) =0 .  Le t  

a = m a x  ( a n  a l  . . . .  'l an-l'an 1) .  

T h e n  a E H and  aJa < I an I- Suppose t h a t  y > (n + 1) a. Now 

= + a n - 1  + . . .  + ~ . ~  Ip(y)l lynl y 

and  an-, lan-,I < lanl 
y'  ~ < ( n - ~ l ~  n + - I  f ° r  l ' < i ' - < n  

so t h a t  . . . .  

B u t  < <la=l 
lanl 

yn n n +  1 

H e n c e  IP(Y)I > 0  which is a contradict ion.  Thus  y<<.(n+l)aEH. I t  follows t h a t  
H *  ~< H.  Consequent ly  H ~  H*. 

I n  the  sequel an  e lement  a E R will be called hard ian  if there  is a Hardy-f ie ld  H 
such t h a t  a E H.  

L e m m a  6. Let a E R, where a ~=O, and suppose that a' is hardian. Then 

 o(1 
Proo/. Le t  a=I(/). Thus  a '  = I ( f )  and  since a '  and  a ~ are ha rd ian  we can choose 

a t0~>0 such t h a t  each of f(t) and/~( t )  has a cons tan t  sign or is ident ical ly  equal  to  
~) for t >1 t 0. Thus  limt_.~/(t) = c, where - ~ ~< c ~< ~ ,  exists and  there  is a t 1 i> t o such 
t h a t  fit) has  a cons tant  sign for  t/> tl. Hence  l a [ E R. Since l a I '  = + a '  we m a y  suppose 
t h a t  a/> 0. Consequent ly  0 ~< c ~< ~ .  The  proof  is clear if 0 < c < ¢~. Suppose t h a t  
c = 0 .  T h e n  we only have  to prove  the  left  inequahty .  N o w / ( T ) = / ( t ) + S ~ f ( s ) d s .  
Thus  S F / ' ( s ) d s  converges and  / ( t ) = - ~ / ' ( s ) d s  since bo th  sides have  the  same 
,derivative and  t end  to  0 when  t t ends  to ~ .  Since a '  is ha rd i an / ' ( 8 )  is monotonic  
fo r  sufficiently large values of s and  we can conclude t h a t  l imt_~ f ( t )  exists and  
t h u s  m u s t  equal  0. I n  the  same w a y  we ob ta in  limt_,~ F ( t ) = 0 .  S i n c e / ( t ) > 0  for  

/> tl we can  conclude t h a t / ' ( t )  < 0 for  t/> t 1 and  similarly we obta in  a t~/> tl such t h a t  
' 0 < F ( t )  <½ if t>>.t~. Thus  we get  for  t~t2 

H e n c e  a ~ a~2. 

f ( t ) = - f t ~ / ' ( 8 ) d s >  -f t~2/ '(s)/"(s)ds=/'(t)  ~. 
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Now suppose tha t  c = oo. Then we only have to prove the right inequality. Now 
0 </ '(s) <] '(t l)  +/ ' ( t)  for s ~>t 1 since ]'(s) is monotonic for s >~t 1. Consequently 

/(t) = l(h) + t'(s) ds < 
1 

< t(t.,) + q%.) + q'(t). 

Thus a < / ( ~ )  + x/'(tl) + x a ' <  

xz x~ + a '~ 

< 2 - ÷  2 < xS+a'2"  

Lemma 7. Let H be a Hardy-field such that x E H. Let y' -- ay + b where a, b E H, y #0.  
Then there are c, dEH such that exp c < lYl < e x p  d. 

Proo/. Le t  A '  = - a. Thus 
(y exp A)'  = b exp A 

Now b exp A is hardian since exp A is adjoinable to H by  the theorem by  Bourbaki 
mentioned in the introduction. 
Hence by  Lemma 6 

mln (1, b~ exp 2A)  < ly lexp  A <bSexp 2A +x s 

Thus min ( l e x p  ( - A ) , b S  exp A)<]y]<bS  exp A +x~ exp ( - A ) .  

I f  b=O then  y = c l e x  p ( - A )  where clER 1 and the result follows from Lemma 6 
since x E H. Now suppose tha t  b ~:0. By  Lemma 6 ]A[ < a ~ + x  ~. Thus using the fact  
tha t  ~ > e x p ( - 1 / ~ )  if ~ > 0  we obtain [y[ ~>min (exp ( - x - A ) ,  exp (A-[l ib"]))> 
rain (exp ( - x - a S - x ~ ' ) ,  exp ( -a2-x2-[1/b~]))=exp c where c e l l  since xEH. 

Turning to the right inequality we obtain l Y] < e x p  (b s +A)  + exp (x 2 - A )  < 
exp (b ~ ÷ a  s + x  s) + e x p  (2x z + a s) < e x p  (1 ÷2x  s ÷ a  s ÷ b  ~) = e x p  d where d EH. 

Lemma 8. Let H be a Hardy-field such that x E H. Suppose that r > H ,  y' =ay +b 
where a, b EH. Then exp r > H {y}. 

Proo/. I t  is sufficient to prove tha t  exp r > H* {y}. Now r > H* since H N H*. Sup- 
pose tha t  z EH*{y}. Then z =%[p(y)/q(y)], % EH*, where p, q are products of factors 
of one of the two types y -  G¢ and ( y -  ~¢)~ ÷/~9. where :¢,/~ E H* and y #a, /~ #0.  Now 

(y-~)"  = y ' - ~ "  = ay + b - a '  = a(y-c¢) +a~ +b - ~ '  

where a~ + b -  ~¢'E H*. By Lemma 7 this implies the existence of elements ?, ~ E H* 
such tha t  exp y < l Y -  ~] < exp ~ where ~/> 0. Thus exp ( - [1//~s]) < (y - ~)s +flz < 
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exp 2 ~ +exp  f13 <exp  (2 8 + 1 +fl~). U~ng these inequalities we obtain an element 
cEH* such that  Iz] <exp  c. Hence Izl < e x p r .  Thus e x p r > H { y } .  

Lemma 9. Le~ H be a Hardy.field and let rE R. Suppose that r > H. 
Then re z > H (x}. 

Proof. I t  is sufficient to prove that  re x > H* {x}. Let y 6 H* {x}. Then y = ao[_P(x)/q(x)], 
ao6H* , where p, q are products of factors of one of the two types x - a  and 
(x - ~)~ +fls where ~, fl E H* and x 4 = ~, fl 4=0. Now (x - ~)' = 1 - ~' 6 H*. 

Let I x - h i  =I( / ) .  Then lim~_,,/(t)=c, O<c<~oo exists. If  c > 0 t h e n  I x - ~ l , > l / m  
for some m. If  c =0  it follows as in the proof of Lemma 6 that  I x -  ~1 > (1 - ~  )3 >0. 
Thus in either case there exists an element 7EH* such that  x - g  > 7 >  0. 
On the other hand [ x - ~ ]  ~<x+ I~[ and fl3<(x-~c)3+fl3<~(x+ [~[ + fl )3. Using 
these inequalities we obtain an element a EH*, where a > l ,  and a natural number 
n such that  

[ y [  < a ' ( ~  + a )  ~ < a ' (eXlna)  ~ = a ~ ' e  x < re  x. Thus re  x > H{x}. 

Lemma 10. Let H be a bounded Hardy.field. Then L(H) is bounded. 

Proof. According to Lemma 9 K = H { x }  is bounded. Since x ' = l  6 H  we can con- 
clude that  L(K) =L(H). Let  r > K. Let r ,  be defined inductively by r 0 = r, r ,  = exp r._ 1. 
Suppose that  y EL(K). Let Yl ..... y ,  be a chain connecting y to K. Then using Lemma 
8 and induction it follows that  r ,  > H{y  1 ..... y.}. Thus y < r~. But according to Lemma 
4 there is an element s E R  such that  s > r ,  for all n>~0. Thus s>L(H)  so that  L(H) 
is bounded. 

Proof o/theorem 2. Let Hn be as in the definition of/~. Let H o = H. Thus/~ = LJ ~H~.  
Now H 0 is bounded. Suppose that  H~n is bounded. Hence by Lemma 10 H2~+1 = L(H~n) 
is bounded. But H~+3=H~,+I,, ,H~+ 1 and so H2.+3 is also bounded. Thus it follows 
by induction that  each H ~  is bounded. Let r .  > H ~  for each n/> 0 and let s >r~ 
for all n >t 0. Then s >/~  so t h a t / ~  is bounded. 

§ 4. Hardy-field extensions surpassing a given bound 

Suppose that  we have a Hardy-field H and an element rGR such that  r > H .  
We will now solve the following problem. 

Problem. Find a Hardy-field K such that  H c K  and r<a  for some aEK.  

If  we can solve this problem we can obviously also solve the problem of finding a 
Hardy-field K such that  H c K  and r is not an upper bound for K. However the 
solution of each of these problems require the construction of a Hardy-field K such 
that  H c K and H < K. 

According to Theorem 2 / ~  will also be bounded so it might happen that  r > A  
and in this case the application of the extension-theorems so far developed will not  
even suffice to eliminate the bounding property of r. 

A natural first a t tempt  to obtain a method, that  would always do to construct, 
to a given bounded Hardy-field H, a Hardy-field K which is an extension of H and 
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such tha t  H <K,  would be the following procedure. Find an  element y E R such 
tha t  y > H  and y(i) dominates all powers of y(~+~) for each i/>0 (or yC+l)dominates 
all powers of y(~) for each i~>0). Then y would be adjoinable to H and H { y } > H .  
However, if y = l ( f )  is such an element and e~eH then [ l o g / ( t ) / l o g t ] ~  when 
t-~oo which according to [2] page 112 implies tha t  [/"(t)f(t)/f'(t)2]~l when t-~co. 
Consequently the procedure described above is, in general, impossible. Therefore 
we have to apply another  method. I t  turns out tha t  the first of the following defini- 
tions gives an adequate operation on y to make the counterpart  of the above proce- 
dure possible. The second definition selects those elements in R which will be especi- 
ally interesting when this new operation is considered. 

Definition. Let y E R  and let Y(o)=Y. The sentence "y¢,~ exists" and the value y(,) 
itself are inductively defined as follows. We say that Y(1) exists i / y  is comparable to O, 
in that case we put  Y(1)=Y'/Y if y~=O and Y(1)=0 if y=O. We say that Y(~+I) exists if 
Y(k) is comparable to O, in that case we put  Y(~+I)= (Y(k~)(l~. 

Definition. Suppose that y E R and that for all k >i 0 Y(k) exists, Y(k) > 0, and Y(k) > Y(~+I~. 
Then y is said to be overhardian. 

The name overhardian is motivated by  the fact, proved in Section 9, tha t  y cannot 
be adjoined to all Hardy-fields if it satisfies the above conditions. 

Lemma 11. Suppose that y >0,  y hardian, Y~I) > O. Then y~) <y for all n >1 1. 

Proof. Let  ~ > 0 be a real number. By  the earlier-mentioned theorem b y  Bourbaki 
yl+~ and y '  lie in a common Hardy-field and are consequently comparable. Suppose 
tha t  y,>~yl+~. Let  y=I(z )  where zEC~[N,~) .  Thus we can choose xo~>N such 
that  z > 0 and z'>~ z 1+~ for x ~> x 0. Integrat ing the last inequality we obtain 

-z(x)-~ ~z(x°)-~>~X-Xo for  x>~x o. 
O~ 

But  the left-hand side of this inequality is less than  z(xo)-~/a for x>~x o while the 
right-hand side tends to oo with x. This is a contradiction. Hence y '  <yl+~ for all 

n a > 0 .  Put t ing o~= 1/n we obtain y '  <y1+1/, which implies Y(1) Y. 

Lemma 12. SupTose that Y(k) exists /or all k >~O. Then y(~) =P~(Y(o~ .. . .  , y(~) where 
Pn is a polynomial with natural numbers as coefficients. 

Proof. Follows by  induction using the relation y'(~) = y(~ y(i+l). 

Lemma 13. Suppose that y is overhardian. Then y( ,~>l  for all k >>.O. Furthermore 
Y~ >Y~k+l) for all k >>-O and n>_.l. 

Proof. Let  y = I ( / )  and l e t / i  =](~ be defined as for y. Then if x 0 is sufficiently large 

f'~+I(X)=/k+I(X)/k+2(x)>O for x>>-x o 

Thus £+1 (x) > £+1 (x0) > 0 for x >~ x o 
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Hence fk  ( x )  = fk(xo) e q J z f k + l  ( t )  d t 4  w when x - - , i.e. yw>l. 
2. 

Now for sufficiently large x 

Thus it is sufficient to prove that yk+, ( ~ ) / [ f ~ + ~  ( x ) ]  tends to infinity with x. But 

for x > x, so that f k + l ( 4  > -  when x -t co 
fk+2 ( x )  

which completes the proof. 

Theorem 3. Suppose that y i s  overhardian. Then y is hrd ian .  

Proof. Let ~ = p ( ~ " ' ,  ..., y'n'), where p is an arbitrary polynomial with integral 
coefficients. It is sufficient to prove that z is comparable to 0. By Lemma 12 it follows 
that z=q(yo,,  ..., y(,,) where q is a polynomial with integral coefficients. If the 
degree of q is zero then z is comparable to 0 since z then is an integer. Suppose that 
the degree of q is greater than zero. 

Let the degree of y;;, ... y;,; be the (n + 1)-tuple (u,, ..., u,) end let the degrees of 
the terms in q be lexicographically ordered i.e. (u,, ..., u,) > (q,, ..., q,) i f  the first 
non-vanishing difference u, -7, is positive. Then the term in q which has the greatest 
degree dominates the other t e r n .  

For suppose that (q,, ..., qn) <(yo, ..., v,) then 

since the first non-vanishing exponent q ,  -Y,  is negative and y(,)>y;) for all j ,  m 
such that i < j G n ,  m 2 1 by Lemma 13 and the fact that yCk)K,)1 for 0 < k Gn. 

Consequently z is comparable to 0 and hence y is hardian. 
I n  the sequel we will need 

Definition. Let e, =x.  Let en, n >0, be defined inductively by en =exp en-,. 

Thus el =exp x = I (exp). If H is a linearly closed Hardy-field then en E H for all 
n since ek = en-,en-, .. . el, ..., e; =el, x' = 1 E H so that en E H follows by induction. 



ARK~W F6R ~ A T ~ T ~ K .  Bd 8 nr 22 

Lemma 14. Suppose that yER,  Y(k) exists/or O < k < n  and y(~) <.0. Then y<e~. 

Proof. We m a y  suppose tha t  y(k)>0, O < k < n - 1 ,  in the sequel. I f  n = 0  then 
Y=Y(o} ~<0 < x = e  o. Suppose tha t  n = l .  Then Y(1)~<0 and since Y(0} > 0  we get y '  <0.  
Consequently y <~cER 1 so tha t  y <e  1. Suppose tha t  n = 2 .  Then (log y)'  ~<~ER 1 by  
the just proved s ta tement  for n =  1. Thus log y <~cx +d where d ER 1 so tha t  y ~< 
exp (cx +d) < e x p  (exp z) =exp  e 1 =e~. Suppose tha t  the theorem has been proved for 
n - l ,  where n - l > ~ 2 .  Then (y(1))(._l)=y(.)~<0. Hence (logy)'=y(1)<en_ r But  
e~-i = e~_l ... el > 2e~_1 so tha t  (log y)'  < (½ e._~)'. Thus log y < ½e._ 1 + c where c E R 1 
and consequently y < exp (½ca_ 1 + c) < exp e~_ 1 = en. 

§ 5. Simple Hardy.field extensions  

Theorem 4. Suppose that H is a Hardy-/ield. Then 

H linearly closed, y >H, y is ad]oinable to H :~y is overhardian and y(~) > H / o r  
all k >~O 

and 

y is overhardian and y(k)>H/or  all k>~O ~ y  is ad]oinable to H. 

Proof. Suppose tha t  H is linearly closed, y > H  and tha t  y is adjoinable to H.  
Thus y is hardian. Hence y(~) exists for all k/> 0. Suppose tha t  Y(k)~< 0 for some k. 
Then y < e z E H  since H is linearly dosed. But  this is a contradiction. Consequently 
y(~) > 0 for all k/> 0 and since Y(k) is hardian it follows from Lemma 11 tha t  Y(k) > Y(k+l) 
so tha t  y is overhardian. 

Now suppose tha t  there is a k such tha t  Y(k~ :bH and let k be minimal with this 
property.  Then k~>l and there is a zEH such tha t  Y(k)~<z. Let  Y(~-I~ =I ( / ) ,  z= I (g ) .  
Then if x0 is large enough 

/(x) =/(xo) exp /a) (t) dt <~ g(xo) exp g(t) dt for x >~ x 0. 
o o 

Thus Y(k-1) = I(/) <~ I (g(xo) exp yxl Y(t) dt) = u. 

But u' =zu. Hence u EH since H is linearly closed. This implies tha t  Y(k-1} ~ H  which 
contradicts the minimali ty of k. I t  follows tha t  y(~)>H for all k/> 0. 

Suppose on the other hand that  y is overhardian and Y(k~ > H  for all k~>0. Let  
z =p(y{0} ..... y(~)) wherep E H[Xo,..., X,]. By Lemma 12 it follows tha t  z = q(Y(o) ..... Y(,~) 
where qEH[X o ..... X,]. H q is a constant then it follows tha t  zEH and consequently 
tha t  z is comparable to 0. Suppose tha t  q is not a constant. Since Y(k)>H for all 
k >/0 it follows exact ly as in the proof of Theorem 3 tha t  the te rm with the greatest  
degree in q dominates the other terms. Thus z is comparable to 0 whence y is adjoin- 
able to H. 
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§ 6. Construction of overhardian elements 

Now suppose that  H is a Hardy-field and that  r > H. We want to solve the problem 
in Section 4 i.e. we want to find an element y E R such that  y can be adjoined to H 
and such that  y > r. Theorem 4 gives information about the type o~ function re- 
quired to achieve this and it suggests that  we should t ry  to find an overhardian 
element y such that  y(~)> r for all ]~ t> 0. Anyway it shows that  such an element y 
will fulfil all our requirements. 

Suppose that  y is such an element, put  y =I(G) and, for convenience, put  G(~) =G~. 
Then there is a strictly increasing sequence (a~}~ of real numbers tending to infinity 
with b such that  G~(x) is defined for x>~a~. Furthermore 

{ Gk-l(x) for i~_l <<.x<ak 
x 

Ok-l(x)= Gk-i(ak) exp Ok(t)dt for x>~ak 
d a k 

so that  each Gn is determined by this downwards recursive formula once we know 
the values of each G k in [ak, ak+l]. 

On the other hand let (a~}~ be a strictly increasing sequence of real numbers tend- 
ing to infinity with n. We want to use the formula above in order to construct, 
from functions given on [at, a~+l] , functions G~ defined on [a~, c~). This is so done 
that  we first define, for each fixed n, Gk on [a~, an] for 0 ~/¢ < n. Then we observe 
that  the definition of G~(x) for a fixed value of x>~a k is independent of n and we 
can therefore, now by letting/c be fixed and varying n, define Gk(x) for x>~ak. 

Thus, let hk.k+lEC~[ak, a~+l] be given for /¢>~0. Let n~>l be fixed and define 
h~.. on [ak, an] for 0 ~</¢ < n  recursively downwards by the same formula as before, i.e. 

I h~-l. ~ (x) for ak-1 ~< • ~< a~ 

hk-l"n (x) =[hk_,. k (ak) exp f i~ h~.n (e) de for a~ <-~ x <~. an. 

From the definition it follows that  h~,n(x)=h~.m(x ) where they are both defined. 
Thus we can define functions Gk on [a k, ~ )  by putting Gk(x)=hk.n(x) for ak~x<.a,. 
Let G O = G. Then, by construction, we get G(k)(x) ~ Gk(x) for x I> ak. I t  might therefore 
be expected that  G would do for our purpose if the functions hk-l,k have suitable 
properties. We know from Theorem 4 that  it is sufficient if we can achieve that  
G E C ~° and r < Gk-1 < G~ for each b/> 1. 

Suppose that  we have chosen h~_l. ~ such that  hk_l. k (x)> r(x) for ak-1 < x  ~ a  k and 
that  we know that  h~.n(X ) >r(x) for ak<x<<.an. Then 

hk-1.~(ak) exp h~.n(t)dt>r(a~) exp r(t)dt for ak <<.x<~a. 
J a k J a k 

i.e. we may continue the induction if we know that  

f 
x 

r(ak) exp r(t)dt>r(x) for x>a  k. 
d a k 
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W e  requi re  t he  s t r ic t  i nequa l i t y  for reasons  t h a t  will soon appear .  This  i n e q u a l i t y  
m a y  be wr i t t en  r ' '  

, ( t )  > l o g  , ( = )  - l o g  = _ 
J% r(~) 

a n d  is consequen t ly  sa t is f ied for  k ~> 0, x > a~ if r(x)> r'(x)/r(x) for x >  a o. This  m a y  
be wr i t t en  r'(x)/r(x) ~ < 1 or 

( r - ~ x ) ) ' > - I  for x > a  o. 

The  r equ i r emen t  G~>r for each k~>O is consequen t ly  sat isf ied if we choose 
h~_t.~(x) >r(x ) for ak_x <x<~a~, prov ided  t h a t  (1Iv(x))'> - 1 .  Of course (1/r(x))' > - 1  
m a y  no t  be  sat isf ied b u t  if we can f ind  a func t ion  s>r  such t h a t  (1Is(x))'> - 1  fox' 
suff ic ient ly  large x t h e n  we m a y  work  wi th  s i n s t e a d  of r and  thus  dispose of t h a t  
quest ion.  This  amoun t s  to  f inding a posi t ive  func t ion  p < 1/r such t h a t  p'(x) > - 1 
for  suff ic ient ly  large x since t h e n  s = lip would  do.  However ,  b y  a wel l -known con- 
s t ruc t ion  we can  ob t a in  a posi t ive ,  convex,  decreas ing po lygon  under  1/r. T h e n  we 
can  smooth  th is  po lygon  to a posi t ive,  convex,  decreasing funct ion  p st i l l  below 
1/r such t h a t  p EC ~. Then  i t  is ea sy  to  see t h a t  if a 0 is chosen suff ic ient ly  large  t h e n  
2~'(x) > --1 for x>a  o. 

F r o m  now on we work  wi th  the  s so cons t ruc ted  a n d  le t  a 0 be chosen as  above.  
W e  also assume t h a t  hk_l.k(x)>s(x) for ak_l<x<~ak for k>~l. F o r  convenience  we 
deno te  s(a) exp ~ s(t)dt b y  ga(x) so t h a t  s(x) <g:(x) if x>a~ao.  

We now w a n t  to  show t h a t  we can choose the  funct ions  h,_Lz such t h a t  Gk > Gk+~ 
for k~>0. These  inequal i t ies  will  al l  be sat isf ied if for 0 ~ < k < n - 1  

h~,.(x) > h~+l.n (x) for  ak+l ~< x ~< a n. 

F i r s t  le t  k = n - 2. Then  

h.-2,.(x) =h.-2,.(a~-z) exp h._l,.(t) dt> s(a._l) exp s(t)dt=g%_l (x). 
J an-- I J an--1 

Consequen t ly  the  i nequa l i t y  will be  sat isf ied if h . _ l , . ( x  ) <g . ._ l (x )  for a ._  1 < x  ~<a.. 

Since s(x) < g. ._l(x) for  x > a ._  1 th is  is compa t ib le  wi th  h._l ,  .(x) > s(x) for a ._  1 < x < a . .  

Now suppose  t h a t  for  each n/> 1 s(x) < h._z..(x) < g.._~(x) for a ._  1 < x ~< a .  a n d  t h a t  

we have  shown t h a t  h~,.(x) > ht+z,.(x) for ai+l ~< x < an. Then  i t  follows f rom the  above  
for  as ~<x < a i + l  t h a t  

h(_z.n(x ) = hi_i, (+i(x) >h( .  ,+z(X) = h~,n(x ) 

F o r  a~+ i < x ~< a .  we ge t  b y  the  induc t ion  hypo thes i s  

r h~,.(x)=hi-l..(a~+l) exp  h~..(t)dt>h~,,~(a~+z) exp h~+l,.(t)dt=hi.~(x). 
'd a~+l  ai+l 

Thus  the  resu l t  follows b y  induc t ion  downwards  for  all  i, n such t h a t  O<~i<~n-2 
a n d  consequent ly  G 0 > G z > . . .  
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From the investigation above it follows tha t  in order to obtain the required func- 
tion G it  is sufficient to choose 

hn-x . n E Coo[an_ x, an] (I) 
such tha t  

s(x) <hn-Ln(z) <ga,_l(z) for an-1 < x  <an (2) 

and such tha t  G E C ~, which will certainly be the case if 

h , , -~ .n (an)exp f lhn .n+~( t )d t  

constitutes a continuation of hn-l.n belonging to C~[an_l, an+l]- This last condi- 
t ion is obviously satisfied if 

(k) hn_l,n(an_l)=s(k)(an_l) for k>~0 

( ; hn_l,n(an) = hn_l.n(an) exp 8($) dt for ]g/> l .  (3) 
a~ / (z ~ a n) 

~aa-j 

jn |e.)es?~sttldt 

I $ t 
' 1 

Ill-| ~1 

Fig. 1. 

I t  is easy to see tha t  (1), (2) and (3) can be simultaneously satisfied. But  this 
means tha t  we can construct a function 0 E C °O such tha t  Gco ) > Gel ) >... and G > s > r, 
i.e. by  put t ing y = I ( G )  and using Theorem 4 we have proved the following result. 

Theorem 5. Suppose that H is a Hardy.field and that r > H. Then there is an element 
yE R such that y is ad]oinable to H and y >r. 

§ 7 .  U n b o u n d e d  a n d  c o f i n a l  H a r d y - f i e l d s  

Thus it is always possible to "get  above" a given bound of H by  adjoining a single 
element to H.  One might ask if this procedure yields an unbounded Hardy-field. 
However, this is not  so and we can say even more. To do tha t  we first extend the 
notion of cofinality. Suppose tha t  A c B c R .  Then A is said to be cofinal in B if 
for each b e B  there is an  a E A  such tha t  a>~b. I t  follows from Lemma 4 tha t  if A is 
countable and cofinal in B then B is bounded. 
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Lemma 15. Suppose that H is a Hardy-field, y is overhardian and that y~) > H /or 
all Then is H{y}. 

Pro#.  Let  zEH(y} .  Then 

P (Y(o) . . . .  , y(~) ) Z 
q(Y(o) . . . . .  Y(m)) 

where p and  q are polynomials over H. Reasoning as in the  proof of Theorem 4 we get 

q(Y(o) . . . . .  Y(,~)) 
< h for some h E H and 

Ip(y(o, . . . . .  y(.))l < lyl 

where ]c is the  greatest  appearing exponent  of y =Y(o) in P(Y(0) . . . . .  y(n)). Thus 

l l<lyI 
I t  is easy to  prove the more general result  t ha t  if H is a bounded Hardy-field and  

y is adjoinable to H then  H (y} is bounded.  We do no t  need this result. However,  
the  following theorem, which is an  immediate  consequence of Theorem 5, establishes 
the  existence of unbounded  Hardy-fields. 

Theorem 6. A maximal Hardy-field is unbounded. 

This theorem says nothing about  the existence of cofinal Hardy-fields. We can 
give the  following result. 

Theorem 7. Suppose that 2~°= 741 i.e., make the continuum hy1~othesis. Then there 
exists a co final Hardy-field. 

Proo/. R 1 is imbedded in R. Hence 2 ~ ' =  card R 1 ~< card R. For  each r E R choose 
an/GC~[nr,¢~),  where nf is a na tura l  number ,  such tha t  I ( / ) = r  and  let ~ ( r ) = / .  
Then  ~0 is 1 - 1  into the  set A = U - ~ < n < ~  C~°[n, ~ )  and  card A = 2  TM. Consequently 
card R ~<2 m so tha t  card R =2m= 741. Thus  the  elements  of R can be indexed with 
the  ordinals ~ < w  1 in such a way  t h a t  R =  (x~}~<w,. 

Le t  ~4 be the  family of bounded Hardy-f ields and  let ~ be partially ordered by  
inclusion. H E A especially if H is a Hardy-f ie ld  with a countable cofinal subset. 
Le t  H o = R  1. Let  a < w  1 and suppose tha t  for each ~ < ~  H ~ E A  has been defined in 
such a wa y  t h a t  ~ < ~ < a  implies H~cH~ and  t h a t  there  is an  heH~ such t h a t  h>x~. 
Let  K = U ~<: H E. Then  K is a I~ardy-field. Le t  YE, $ < ~ be an  upper bound  for 
H E. Then  (YE}E<a is countable. Thus there is a z e R  such tha t  z > y  E for all ~ < ~  
and  z >x~. Hence z > h for all h E K so tha t  K E J4. Thus  b y  Theorem 5 there is an  
H=Ej4 such t h a t  K c H =  and  such tha t  there is an  hEH~ with h>z  and consequently 
also h >x~. Hence  it follows from the  principle of transfinite induct ion t h a t  i t  is 
possible to  define for each ~<wl ,  a Hardy-f ield HEE~4 in such a way  t h a t  ~ < ~ < w  1 
implies H~ c H E and  for each ~ < w 1 there is an  h E H E such t h a t  h > x E. Let  H = U E<w,H~. 
Then  H is a Hardy-field.  Le t  r E R. Now r = x E for some ~ < w~ and  there is an  h E H E ~ H 
such t h a t  h > x E = r. Consequently H is a cofinal Hardy-field.  
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§ 8. General structure of overhardian elements 

We will now consider the problem of deciding if there is only one maximal Hardy- 
field. We will prove that  this is not so. To do this we adopt a method which is, in 
a way, opposite to the one which led to Theorem 5. More precisely we t ry  to show 
that  each overhardian element can in fact be obtained by the construction preced- 
ing that  theorem. 

Motivated by the reasoning leading to Theorem 5 and for later convenience we 
adopt the following terminology. 

Definition. A /unct/on s E 0 °° is said to be prehardian if there is a real number Ns 
such that s(x) > 0  and s'(x)/s(x)~< l /or x ~  Ns. By gs, a or simply ga, when ?tO con/usion 
is possible, we denote the/unction defined by 

gs.~ = s(a) exp s(t) dt for x/> a. 

Consequently s(x) < gs.. (x) for x > a ff a >i N 8. 

Definition. Suppose that sEC ~ is prehardian. Then a sequence o/ /unction8 74= 
{hn_l,n}n~=l is said to be a supplement to s i / /or  a strictly increasing sequence {a.}F, 
where a o >~ Ns, o/ real numbers tending to in/inity, the/unctions hn-l,n satis/y the condi- 
t/ons (1), (2) and (3). 

When a supplement 74 to a prehardian function s is given then we can construct, 
exactly as in the proof of Theorem 5, the functions hk. n, G~ and we will denote the 
function G o by F(74) and say that  s is support of F(74). 

Lemma 16. Suppose that (7 is overhardian. Then G has a support. 

Proo/. Let in the following G(n) be denoted by Gn. Let a o = a_ 1 be such that  

Go(x)>GI(X)>G~(x)>O for x>~a o 

and define an > max (n, an_l) inductively in such a way that  

Gn(x)>Gn+I(x)>Gn+2(x)>O for x>~an 

1 
Let g . ( x )=G. (x  ) for x>~an-1. 

Then 9"~(x) = G~+l(x) > _ 1 for x>~an-1 
G. (x) 

and 0 <gn(x) <gn+l(X) for x >~an. 
Let On E C~[an, an+l] for each n >i 0 be such that  O~)(an)= 0 
for k>~O, O's(x) > 0  for an <x<an+l, 0n(an+l) =1 and O(k)la. ~ n+ll~-O- 
for k ~> 1. Define h(x) for x >~a 0 by 
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h(x) = (1 - On) g.(x) + 0. gn_bl(X) for an ~< x < a .+ r 

Then  it  is easy to  see t h a t  hEC°°[%, co) and  t h a t  

gn(x)<h(x)<g~+l(x ) for a. <x<an+l. 
Fur thermore  

h'(x) = (1 -O. )g~ . (x )  +Ong'.+z(x) +O'.(g.+l -g . ) (x )  > - 1  +O'.(g,~+z -g . ) (x )  >1 - 1  

for a.~x<.a.+ 1 and  thus for each x>-a o. 
Consequently s = 1/h is prehardian and 

Gn(x ) <s(x) <Gn_x(x) for a._l<x<an,  s(an) = G.(a~). 

Let  hn-l.~ = G~-z/[a~-z,a.] for n >/1. 
Nowh(k)~a ~ .(k) ~a ~ for k1>l. Thus  n - - 1 ) = y n - l ~  . - -11  

h~k_) 1.n (a._l) = G~-I (a._l) = s (k> (a~-l) for k ~> 0 

h . _ ~ . . ( a . ) =  _ ( a . ) =  O._~(a.)  exp O.(t)dt 
a ~ ] (x = an) 

= h~_l. ~ (a~) exp s(t) dt since (a~) =s(k)(a~) for /c>~O. 
a~ / (x = an) 

Fur the rmore  

s(x) < G n - z ( x ) = h n - l . . ( x )  for an_i<x<~a. 

and hn_l. . (x) = G.-1 ( a . - 0  exp O.(t) dt 
an--I 

< s ( a . - 1 )  exp s(t)dt for a . _ l < ~ a ~ .  

Consequently ~ / =  {hn_l,n}.~=l is a supplement  to s and from the definition of h ._ l ,  . 
it follows t h a t  F ( ~ ) = G .  Thus s is a support  of G. 

Lemma 17. Let h be prehardian and let ~ = {/n-1. ~}~, 1.-1.. E C~[a._l, a.] be a supple- 
ment to h. Suppose that (d={g.-1,.}~, gn-z.~EC°°[a.-z, a~] is another supplement to 
/ such that/or some k >-1. 

gk-l,k (ak) :>/k-l, k (ak), ~.-i.. (Z) ~ /n-l,. (Z) 

/or all x such that a._l <~x<.a . i / n > k .  Then F (~ )  (x)/F(:~) ( x ) ~  when x ~ c ¢ .  

Pro@ Let  F = F(:~), G = F (6 ) ,  F~.) = F . ,  G(~) = G.. I t  follows f rom the assumptions 
tha t  
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Fk(x)<~Gk(x) for  x>~a~ 

Since Gk_l(ak) ---- gk-1. k(a~) > f~-l. ~(a~) = Fk_l(ak) we get  

when  x/> ak. 

B u t  

Thus  

(G~_I - ~'~_~)'(x) = G~_I G~(~) - F~_~_~(x) i> ~'~_i a~(x) - F~_~ ~'~(~) 

= F~_I(G~- F~) (x) >10 for x~>%. 

~k_l(23) -- /~k_l(~)/> (~k_l(ak) --/~k_l(ak) = a > O, x >i- a k 

log (x) = Gk-1 (x) - F ,_  1 (x) >i a, x ~> %. ~ k - , /  

Hence  G~_, (x) - -  co when x - -  co. 
$'~-z (x) 

Suppose t h a t  i t  has  been  p roved  t h a t  G,(x)/F,(x)--oo when x - - c o  for  some i > 0 .  
B u t  F~(x)~ co when x-~ co since F is overhardian.  Consequent ly  

log G ' (G~ (x) _ 1) -~ co when ~) (x)=G,(x)-F,(x)=F,(X) \F,(x) 

x - - c o  and  hence G'-l(x~)--co when x - - c o .  
F,_l(X) 

Thus  it  follows by  induct ion downwards  t h a t  G(x)/F(x)~ co when x - -  co. 

L e m m a  18. Suppose that h is prehardian and that : t= (/~_L,}~ ¢, is a supplement 
to h. Then there is a supplement 0={g~_L,}{  ~ to h such that I(F(~)) and I(F(~))  
are not comparable. 

Proo/. L e t  F = F ( : ~ )  and  let h~_l.~EO~[a~_x, a~]. Le t  ho.lEC~°[ao, al] be  such t h a t  
i t  satisfies the  conditions given in the  definit ion of supplement  and  such t h a t  

go.,(a,) >]o.,(a~). Le t  n ,  = 1  and  let  Px = {Pn-Ln.1}~ be def ined b y  

1%. 1.1 = g0.1 and  P.-1.4.1 = / . - 1 . n  for n/> 2. Thus  F(P1) (a,1) > F(a, , ) .  

Now let Pk, n~, Pn-l.n.k be defined recursively b y  the  following procedure.  Suppose 
t h a t  P~, nk, Pn-1. ,.k have  been defined for some k >/1 and  t h a t  

F(Pk) (an,)< 2'(a,, ) (F(Pk) (an k) > F(ank) ). 
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Let  h,,. ~,+1 E G w [a~,, a=,+x] be such tha t  it satisfies the conditions given in the de- 
finition of supplement and such that  

h,~.%+i (ank+l) > fn,. n,+l  (an,+I)  

(/~n,. n~+l (an,+ 1) < fn~. n ,+l  (an,+l))" 

Let  Pk+l ={P,-1.n.k+l},~-I where iO._l.,.k+l=p,_l...~, 1 <n<~n~ 

Pnk. n,+l. ~+1 = ha s, n,+l,  iDn-1, n. k+l = ]n-1.  n, n ~ n/c -~- 2. 

By Lemma 21 it  is possible to choose nk+ x > n~ such that  F(Pk+I) (a~+x)> F(a~,+l) 
($'(P~+~) (a~+~) <F(a~,+z)). Let  ~ ={g~_~.~)~ where g~_~.~=:n~_l.~.~ for n<~nk. Let  
G=F(O) .  Then O(a~,) =P(Pk) (a~,). Hence G(a~,) >$'(a~,) if k is odd and G(a~k ) < 
F(a,~) if k is even. Consequently X(F) and I(G) are not comparable. 

§ 9. The intersection of  all m a x i m a l  Hardy-fields 

Definition. H o = N {H ] H is a maximal Hardy-field) 

Theorem 8. H o = {y[y is ad]oinable to each Hardy-lield). 

Proof. Suppose that  y G H o and let H be a Hardy-field. Let  H 1 be a maximal Hardy- 
field containing H. Thus H o C H  1 so that  y E H  1. Hence y is adjoinable to H. Suppose 
tha t  y is adjoinable to every Hardy-field. Let  H be a ma~imM Hardy-field. Since y 
is adjoinable to H and H is maximal we get tha t  yEH,  whence y E H  o. 

From the definition of H 0 (or from the possible equivalent definition given by  Theo- 
rem 8 it follows directly tha t  H o is a linearly closed and real-closed Hardy-field. 
The problem to decide whether there is a unique maximal Hardy-field is the same 
as to decide if H 0 is a maximal Hardy-field or not. However, this is not so which the 
following theorem shows. 

Theorem 9. Suppose that y is overhardian. Then y ~ H  o. 

Proof. Let  y = I ( P )  and let / be a suppor~ of _~ and ~: a supplement to f such that  
2~(x)=F(~)(x), x>~x o. Let ~ be a supplement to ] such that  X(F(~)) and I(P(O))  
are not comparable. Let  H be a Hardy-field such that  I (F (~ ) )EH.  Then y=I (E(~ ) )  
cannot be adjoined to H since y and I(/V(~)) are not comparable. Consequently 
y¢•0. 

Theorem 10. The sequence {en)~ is co]inal in Ho, which c, onseguently is bounded. 

Proof. Suppose tha t  yEH o. Hence y is not overhardian. Thus, by Lemma 14, 
there is a k~>0 such that  y¢~ <~0. But  by  Lemma 14 it  then follows that  y<ek. 

I t  turns out that  H 0 has a lot of nice structural properties. One of these is con- 
cerned with the following notion of composition in R. 
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Definition. Sutrpose that yE R, zE R, z > l ,  y=l(]), z--l(g). Then let yoz be defined 
by yoz = I(fog). 

I t  is obvious from the definition of I tha t  yoz does not  depend on the choice of 
representatives for y and z in the above definition. 

I f  y > l ,  y '  > 0  then there is a unique element y - i  such tha t  y o y - i = y - i o y = x  and 
in point of fact  we have y-1 ____/(f-l) where y = I(f), f--1 = (f[[a, ~))-i ,  where a is chosen 
such tha t  f ( x ) > 0  for x>~a, so t ha t  also y - i > l .  Especially if y is hardian and y > l  
then y ' >  0 so tha t  y-1 exists. 

Definition. S u ~ s e  tha~ H is a Hardy-field and that y>,l. Then let 

Hoy = { h o y l h e H  }. 

According to the differentiation rules 

1 
(l-b' (~) = l ' ( l - ' (~)) 

i.e. 
1 

(/-1), =/'o/-1" 

Lemma 19. Sucrose that H is a Hardy.field, y > l ,  yEH. Then Hoy -i is a Hardy- 
f~ld. 

Proof. Suppose tha t  h I, h~EH. Thus hioy- l -h~oy- i=(hl-h2)oy- iEHoy-1.  Sup- 
pose furthermore tha t  h ~ . 0 .  Then 

hl°Y - i  /hl~ -1 
h~oy_i ~ J o y  E H o y  -1 so tha t  H o y  -1 

is a field. Le t  h E H. Then 

(hoy- i ) '=(h 'oy -1 ) (y -1 ) '=(~)oy - iEHoy-1  

consequently H e y  - i  is a Hardy-field. 

Lemma 20. SuIypoae that H is a maximal Hardy-field, yEH, y>,l. Then Hoy -i 
is a ma,vimal Hardy.field. 

Proof. Suppose tha t  H o y - l c K  where K is a Hardy-field. Since xEH we get tha t  
y-1 = x o y - i  E H o y - i c  K. Hence K o  (y-1)-i = K e y  is a Hardy-field and H = H o y - i o y c  
K e y  so tha t  H--Key .  Suppose tha t  h EK. Then hey = h  1 EH so tha t  h = hie y-1 E H o y  - i  
whence H o y - l = K .  Thus H e y  - i  is a maximal  Hardy-field. 

Theorem 11. Supt~ose z, y E H  o, y > l .  Then zoyEH o. 

Proof. Suppose tha t  K is a maximal  Hardy-field. Then K e y  -i is a maximal  Hardy-  
field whence z E K o y  -i.  Thus z - - g o y  - i  where g E K  and zoy=gEK.  But  K is an 
arb i t ra ry  maximal  Hardy-field. Hence zoy EH 0. 
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Proo/ without use o/maximal Hardy-fields. 

Let  K be an arbi t rary Hardy-field. Let  H=K{y, x). Thus yEH and Hoy -1 is a 
Hardy-field. Hence z is adjoinable to Hoy -1. Let  P=Hoy-l{z}. Then y-IEP so 
tha t  Poy = P o  (y-1)-1 is a Hardy-field. Now Poy~ Hoy-lo y =H =K{y, x} and z EP 
whence zoy EPoy and KcPoy .  Thus zoy is adjoinable to K. Consequently zoy EH 9. 
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