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Hardy-fields

By GunNAR SjopIN

Introduction

In his work [1] Hardy discusses the problem of describing how rapidly a function
}:By—R,, where R, is the system of real numbers, tends to infinity. This is a special
case of the more general problem to describe how such a function behaves in the
vicinity of + co. For simplicity we write co instead of +co in the sequel. We will
only be interested in functions that are infinitely differentiable in a neighborbood
of co. Thus let

C= = {f|f is a real-valued function such that its domain lies in R, and contains
a neighborhood of oo in which f is infinitely differentiable}.

To discuss the above problem we are naturally led to considering two functions
f, g belonging to = as essentially equal, written f~g, if they are equal in a neigh-
borhood of o, i.e. if there is a number N such that f(x) =g(z) for x> N. It is obvious
that ~ is an equivalence relation and that the equivalence classes are the same as
the residue classes of the ideal J={f|f~0} in the ring C®. Let R=C®/I and let
I(f) denote the residue class of f with respect to I. Then R is a ring with differ-
entiation where (I(f))’=I(f') and it can be said to represent all the ways a funec-
tion in O® can behave in a neighborhood of oo,

The concept, Hardy-field, which will be studied in this paper, was essentially
introduced in [1] but was, as far as I know, first formally defined in [2]. The defini-
tion given in [2] is equivalent to the following.

Definition. 4 field H contained in R, such that y€H implies that y' €H, is said to
be a Hardy-field.

An example of a subset of R, which constitutes a Hardy-field, is the set of residue
classes of the rational functions.

An intersection of an arbitrary non-empty family of Hardy-fields is a Hardy-field.
Thus if A< R and if there is a Hardy-field containing both a given Hardy-field H
and the set 4 then there is also a smallest Hardy-field, denoted by H {4}, containing
both H and 4. If H{A} exists then 4 is said to be adjoinable to H. If 4 ={a,, ..., @}
then we write H{d}=H{a,, ..., a,} instead of H{{a,, ..., a,}} and we say that
ay, ..., 4, are adjoinable to H.

It will be one of the main concerns in this work to extend a given Hardy-field in
such a way that the extension has nice algebraic and analytic properties. A natural
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and important means to extend a Hardy-field is the method of adjunction as de-
scribed above. Thus it will be important to have conditions on 4 and H that guarantee
the existence of H{A4}. The following result is of that nature. It is proved in [2].

Theorem. Let H be a Hardy-field and suppose that y' =ay+b where a,b€H, yER.
Then y 1s adjoinable to H.

Several partial orderings can be defined in R. The one which will be most frequently
used in this paper is defined by letting I(f) <I{(g) mean that f(x)<g(r) in a neigh-
borhood of co. This definition is obviously independent of the choice of the represen-
tatives f and g. It is easy to see that if H is a Hardy-field then H with the restriction
of < to H is a totally ordered field.

Hardy and Bourbaki use Hardy-fields as “scales” of the order of increase of
a funection in C®. To decide how far-reaching such scales are one faces a number of
problems. Given a Hardy-field H there might for instance exist functions in %
that increase more rapidly than any of the representatives of any element in H.
More precisely, is there an element 4 € R such that a>h for all Ah€H? If this is the
case H is said to be bounded and @ is said to be an upper bound for H which will
be written a > H. On the other hand if no such element exists, then H is said to be
unbounded. Thus a natural and important problem would be to decide whether or
not there are unbounded Hardy-fields. A related problem is to decide whether there
is a Hardy-field H such that for each a € R there is an s €H such that a <h. Such a
Hardy-field will be said to be cofinal with R or simply cofinal. It follows immediately
from the definitions that a cofinal Hardy-field is unbounded. These two problems
will be of major interest in the sequel and we shall prove that there are in fact un-
bounded Hardy-fields and that the continuum hypothesis implies the existence of
cofinal Hardy-fields.

From Zorn’s lemma it follows in the usual way that each Hardy-field is contained
in a maximal Hardy-field. The theorem above and some theorems which will be
proved later on shows that a maximal Hardy-field is unbounded, real-closed and
closed under the solution of differential equations of the type above. However we
shall prove that there is no unique maximal Hardy-field, i.e. there is no greatest
Hardy-field. When we have obtained this result we conclude the paper with an
investigation of the properties of the intersection of all maximal Hardy-fields. We
show that this intersection is a Hardy-field which is closed under composition and
bounded, in fact we can give a countable subset of it such that each element in
the intersection is less than some element in the countable subset.

For later convenience we now make a few observations and introduce some
terminology.

The symbol F(4) will denote field-extension and the symbol F[4] ring-extension
of the field F with respect to 4. For example it is easy to see that in Bourbaki’s
theorem above H{y}=H(y). The transcendental elements will be denoted by X or
X, An element y€ R is said to be comparable to 0 if y>0, y=0 or y <0. Suppose
that H is a Hardy-field and that a € R is such that p(a, @, ..., ™) is comparable to
0 for each n and each p€ H[X,, ..., X,]. Then it follows from the rules of differentia-
tion that H{a} exists and consists of all elements r(a, @', ..., &™) where n>0 and
r€H(X,, ..., X,) is such that it can be written p/g, with p, g€H[X,, ..., X,] and
q(a, @', ...,a™)+0. If y is comparable to O then |y| will denote y if y>0 and ~y
if y <0.

By abuse of language the residue class of the function f(f) =¢ for all ¢ will also be
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denoted by ¢ and the residue class of the function f(t) =t for all ¢ will be denoted by

. Similarly if @ =I(f) then exp a will denote I(exp f) and log @ is analogously de-
fined.

§ 1. Real-closed Hardy-fields

The object of this part is to give a result on extensions of Hardy-fields related
to algebraic properties. The partial ordering < plays a minor role in this section
but the results given here will be of help later on when a more explicit study of
the ordering < is made.

First we give an extension-theorem of algebraic nature.

Theorem 1. Let H be a Hardy-field and let H*={a|a€R and a is algebraic over H}.
Then H* is a Hardy-field. Furthermore, H* is real-closed, i.e. each polynomial of odd
degree over H* has a zero in H* and each positive element in H* has a square-root in
H* and consequently H*(V —1) is algebraically closed.

The proof of this theorem is contained in the following lemmas.
Lemma 1. H* ts a Hardy-field.
Proof. Exactly as in the classical field-theory one proves that H* is a field. Let

a€H* and let ¢€H[X] be of minimal degree such that g(a)=0. Thus ¢'(a) 40 since
the characteristic of H is 0. Let ¢(X)=5,X"+... +b,. Differentiating, one obtains

a'q'(@) +¢,(a) =0
where ¢,(X) =b, X™ +... +by. Consequently ¢, € H[X]

' —¢:(a)
a =—
q (a)
Thus it follows that H* is a Hardy-field.
To prove that H* is real-closed we shall need the following well-known result.

€ H(a)< H*.

Lemma 2. Suppose that p(X) is a polynomial of odd degree with real coefficients.
Then the real zeros of p(X) are analytic functions of the coefficients of p at each point
where the discriminant of p is different from 0.

Furthermore, we shall need

Lemma 3, Let H be a Hardy-field. Then each polynomial over H of odd degree has
a zero in R and each positive element of H has a square-root in R.

Proof. Let p€ H[Y] be of odd degree. It is enough to assume that p is irreducible.
Let

DY) =b,¥"+...+bg, b, +0.

Let D be the discriminant of p. Since p is irreducible we can conclude that D =0.
Let b;=1I(f,), 0<i<n, and let
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6. s16DIN, Hardy-fields
P(Y) = fnlx) Y +... + o).

Let F(x) be the diseriminant of P,. Then I(F)=D. Thus there is an N such that
fa(x) £0, F(x)30 for 2> N and f,€C®[N, o), 0<i<n. Let, for >N, d(z) be the
greatest real zero of P,. Then it follows from lemma 2 that d€C®[N, o). Conse-
quently I(d)€ R is a zero of p.

Let a € H be such that a >0. Let a = I(f). Thus there is an N such that fEC®[N, o)
and f(x) >0 when 2> N. Therefore VfEC’°°[N,oo) and a=I(]‘)=I((l/];)2)=I(V?)2 le.
a has a square-root in R.

Proof of theorem 1. The only thing that remains to be proved is that H* is real-
closed. Suppose that p € H*[X] is of odd degree. Then according to Lemma 3 there
is an element a € R such that p(a) =0. But a is then algebraic over H* and therefore
also over H. Consequently a € H* i.e. p has a zero in H*.

Suppose that « € H* and that 2 >0. Thus according to Lemma 3 there is an element
b€ R such that b2=a. But then b is algebraic over H* and it follows as above that
be H*. Consequently H* is real-closed.

§ 2. Linearly closed Hardy-fields

Theorem 1 gives a possibility to extend an arbitrary Hardy-field in such a way
that the extension has nice algebraic properties. We will now give a result which
enables us to extend a Hardy-field in such a way that the extension has certain
pleasant properties related to the solution of linear differential equations. This
result will be strongly connected with the above mentioned theorem in [2]. First
we give a definition.

Definition. 4 Hardy-field H is said to be linearly closed if for any a, b€ H we have
that ' =ay +b implies that y€H.

Let H be a Hardy-field. Then y€ R is said to be connected to H by the chain
Y1> «--» Yn, Where y,=y, if there are a,, b, 1 <i<n, such that y;=a,y,+b, where
a, 0,€H, a, b,€H{y,, ..., ¥;}. The extensions H{y,, ..., ¥;.,} exist according to the
theorem in the introduction.

We can now state

Proposition 1. Let H be o Hardy-field and let L{(H) be the set of all y€ R such that y
s connected to H by a chain. Then L{H) is a linearly closed Hardy-field and is further-
more the smallest linearly closed Hardy-field containing H.

Proof. It follows from the definition of L(H) that it is contained in each linearly
closed Hardy-field containing H. Thus it will be sufficient to prove that L(H) is a

linearly closed Hardy-field. Suppose that y, zEL(H), where z+0. Let y,, ..., ¥, and
2y, --.» 2, be chains connecting y and z respectively to H. Consequently

Y, 2€H{Yy, oo, Yms 215 ooos 20}
so that y -z, yfz, y' €L(H). Thus L{H) is a Hardy-field. Suppose that u' =yu 4z,
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where z may now be 0. Then u is connected to H by the chain g,, ..., ¥, 21, «oes 2n, %.
Hence u€L(H). Consequently L(H) is linearly closed.

We will now combine Theorems 1 and 2 in order to give an extension of a Hardy-
field that has both the algebraic property of Theorem 1 and the analytic property
of Proposition 1.

Proposition 2. Let H be a Hardy-field. Let H, =L(H), Hy=H7Y and let H, be induc-
tively defined by Hyy, =L(H,,), Hyprg=Hino1. Let H=U{ H,. Then H is a linearly
closed and real-closed Hardy-field containing H and is furthermore the smallest Hardy-
field with these properties.

The proof is obvious.

§ 3. Boundedness of Hardy-field extensions

In this and the following sections we will consider problems concerning the partial
ordering < in B. We wish to establish the existence of unbounded and, if possible,
even cofinal Hardy-fields.

To get an idea of the properties of the ordering < and for later use the following
lemmma will be helpful.

Lemma 4. Any countable set in R ts bounded.

Proof. Let A ={a,}{°, a,€R. Let a,=1I(f,), f,€C®. Let N, be a real number such
that f, EC®[V,, o). Let
fal@), >N,
gn (%) ={

fn(Nn)’ x<Nn-

Thus a,=I(g,). The functions g, are continuous for all x€R,. It is then a well-
known result that there is a function f€C0®[0, o) such that I(f)>I(f,) for all n>1
(see e.g. [1] page 8 where a theorem by du Bois-Reymond is proved that immediately
implies the above statement). Hence I(f) is an upper bound for 4. Similarly one
can construct a lower bound for 4. '

In the following let 5> A where b€ R, A< R denote that b>a for all a€4 and
let b>4, b<Ad, b<A be defined similarly. Let 4 <B, where 4, B< R, denote that
there is an element b € B such that 4 <b. Let 4 < B denote that for each a€A there
is an element b € B such that a <b. Let 4 ~ B denote that 4 < B and B<A are both
valid. Let a<<b, where @, b€R, mean that na<b for all natural numbers n.
Generally a symbol $ means that $ is not valid.

First we will examine whether the extension-theorems developed so far will yield
an unbounded Hardy-field. The answer is in the negative which the following theorem
expresses.

Theorem 2. Suppose that H is a bounded Hardy-field. Then H is bounded.
The proof of this theorem is contained in the following lemmas.

Lemma 5. Let H be a Hardy-field. Then H ~ H*.
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Proof. We have H< H*. Thus H <H?*. Suppose that y € H*. We may suppose that
¥ +0. Let p(X)=a,X"+... +ay, a,+0, a, ..., a, € H be such that p(y) =0. Let

)

Then a€ H and a,/a<|a,|. Suppose that y> (n +1)a. Now

Oy 1
G

y saey

51
a=max | [—=
n

Ay — 177

l2@)| =|y"] |a.+ ’;‘+...+y~‘;

and Int) < |22 <—la—"|—for 1<i<n
¥ (r+l)a n+l

so that 0=|p@)] > |9 ||aa| ~ |22+ ...+ 22|,

Yy Y

Fn—1 7] Ian]

But v +"'+y” <n_—H | @,

Hence |p(y)| >0 which is a contradiction. Thus y<(n+1)a€H. It follows that
H*< H. Consequently H ~ H*,

In the sequel an element a € R will be called hardian if there is a Hardy-field H
such that a€H.

Lemma 6. Let a € R, where a+0, and suppose that o' 1is hardian. Then
. {1
min (;, a’z) <|a| <a'?+a?

Proof. Let a=1I(f). Thus o’ =I(f') and since &’ and a” are hardian we can choose
a t, >0 such that each of f'(f) and f"(t) has a constant sign or is identically equal to
0 for ¢ >4, Thus lim, ., f(f)=¢, where — oo <¢< oo, exists and there is a ¢, >{, such
that f(f) has a constant sign for ¢ >¢,. Hence |a| € R. Since |a|’ =+’ we may suppose
that a>0. Consequently 0<¢<oo. The proof is clear if 0 <¢<oo. Suppose that
¢=0. Then we only have to prove the left inequality. Now f(T)=f() + fi f (s)ds.
Thus 7 f (s)ds converges and f(f)= — [i°f'(s)ds since both sides have the same
derivative and tend to 0 when ¢ tends to co. Since a’ is hardian f'(s) is monotonic
for sufficiently large values of s and we can conclude that lim,.,. f'(f) exists and
thus must equal 0. In the same way we obtain lim,,., f'(t) =0. Since f(t)>0 for
t>t; we can conclude that f'(£) <0 for ¢ >, and similarly we obtain a ¢, >£, such that
0<f"(t) <} if t>t,. Thus we get for t>1¢,

o) = — fff'(s) ds> — f 2f'(5) F'(s) ds = ' (1.

Hence a>a'2.
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Now suppose that ¢=co. Then we only have to prove the right inequality. Now
0<f'(s) <f'(t;) +f(t) for s >#, since f'(s) is monotonic for s >¢,. Consequently

t
) =f(t,) + f t f(s)ds<

<f(t) + 4 (&) +of ().
Thus a<f(t) +af (t) +a’ <

2 22+a”
<§‘t‘

<z?+a'2.

Lemma 7. Let H be a Hardy-field such that x€ H. Let y' —ay +b wherea, b€H, y +0.
Then there are ¢, d € H such that exp ¢ <|y| <exp d.

Proof. Let A’ = —a. Thus
(yexp A) =bexp A

Now b exp A is hardian since exp A is adjoinable to H by the theorem by Bourbaki
mentioned in the introduction.
Hence by Lemma 6

1
min (;, b2 exp 2A) <|y|exp 4 <b? exp 24 +2?

Thus min (% exp (—A), b exp A) <ly|<b® exp A +2% exp (—4).

If =0 then y=c, exp (—A) where ¢, €R; and the result follows from Lemma 6
since € H. Now suppose that b+0. By Lemma 6 | 4| <a2+2? Thus using the fact
that a>exp(—1/a) if >0 we obtain |y|>min (exp (—z —4), exp (4 —[1/6%]))>
min (exp (—x—a?—a?), exp (—a?—a2—[1/b%])) =exp ¢ where c€H since z€H.

Turning to the right inequality we obtain |y| <exp (b2+4)+exp (z2—4)<
exp (b%+a?+2?%) +exp (222 + a?) <exp (1 +2a? +a?+b2) =exp d where d€H.

Lemma 8. Let H be a Hardy-field such that x€H. Suppose that r>H, y' =ay+b
where a, b€ H. Then exp r>H{y}.

Proof. 1t is sufficient to prove that exp r>H*{y}. Now r>H* since H~ H*. Sup-
pose that z€ H*{y}. Then z=qa,[p(y)/g(y)], ao € H*, where p, q are products of factors
of one of the two types y —o and (y —a«)2+p2 where «, € H* and y +a, § 0. Now

({y—a) =y —a' =ay+b—o’ =a(y—oa)t+ac+b—a

where ax+b—a'€H*. By Lemma 7 this implies the existence of elements y, 6 €EH*
such that expy<|y—oa|<expd where 6>0. Thus exp (—[1/8%]) <(y—x)*+p*<
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exp 20 +exp f2<exp (28+1+p2). Using these inequalities we obtain an element
¢€H* such that |z| <exp c. Hence |z| <expr. Thus exp r>H{y}.

Lemma 9. Let H be a Hardy-field and let r€ R. Suppose that r>H.
Then re* > H {z}.

Proof. It is sufficient to prove that re* > H*{x}. Let y € H*{x}. Then y =a,[p(x)/q(z)],
a,€H*, where p,q are products of factors of one of the two types x—a and
(x—o)2+p* where o, EH* and z+a, §+0. Now (z—a) =1—a'€H*.

Let | —a| =I(f). Then lim;,. f(f)=c,0<c<oo exists. If ¢>0then [z —a|>1/m
for some m. If ¢=0 it follows as in the proof of Lemma 6 that |z —a| > (1 —a’)?>0.
Thus in either case there exists an element y€ H* such that |x—af>9>0.
On the other hand |z—a|<z+|x| and B2<(z—a)®+p2<(z+|a|+|B])* Using
these inequalities we obtain an element a € H*, where a>1, and a natural number
n such that

ly| <a™z+a)" <a™(e*"a)" =a*"¢" <re¢®. Thus re* > H {x}.
Lemma 10. Let H be a bounded Hardy-field. Then L(H) is bounded.

Proof. According to Lemma 9 K =H {z} is bounded. Since '=1€H we can con-
clude that L(K)=L(H). Let r> K. Let r, be defined inductively by ry=r, r,=expr,_,.
Suppose that y EL(K). Let y, ..., ¥, be a chain connecting y to K. Then using Lemma
8 and induction it follows that r, > H{y,, ..., ¥, }. Thusy <r,. But according to Lemma
4 there is an element s€ R such that s >r, for all n>0. Thus s>L(H) so that L(H)
is bounded.

Proof of theorem 2. Let H, be as in the definition of . Let Hy=H. Thus H=U¢H,,
Now H is bounded. Suppose that H,, is bounded. Hence by Lemma 10 H,, ., =L{H,,)
is bounded. But Hy,, ,=H3, 1~ H,,,, and so H,,,, is also bounded. Thus it follows
by induction that each H,, is bounded. Let r,>H,, for each n>0 and let s>r,
for all #>0. Then s> A so that A is bounded.

§ 4. Hardy-field extensions surpassing a given bound

Suppose that we have a Hardy-field H and an element r€R such that r>H.
We will now solve the following problem.

Problem. Find a Hardy-field K such that H< K and r<a for some a€K.

If we can solve this problem we can obviously also solve the problem of finding a
Hardy-field K such that H< K and r is not an upper bound for K. However the
solution of each of these problems require the construction of a Hardy-field K such
that H— K and H<K.

According to Theorem 2 H will also be bounded so it might happen that r>H
and in this case the application of the extension-theorems so far developed will not
even suffice to eliminate the bounding property of r.

- A natural first attempt to obtain a method, that would always do to construct,
to a given bounded Hardy-field H, a Hardy-field K which is an extension of H and
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such that H <K, would be the following procedure. Find an element y€ R such
that y>H and y® dominates all powers of y**? for each >0 (or y**? dominates
all powers of ¥ for each ¢>0). Then y would be adjoinable to H and H{y}>H.
However, if y=1I(f) is such an element and ¢*€H then [log f(t)/log t]—oco when
t—oco which according to [2] page 112 1mp11es that [f"(t)f(£)/f'(t)2]—~1 when £-—>oco.
Consequently the procedure described above is, in general, impossible. Therefore
we have to apply another method. It turns out that the first of the following defini-
tions gives an adequate operation on y to make the counterpart of the above proce-
dure possible. The second definition selects those elements in R which will be especi-
ally interesting when this new operation is considered.

Definition. Let y€ R and let y,,, =y. The sentence “‘y,, exists” and the value g,
stself are inductively defined as follows. We say that y,, exists if y is comparable to 0,
wn that case we put y =y'ly if y==0 and yu,=0 if y=0. We say that Y. extists if
Yao 18 comparable to 0, in that case we put Yu 1) =(Yu)w-

Definition. Suppose that y € R and that for all k>0 y, exists, Yy >0, and Yoo > Yoerny-
Then y is said to be overhardian.

The name overhardian is motivated by the fact, proved in Section 9, that y cannot
be adjoined to all Hardy-fields if it satisfies the above conditions.

Lemma 11. Suppose that y>0, y hardian, yq,>0. Then yi, <y for all n=>1.

Proof. Let a>0 be a real number. By the earlier-mentioned theorem by Bourbaki
y*** and ¥’ lie in a common Hardy-field and are consequently comparable. Suppose
that y'>y'** Let y=1I(z) where z€C®[N,c0). Thus we can choose z,>N such
that 2>0 and 2’ >2'** for x >x,. Integrating the last inequality we obtain

-

+

—2(®) 7" | 2(w) "

zx—x, for x>,
o

But the left-hand side of this inequality is less than z(zy)~/« for x>x0 while the
right-hand side tends to oo with «. This is a contradiction. Hence y' <y'** for all
a>0. Putting oc=1/n we obtain y’ <y'*'/"* which implies y3,<y.

Lemma 12. Suppose that y, exists for all k=0. Then y™ =p,(Yio), --» Yimy) Where
Dy, 18 a polynomial with natural numbers as coefficients.

Proof. Follows by induction using the relation yu =y Y1)

Lemma 13. Suppose that y ts overhardion. Then yu,>1 for all k>0. Furthermore
y(k) >y(7;c+1) fO’r all k>0 and n=1.

Proof. Let y = I(f) and let f,=f;, be defined as for y. Then if z, is sufficiently large
fre41(®) = fisr (@) frosa (®) >0 for x>z,

Thus fre+1 (®) > frsa () >0 for 2> 74
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z

Hence Fr(®) = fi(2) expf fe+1(8) di—> oo when z—>o0, ie. yu,>1.
To

Now for sufficiently large 2

@ “m)—ﬁﬂm—wmuhnmmt“m—ﬁ.

fk+1(3?) w+2(2)

Thus it is sufficient to prove that [fr.1{(2)/{fr+2(2}] tends to infinity with z. But

fr+1() ,= _
@%m& fera (@) = frees(2)

and fri2 (%) = frrs (%) =frrs(ferz —frre) () >0 for x>z, Consequently

(108 ;‘:%E:%) 2 fr+2 (%) — fr+3(29) >0

fer1(®)
frerz (@)

for x> z; so that —+>oco0 when z—co

which completes the proof.
Theorem 3. Suppose that y is overhardian. Then y is hardian.

Proof. Let z=p(y?, ..., y™), where p is an arbitrary polynomial with integral
coefficients. It is sufficient to prove that z is comparable to 0. By Lemma 12 it follows
that z=q(ygy ---» Ymy) Where ¢ is a polynomial with integral coefficients. If the
degree of g is zero then z is comparable to 0 since z then is an integer. Suppose that
the degree of g is greater than zero.

Let the degree of yi, ... y;» be the (n+1)-tuple (v, ..., »,) and let the degrees of
the terms in ¢ be lexicographically ordered i.e. (v, ..., ¥,) > (9, ..., 77,) if the first
non-vanishing difference »;, —7), is positive. Then the term in ¢ which has the greatest
degree dominates the other terrs.

For suppose that (7, ..., 7,) <{¥g, ..., ¥,) then

i in
Yo - Ym

=]y Nn—¥
o | =Yl i<
Y& - Ym

since the first non-vanishing exponent 7;—», is negative and y.,>y(, for all j, m
such that ¢<j<n, m>1 by Lemma 13 and the fact that yu,>1 for 0<k<mn.
Consequently z is comparable to 0 and hence y is hardian.
In the sequel we will need

Definition. Let ey=2z. Let e,, n>0, be defined inductively by e,—exp e, ;.

Thus e, =exp =1 (exp). If H is a linearly closed Hardy-field then e,€H for all
n since €, =€, €, 5 ... €y, ..., €1 =¢;, ¥’ =1 EH so that e, €H follows by induction.
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Lemma 14. Suppose that y € R, y, exists for 0<k<n and Y, <0. Then y<e,.

Proof. We may suppose that y,,>0, 0<k<n-1, in the sequel. If n=0 then
Y=Y S0 <w=¢, Suppose that »=1. Then y,,<0 and since y, >0 we get ' <0.
Consequently y <c€R, so that y<e,. Suppose that n=2. Then (log y)'<c€R, by
the just proved statement for n=1. Thus log y<cx+d where d€R, so that y<
exp (cx +d) <exp (exp x) =exp ¢, =¢,. Suppose that the theorem has been proved for
n—1, where n—122. Then (y4)n_y)=¥%m <0. Hence (logy) =y, <€, ;. But
€n-1=€n_y ... & >2¢, 5 so that (logy)' <(}e,_,)". Thus logy<ie, ,+c where cER,
and consequently y <exp (e, ;-+c)<expe, ,=e,.

§ 5. Simple Hardy-field extensions
Theorem 4. Suppose that H is-a Hardy-field. Then

H Uinearly closed, y>H, y is adjoinable to H =y is overhardian and yu,>H for
all k=0

and
y s overhardian and yq,>H for all k>0=-y is adjoinable to H.

Proof. Suppose that H is linearly closed, y>H and that y is adjoinable to H.
Thus y is hardian. Hence yy, exists for all £>0. Suppose that yu, <0 for some k.
Then y <e,€H since H is linearly closed. But this is a contradiction. Consequently
Y >0 for all k>0 and since ¥, is hardian it follows from Lemma 11 that ¥ > Yuin
so that y is overhardian.

Now suppose that there is a % such that yy,>>H and let & be minimal with this
property. Then k>1 and there is a z€ H such that yg, <z. Let yy_y, =I(f), 2=1(g).
Then if z, is large enough '

x

flx) =f(z,) exp f far (8) dt < g(zp) expf g(t)dt for x> ux,.

Zo

k4

Thus ya-v=I(f)<I (g(wo) exp f g(t) dt) =u.

To

But %’ =2u. Hence € H since H is linearly closed. This implies that y_;, > H which
contradicts the minimality of k. It follows that y,,>H for all £>0.

Sup%)ose on the other hand that y is overhardian and y,>H for all k>0. Let
z2=py'”, ...,y"™) where p € H[X,, ..., X,,]. By Lemma, 12 it follows that z=q(¥/g), .- )
where ¢g€H[X,, ..., X,]. If q is a constant then it follows that z€ H and consequently
that z is comparable to 0. Suppose that ¢ is not a constant. Since y,,>H for all
k>0 it follows exactly as in the proof of Theorem 3 that the term with the greatest
degree in g dominates the other terms. Thus z is comparable to 0 whence y is adjoin-
able to H.
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§ 6. Construction of overhardian elements

Now suppose that H is a Hardy-field and that > H. We want to solve the problem
in Section 4 i.e. we want to find an element y € R such that y can be adjoined to H
and such that y>r. Theorem 4 gives information about the type of function re-
quired to achieve this and it suggests that we should try to find an overhardian
element y such that y,>r for all £>0. Anyway it shows that such an element y
will fulfil all our requirements.

Suppose that y is such an element, put y = I(@) and, for convenience, put Gy, = G;.
Then there is a strictly increasing sequence {a,};’ of real numbers tending to infinity
with k such that G,(z) is defined for z >a,. Furthermore

Gr_1(z) for ay_;<z<a;

G._ = z
e-1(2) Gr_1(ay) expf G.(t)dt for z>a,

g

so that each G, is determined by this downwards recursive formula once we know
the values of each G in [ay, a;,,,].

On the other hand let {a,};" be a strictly increasing sequence of real numbers tend-
ing to infinity with n. We want to use the formula above in order to construct,
from functions given on [, 2,,,], functions @, defined on [a,, o). This is so done
that we first define, for each fixed =, G, on [a,, a,] for 0<k<n. Then we observe
that the definition of G, (x) for a fixed value of £>a, is independent of n and we
can therefore, now by letting & be fixed and varying =, define Gy(z) for z>a,.

Thus, let A, ;,, €C®[ay, ay,,] be given for k>0. Let n>1 be fixed and define
hy , on [a;,a,] for 0<k<n recursively downwards by the same formula as before, i.e.

-1, x(x) for ar_1<z<a,
z
Pt i () expf by o (£) dt for a,<z<a,.

3y

hi—1,n(x) =

From the definition it follows that h, ,(x) =k ,(x) where they are both defined.
Thus we can define functions &, on [a,, oo) by putting Gi(z) =5k, ,(z) for g, <z <a,.
Let Gy=0. Then, by construction, we get G, (z) =G, (z) for z>a;. It might therefore
be expected that G would do for our purpose if the functions h,_, ;, have suitable
properties. We know from Theorem 4 that it is sufficient if we can achieve that
GeC® and r<@G,_, <G, for each k>1.

Suppose that we have chosen h,_, , such that h,_; ,(x)>r(z) for a,_; <z <a; and
that we know that & ,(z)>r(x) for @, <z <a,. Then

' £ T
hp_v.r(ay) expf by, (8) dE > 7 (@) expf r(t)dt for ap<z<a,
@k Ay
i.e. we may continue the induction if we know that
4
(o) expf r(t) dt>r(zx) for z>a,.
%%
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We require the strict inequality for reasons that will soon appear. This inequality
may be written
: = ()
r(t) dt >log r{z) —log r{a,) = | —=dt

2z ey r(t)

and is consequently satisfied for k>0, 2> g, if r(z) > r'(z)/r(z) for x> a,. This may
be written ' (x)/r(z)* <1 or

1 !
(;‘G—)) > —1 for z>a,

The requirement G,>r for each k>0 is consequently satisfied if we choose
hy_y 1 {z) >r(x) for ay_; <z <ay, provided that (1/r(x))’ > —1. Of course (1/r(z)) > —1
may not be satisfied but if we can find a function s>7 such that (1/s(z))’ > —1 for
sufficiently large x then we may work with s instead of r and thus dispose of that
question. This amounts to finding a positive function p<1/r such that p’(x)> —1
for sufficiently large  since then s=1/p would do. However, by a well-known con-
struction we can obtain a positive, convex, decreasing polygon under 1/r. Then we
can smooth this polygon to a positive, convex, decreasing function p still below
1/r such that p €C®. Then it is easy to see that if a, is chosen sufficiently large then
p'(x)> —1 for x>a,.

From now on we work with the s so constructed and let a, be chosen as above.
We also assume that h,_, ,(x)>s(z) for a,_, <z <a, for £>1. For convenience we
denote s(a) exp [Z s(t)dt by g,(x) so that s(z) <g,(x) if 2>a>a,.

We now want to show that we can choose the functions %,_, , such that G}, > Gy,
for £>0. These inequalities will all be satisfied if for 0<k<n-—1

by (%) > Bgia,n (¥) for apyi<z<a,.

First let k=n —2. Then

& x

hn—2.n (x) = hn-z.n (an—l) eXPf

an—l

hn—l,n (t) di > s(“n-l) expf

2n—-1

s(t)dt = ba,_, ().

Consequently the inequality will be satisfied if A, ; ,(z)< 9a,_, (@) for a,_; <w<ay,.
Since s(x) <g,,_,(x) for >a,_, this is compatible with h,_; ,(x)>s(z) for a,_, <z <a,.
Now suppose that for each 2 >1 s(z) <h,_; () <g,, _,(2) for a, ; <wx <a, and that

we have shown that &, ,(x) >k (%) for a; ; <z <a,. Then it follows from the above
for a;<x<a;,, that
by, (@) =k, 14(®) > by, 10 (2) =By 4 (@)

For a;,, <z <a, we get by the induction hypothesis

z

Bin () = hi_1,n(@141) eXPJ hin(8) dt>h; ,(a;41) exp f Biy1,n(t) db =Ry 5 ().
%41

%it1

Thus the result follows by induction downwards for all ¢, n such that 0<¢<n -2
and consequently G,>@Q, > ...
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From the investigation above it follows that in order to obtain the required func-
tion @ it is sufficient to choose
hn—l . € ow[an—l’ an] (1)
such that
8(:”) <hn——1.n(x) <ga,._1(x) for An <z <aﬂ (2)

and such that G€C®, which will certainly be the case if

z

hu—l,n (@) exp f hn.n+1 ® dt

Gy

constitutes a continuation of k,_; , belonging to C*[a,_i, @,.1]- This last condi-
tion is obviocusly satisfied if

hgcll,n (a'n—l) = 'g(k) (an—l) for k 20
(&

and B (@) = (h,,_l,,, (@) expf s(t) dt) for k>1. (3)

(z=a,

x

AH' n(@a)exp Ismdf
L%

Fig. 1.

It is easy to see that (1), (2) and (3) can be simultaneously satisfied. But this
means that we can construct a function G € C® such that G5 >Gy)>... and G>s>7r,
ie. by putting y=I(@) and using Theorem 4 we have proved the following result.

Theorem 5. Suppose that H s a Hardy-field and that r > H. Then there is an element
Y€ R such that y is adjoinable to H and y>r.

§ 7. Unbounded and cofinal Hardy-fields

Thus it is always possible to “‘get above” a given bound of H by adjoining a single
element to H. One might ask if this procedure yields an unbounded Hardy-field.
However, this is not so and we can say even more. To do that we first extend the
notion of cofinality. Suppose that A< B< R. Then A is said to be cofinal in B if
for each b€ B there is an a €4 such that a>b. It follows from Lemma 4 that if 4 is
countable and cofinal in B then B is bounded.
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Lemma 15. Suppose that H is a Hardy-field, y is overhardian and that yu,>H for
all k>0. Then {y"}7° is cofinal in H{y}.

Proof. Let z€ H{y}. Then

z=£(y(0)’ ) y(n))
9 -+ Yom)

where p and g are polynomials over H. Reasoning as in the proof of Theorem 4 we get

—-——1-—-—< h for some A€ H and
aYoy - Yom)

Ip(y(o» ceny y(n))l < Iylk+}
where & is the greatest appearing exponent of y =y, in p(%q); -+ , Yoy)- Thus

] <ly]***

It is easy to prove the more general result that if H is a bounded Hardy-field and
y is adjoinable to H then H {y} is bounded. We do not need this result. However,
the following theorem, which is an immediate consequence of Theorem 5, establishes
the existence of unbounded Hardy-fields.

Theorem 6. 4 maximal Hardy-field is unbounded.

This theorem says nothing about the existence of cofinal Hardy-fields. We can
give the following result.

Theorem 7. Suppose that 2% =}, i.c., make the continuum hypothesis. Then there
exists @ cofinal Hardy-field.

Proof. R, is imbedded in R. Hence 2¥ =card R, <card R. For each r€ R choose
an f6C0%®[n,, o), where n, is a natural number, such that I{f)=7 and let p{r)=f.
Then @ is 1 —1 into the set 4= _ocn<coo C®n,0) and card 4 =2%. Consequently
card R<2% so that card R=2%=7{,. Thus the elements of R can be indexed with
the ordinals o <w in such a way that R={2,}s<u,.

Let A4 be the family of bounded Hardy-fields and let 4 be partially ordered by
inclusion. H € 4 especially if H is a Hardy-field with a countable cofinal subset.
Let Hy=R,. Let ax<w, and suppose that for each £ <o H;€ 4 has been defined in
such a way that n <{ <« implies H,< H; and that there is an h € H; such that b >z;.
Let K=U¢ca H;. Then K is a Iziardy-field. Let y;, £ <« be an upper bound for
H,. Then {y;};< is countable. Thus there is a € R such that z>y, for all § <«
and z>z, Hence 2>h for all REK so that K€ 4. Thus by Theorem 5 there is an
H, € A such that K < H, and such that there is an #€ H, with A >z and consequently
also h>z,. Hence it follows from the principle of transfinite induction that it is
possible to define for each & <w,, a Hardy-field H,€ 4 in such a way that n <& <w,
implies H, < H;and for each £ <w, there is an h € H; such that h>x;. Let H = U g, He.
Then H is a Hardy-field. Let 7€ R. Now r =2, for some £ <w, and thereisan h€ H;< H
such that &>, =r. Consequently H is a cofinal Hardy-field.
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§ 8. General structure of overhardian elements

We will now consider the problem of deciding if there is only one maximal Hardy-
field. We will prove that this is not so. To do this we adopt a method which is, in
a way, opposite to the one which led to Theorem 5. More precisely we try to show
that each overhardian element can in fact be obtained by the construction preced-
ing that theorem.

Motivated by the reasoning leading to Theorem 5 and for later convenience we
adopt the following terminology.

Definition. 4 function s€C® is said to be prehardian if there is a real number N,
such that s(x) >0 and §'(x)[s(x)* <1 for x>N,. By g, , or simply g,, when no confusion
ts possible, we denote the function defined by

95,0 = S(a) expf s(t) dt for z>a.

e

Consequently s(z)<g, ,(z) forx>a ifa>=N,.

Definition. Suppose that s€EC® s prehardian. Then a sequence of functions H=
{Pn_y1.n}n-1 18 said to be a supplement to s if for a strictly increasing sequence {a,}{°,
where ag > N, of real numbers tending to infinity, the functions h,_, , satisfy the conds-
tions (1), (2) and (3).

When a supplement ¥ to a prehardian funection s is given then we can construct,
exactly as in the proof of Theorem 5, the functions &, ,, G, and we will denote the
function Gy by F(H) and say that s is support of F(H).

Lemma 16. Suppose that G is overhardian. Then @ has a support.

Proof. Let in the following G, be denoted by @,. Let ay=a_, be such that

Go(x) > Gy(x) > Gy(z) >0 for x>aq,

and define a, >max {(n, a,_;) inductively in such a way that

G, () > Gy (%) > Gpi(2) >0 for z2>a,

Let g,,(x)=G;(x) for x> a,-1.
Then gn (@)= _G—Gniz;(;i)> —1 for x>a,_1

and 0 <g,(x) <g,.,(z) for z >a,.

Let 0,€C®[a,, @,.,] for each n >0 be such that §%(a,) =0

for k>0, 0,(x) >0 for a, <x<a,,q, 0,(a,,,) =1 and 0(a,,,) =0
for k>1. Define k(z) for >a, by
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h(x) = (1 -Bn) gn(x) +0ngn+l(x) for a, < <an+1'
Then it is easy to see that k€ C®[g,, o) and that

gn(x) <h(x) <gn+1(x) fOI' an <zx< an-i—l'
Furthermore

B (@) = (1-0,)g0(®) +0,97n+1(%) +02(Gns1 = gn) () > =1 +04(gns1 —7a) (@) > —1

for a, <z <a,,; and thus for each x>a,.
Consequently s=1/h is prehardian and

Gn(x) <s(x) < Gn—l(x) for Qp—y <z <a’m s(c"n) = Gn(“n)'

Let hy_y =0 y/[0ny.0,] for n=l.
Now h®(a, ;) =¢%¥1(a,_,) for k=1. Thus

h(:ll.n (a'n—-l) = G(nkil (an—l) = s(k) (an—l) for k& = 0
k)

(z=an)

and h(nk—)-l.n (a,) = G(nkll (@,) = (Gn—l (@) €xXp J‘ Gn (t) dt)

(€3]

= (h,l_l'n () expf s(f) dt) since G (a,) =¥ (a,) for k=0.

(x=an)
Furthermore
s(x) < Gp-1(z) =hy- 10 (%) for a,-1<z<a,

and b1 (@) =Gy_1(a@,-1) exp f G, (t) dt
@1

T
< 8(@p-1) expf s(t)dt for a,_;<xz<a,.
Ap—1

Consequently H ={kh,_, ,}»-1 is a supplement to s and from the definition of ,_; ,
it follows that F(H)=G. Thus s is a support of G.

Lemma 17. Let h be prehardian and let F={f, 1 2}%> Frn-1,2 € C®[@n_s, ,] be a supple-
ment to h. Suppose that G—{gn1,n}"s Ga-1.n €0y s, a,] is amother supplement to
f such that for some k=>1.

Fr-1,5 (@) > fro—1,6(Oic)s Gno1,n(®) 2 froq,n (@)

for all z such that a,_, <x<a, if n>k. Then F(G) (x)/F(F) (x)> oo when z— oo.

Proof. Let F=F(F), G=F(G), Fpy=F,, Gy, =G,. It follows from the assumptions
that
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F.(x)<G,(zx) for z>a,

Since Gie_y(ar) = g1, 1(@k) > froy . (@) = Fie_y(@,) We get
Gy-1 () = Gy_1 (ay) exp f Gi(t)dt> Fy_y () exp f Fr(t)dt=Fpy (%)

when z>a,.

But (Grer — Fioy) (%) = Gy Gi() — Fy_y Fi(2) > Fip Gio() — F_y ()
=F,_(G,—F,)(x) >0 for z>a,.

Thus Gy (%) — Fioy (%) 2 Groy (@) — Fi_y(ap) =2 >0, 2 >0
(log Gre-a (®) = Gy—y (%) — Fy_y (2) 2 a, £ ay.
F,_,
Gy (x)
Hence k=237 5 50 when z— co.
Fy_y(2)

Suppose that it has been proved that G,(x)/F(x)—>co when x—oco for some 7>0.
But F(x)-oco when z— oo since F is overhardian. Consequently

G\ G (z
(log ﬁ) () =Gy (x) — Fy(x) = F,(2) (F_:E;;-— l) — oo when
x2~> oo and hence Gia® when z—oco.
Fy_i(x)

Thus it follows by induction downwards that G(x)/F(x)— co when z— oo.

Lemma 18. Suppose that k is prehardian and that F={f, | ,}i°, 18 a supplement
to h. Then there is a supplement G={g,_, ,}i° to h such that I(F(F)) and I(F(G))
are not comparable.

Proof. Let F=F(F) and let k,_; ,€C®[a,_,, a,]. Let hy , EC[a,, a,] be such that
it satisfies the conditions given in the definition of supplement and such that

90.1(@1) > fo,1(@y). Let n; =1 and let P, = {Pn—1.n.1}T be defined by
Po.1.1=Y0.1 30d Pp_; n 1=Fn1,s for n=2. Thus F(P,)(a,,)> F(a,,).

Now let Py, My, Py_y,q.x be defined recursively by the following procedure. Suppose
that Py, 7y, P,_; 0. have been defined for some % >1 and that

F(Py)(a,) <Flan) (F(P)(an)> F(ay,)).
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Let hy, n,+1€ C®[an,, a, +,] be such that it satisfies the conditions given in the de-
finition of supplement and such that

P 1 (B 11) > fry mp1 (Gnysn)
(P my+1 (@nyr1) <frg g1 (Bnyra))-
Let Py, = {Pn—1.n,k+1}:to=1 where p,_y a1 =Pr-tnpe 1SNSmy
Pry mgt1 bkl = P mgrts Prog,micts =fnotm MM+ 2.

By Lemma 21 it is possible to choose 7., > n, such that F(Py,) (@n,, ) > F(@n, )
(F(PIH-I) (a"k+1) <F(a'nk+1))' Let g = {gn—l,u}}?c where Jo-1,27 Pn-1,n.% for ”’gnk' Let
G=F(G). Then G(a,)=F(P;)(a,,). Hence G(a,)> F(a,,) if k is odd and G(a,,) <
F(a,,) if k is even. Consequently I(F) and I(@) are not comparable.

§ 9. The intersection of all maximal Hardy-fields
Definition. Hy= N {H|H is a maximal Hardy-field}
Theorem 8. Hy= {y|y is adjoinable to each Hardy-field}.

Proof. Suppose that y € Hy and let H be a Hardy-field. Let H, be a maximal Hardy-
field containing H. Thus H,< H, so that y € H,. Hence y is adjoinable to H. Suppose
that y is adjoinable to every Hardy-field. Let H be a maximal Hardy-field. Since y
is adjoinable to H and H is maximal we get that y € H, whence y€H,,.

From the definition of H, (or from the possible equivalent definition given by Theo-
rem 8 it follows directly that H, is a linearly closed and real-closed Hardy-field.
The problem to decide whether there is a unique maximal Hardy-field is the same
as to decide if H, is a maximal Hardy-field or not. However, this is not so which the
following theorem shows.

Theorem 9. Suppose that y is overhardian. Then y ¢ H,.

Proof. Let y=I(F) and let f be a support of F and F a supplement to f such that
F(x)=F(F)(x), x>z, Let G be a supplement to f such that I(F(F)) and I(F(G))
are not comparable. Let H be a Hardy-field such that I(F(G)) €H. Then y=I(F(F))
cannot be adjoined to H since y and I(F(G)) are not comparable. Consequently

y&H,
Theorem 10. The sequence {e,}7° is cofinal in Hy, which consequently is bounded.

Proof. Suppose that y€H, Hence y is not overhardian. Thus, by Lemma 14,
there is a k>0 such that y;, <0. But by Lemma 14 it then follows that y <e,.

It turns out that H, has a lot of nice structural properties. One of these is con-
cerned with the following notion of composition in R.
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Definition. Suppose that yE R, z€ R, z>1, y=1I(f), z=1(g). Then let yoz be defined
by yoz=I(fog).

It is obvious from the definition of I that yoz does not depend on the choice of
representatives for y and z in the above definition.

If y>1, 4’ >0 then there is a unique element y-1 such that yoy =y loy=2x and
in point of fact we have y~1=I(f-1) where y = I(f), {1 =(f|[a, o))~%, where a is chosen
such that f'(z) >0 for x>a, so that also y~1>1. Especially if y is hardian and y>1
then ' >0 so that y— exists.

Definition. Suppose that H is a Hardy-field and that y>1. Then let
Hoy ={hoy|h€H}.
According to the differentiation rules

_ 1

)
1

fof™

Lemma 19. Suppose that H is o Hardy-field, y>1, y€H. Then Hoy™ is a Hardy-
field.

(Y (z)=

i.e. (f‘l)' =

Proof. Suppose that ky, h,€H. Thus h oyl —hyoy=t=(h —hs)oy*€Hoy 1. Sup-
pose furthermore that %,40. Then

-1
h"’l:z_].: (hz)oy_leﬂoy-l so that HO?/_I
2

h
is a field. Let A€ H. Then

’

(hoy™) =(W'ey™)(y™") = (—3—) oy '€ Hoy™
consequently Hoy! is a Hardy-field.

Lemma 20. Suppose that H is a maximal Hardy-field, y€H, y>1. Then Hoy™
s & maximal Hardy-field.

Proof. Suppose that Hoy-1< K where K is a Hardy-field. Since € H we get that
yl=zoyl€ Hoy-l< K. Hence Ko(y1)~1=Koyisa Hardy-field and H =Hoy loy<
Koysothat H = Koy. Suppose that h €K. Then hoy=h, € H sothat h=h,oy1€Hoy?
whence Hoy'=K. Thus Hoy™! is a maximal Hardy-field.

Theorem 11. Suppose z, y€Hy, y=>1. Then zoy€H,,.

Proof. Suppose that K is a maximal Hardy-field. Then Koy~! is a maximal Hardy-
field whence z€Koy-1. Thus z=goy-! where g€EK and zoy=g€K. But K is an
arbitrary maximal Hardy-field. Hence zoy € H,,.
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Proof without use of maximal Hardy-fields.

Let K be an arbitrary Hardy-field. Let H=K{y, z}. Thus y€H and Hoy ' is a
Hardy-field. Hence z is adjoinable to Hoy-l. Let P=Hoy{z}. Then y1€P so
that Poy=Po(y~1)-! is a Hardy-field. Now Poy> Hoyloy=H=K{y, «} and z€P
whence zoy € Poy and K < Poy. Thus zoy is adjoinable to K. Consequently zoy € H,.
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