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The optimal number of faces in cubical complexes

By BernT LINDSTROM

1. Introduction

Let a cubical complex C be a set of faces of an n-dimensional cube, such thatifa
face of dimension r, 1 <r<n, belongs to C, then all lower dimensional faces of this
r-face belong to C. J. B. Kruskal suggested in [7] the problem to optimize the number
of s-dimensional faces for complexes which contain a fixed number of faces of di-
mension r. What is required is to determine the maximum possible number of s-
faces if r<s and the minimum possible number of s-faces if r>s and the minimum
possible number of s-faces if » > s that ¢ can have if the number of r-faces in C is
given, In the special case =0, s=1 this optimization problem has been solved by
L. H. Harper and A. J. Bernstein in [4] and [1], and also by J. H. Lindsey II in [8].

For simplicial complexes a similar optimization problem was solved in full gene-
rality by J. B. Kruskal in [6]. G. Katona has also solved this problem in [5] not aware
of Kruskal’s solution. Another different solution can be obtained by the method used
by G. F. Clements and B. Lindstrém in [2]. By a similar method I will be able to
solve Kruskal’s problem for cubical complexes for any r and s.

We shall also consider the problem to maximize a non-decreasing function of the
dimensions of faces in a cubical complex and apply the result to a determinant de-
fined by means of the Mdbius function of the complex.

For the convenience of the reader we shall now give an outline of the method to
be used in this paper.

A major step towards the solution of the problem is to find a suitable total ordering
of all faces in the n-cube. Then we define the replacement operator R. If 8, is any set
of cubical r-faces let RS, be the |S,| first r-faces in the total ordering of faces (| X |
is the cardinality of the set X). We define the boundary operator 8 such that 88, is
the set of all (r —1)-faces of elements in 3,.

The following inclusion is now crucial

oRS, < RaS,.

We shall prove this inclusion by induction over =, the dimension of the cube which
contains the set S,. To be able to use the induction hypothesis we have to introduce
restricted replacement operators ,, which operate in n — 1 dimensions keeping the vth
coordinate fixed. We first apply R, to 8,, then B, to R, 8, etc. Afterapplying R, weapply
R, and so on. It will turn out that the sets “converge’ and we obtain a set 7', such
that R, T,=T, for v=1, ..., n. In general is T, distinct from RS,. Therefore we have
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to an adjustment by replacing the first element in RS,— 7', by the last element
in T, and repeat this if necessary. Finally we determine the number of s-faces in
the related complex r(RS,) as a function of the number of r-faces. The result can be
expressed in terms of two functions introduced by J. B. Kruskal in [6] and [7].

2. Total ordering of the cubical faces

The vertices v;=(xy, ..., 2,), ,=0 or 1 for v=1, ..., n, are labelled such that

n
i= 2 2,27,
v=1
or in binary notation ¢ =z, 2, ... z,.

If v,=(2y, ..., ,) and v,=(y;, ... ¥,) are two vertices, then we shall write v, <v, if
%,<y, for v=1, ..., » and v, #v,. This defines a partial ordering of all vertices of the
n-cube.

Any face w,; of the n-cube is determined by two vertices v, and v; such that v; <v;,
and we shall also write w,;=(v,, v,). The vertices of the n-cube are considered as 0-
faces and we write v;=w;; = (v;, v;).

The faces of the n-cube are now totally ordered by < such that

Wy g, <y, if §3<jy or ji=j, and 13<1y,
where §; <j, and 1, <%, are inequalities between integers.

3. Definition of the operators

The set of all (»—1)-faces of an r-face w,; is called the boundary of w,; and will be
denoted by éw;,. If 8, is any set of r-faces 8S, will be the set of all (r —1)-faces, which
belong to at least one r-cube of S,. 8-18, will be the set of all (r+1)-faces all r-faces
of which are in S,. If the operator 0 is applied p times to S,, we shall write the result
9°8,. 878, is defined similarly. The boundary of a vertex is the zero set ¢.

The operator & applied to an arbitrary set of faces C yields 9C. A cubical complex
is a set C of faces such that 2C'< C. By the hull 2(C) of a cubical complex C we shall
understand the set of faces w;; for which dw;;<C. k(C) is then a cubical complex.

The number of elements in a set X is denoted by | X |. If we replace S, by the ||
first r-faces in the total ordering of faces, the resulting set of r-faces is denoted by
RS..

If v, <v; there are three possibilities concerning (x,, y,) foreach v=1, ..., n: (2,, ¥,) =
(0,0), (1, 1) or (0, 1). According to these we divide any set of r-faces 3, into three dis-
joint subsets S, ,(2,, ¥,). If we replace 8, ,(,, ¥,) for some fixed v by the |8, (%, ¥,)]
first r-faces in the total ordering, with the same combination (z,, y,) of coordinates,
and take the union when (z,, ¥,) =(0, 0), (1, 1), (0, 1), then the result will be denoted
by R,S..

4. The crucial inclusion*

The main result in this section is the following theorem:

Theorem 1. Let S, be a set or r-faces in the n-cube, 1 <r<n. Let ? and R bethe operators
defined above. Then we have

8RS,< RaS,.

* The proofs of Theorem 1 and Lemma 1, as presented in this section, have been essentially
rewritten in August 1970,
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From this theorem we obtain easily the following corollary, which shows how to
find the optimal number of s-faces for cubical complexes for a given number of r-faces.

Corollary 1. [0"RS,| <|o°8,|, |6—8,| <|¢—"RS,].

Explicit formulas for the optimal number of faces will be derived in the last sec-
tion of this paper.

Proof of Theorem 1. The proof will be by induction from »—1 to n. For n=1 and
n=2 there is only a small number of cases to consider. We leave the proof of these
cases for the reader.

The first few faces in the total ordering of faces are

Wop, W11, Wor) Wag, Woa, Wz, Wags Wiz, Wogs «--

We may associate an ordinal number with each face. If § is any set of faces let »(S) be
the sum of all numbers associated with the faces in S.

Let S, be an arbitrary set of r-faces in the n-cube. We apply the operators R,,
Ry, ..., B, Ry, ... one after the other and obtain

S(T?:ST: S;“.—:Rlsr’ S§=R2S}) e S;L =-RnS:L_1’ S:‘l+ls =R18?5 e

If S7*1 <87 it follows that n(S?+Y) <n(S?). Since the sequence of integers n(S7), n(S3),
... etc. cannot decrease indefinitely there exists ¢ such that

SF=88t = =88 (4.1)
Assuming that the theorem is true for (n—1)-cubes, we shall now prove that
losr*t|<|asy|, »=0,1,2,... (4.2)

There is no serious loss of generality if we assume that v <n.
If (x,, y,)=(0, 0) or (1, 1) then all r-cubes of 8%3}(x,, ¥,) lie in an (n—1)-dimen-
sional face, and we may apply the assumption on induction to obtain

OB, 87 3 (%0, Yo) S Ry 0873 (%0s Yo) (4.3)

Next we shall prove (4.3) also for (z,, ¥,)=(0, 1). Each r-cube of 877(0, 1) has one
(r—1)-face in each (n—1)-face for which x,=0 or z,=1. We choose the one with
%, =0 to represent the r-cube. The remaining (r —1)-faces of the r-cube are represen-
ted by their (r~2)-faces in the (n—1)-face z,=0. The number of (r —1)-faces with
%,=0 or z,=1 is not changed if we apply the operator R, to the set of r-cubes. The
number of (r —2)-faces of these (r —1)-cubes is not increased after applying R, by the
assumption on induction. Since they represent the above remaining (r —1)-faces, it
follows that the number of these (r —1)-faces is not increased, and (4.3} follows for
(%5 ¥,)=(0, 1). We have proved (4.3), and (4.2) (for v — 1) then follows by the defi-
nition of S? and 82*2.
From (4.1) and (4.2) we find that

R,8¢=8 v=1,2,...,n (4.4)
and |as?| <|as,|. (4.5)
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In general is RS7 <87 so we must show how to get BS? = RS, from S¢ without in-
creasing the number of (r —1)-faces of the boundary of the set.

Let (@, a’)=(ay ... @y, a1 ... a,) be the last r-cube of S? in the total ordering of faces.
Let (b, b')=(b, ... by, b; ... by) be the first r-cube not in S?. Hence we have

(a,a')€SY, (b, b') ¢.7. (4.6)
Since RS7 48} by the assumption, it follows that
b, b')<(a, a') 4.7)

First we assume that a'=b". By (4.4), (4.6) and (4.7) it follows that a,=+b,(v=1,
..., ») and then, since a,<a, and b,<b,, we get a’ =b' =11 ... 1. We apply Lemma 4 in
[2] to the complements of ¢ and b (i.e. ¢’ —a and b'—b) and obtain a,=0, b,==1.
Since b, =b, =1, it follows that every (r —1)-cube in 8(b, b’) belongs to the boundary
of an r-cube preceding (b, b’) in the total ordering. It follows that &(b, b’} is contained
in the boundary of 87 —{(a, a’)}, since (b, b’) is the first r-cube that is not in S7. The
number of {r—1)-cubes in the boundary is therefore not increased when (b, b') is
adjoined to 87 and (a, a’) is deleted.

Next assume that

a'>b. 4.8)

If a;>b; and a; >b; for two indices j <k and if @, =aj;, then we get the following
inequalities between r-faces (note that b, =b; =0)

(b,b)< (By - . be-1aybres .. By by b @i bias - . B7) < (3, 0). (4.9)

These inequalities are in contradiction to (4.6) by (4.4) (for v=1, k or n). A contradic-
tion is also obtained when (a,, a;)=(0, 1) if we replace one pair (;, b;) = (0, 1) by the
pair (1, 1) in order to keep the dimension. r of the intermediary face in (4.9). Therefore
it follows that

a,>b, for only one index y. (4.10)

Let a be the largest index for which a, =a,. We shall prove that 2(n —«) (r —1)-cubes
will disappear from the boundary of 87 U {(b, ')} when (g, a') is deleted.

Let (a,, a,)=(0, 1) for an index v <. We obtain two (r —1)-faces of &(a, a’) by in-
creasing a, to 1 or decreasing a, to 0. But these two (r—1)-faces are even in the
boundary of 87 —{(a, a’)}. For if we replace (a,, a,) by (0, 1) and increase a, to 1 or
decrease a, to 0, then we find two r-faces which precede (a, a’) in the total ordering
of faces with at least one component (a,, a;), ¢ +a, v, in common with (a, a’). These
two r-faces belong to Sf —-{(a, a’)} by (4.4) (v=1) and the union of their boundaries
contains the two (r —1)-faces in question.

If i > then (a;, a;)=(0, 1). We find two (r—1)-faces of d(a, a’) by increasing a, to
1 or decreasing a; to 0. If one or these two (r—1)-cubes is in the boundary of an
r-cube (c, ¢') +(a, a’), then ¢, <cy and a,=ay, for an index k<« and (c;, ¢;) =(a;, a;)
for j =14, k. Since (c, ¢')> (@, a’) > (b, b") and (a, a') is largest in SF, it follows that the
two (r—1)-faces are not in the boundary of 87U {(b, b")} even. We conclude that
2(n—a) (r—1)-cubes disappear from the boundary of S2U {(b, b')} when (a, @) is
deleted from this set. If a,3a; for all indices 4, then the same conclusion holds as
before if we put «=0.
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Let # be the largest index for which b;=bs. By the assumption that (b, b') is the
first r-cube not in 87, it follows that (c, ¢ ) (b b’) implies (¢, ¢') ESF when (¢, ¢') isan
r-cube. As in the above proof for (a, a’) we find that indices ¢ <f do not contribute
with new (r—1)-faces when (b, b’) is adjoined to Sf —{(a, a')}. It follows that the
number of (r—1)-faces is increased by 2(n—g) at most when (b, b’) is adjoined to
8¢ —{(a, a’)}.

Thi diffel}:ence between the number of (r—1)-cubes in the boundary of Sf U {(b, ')}
—{(a, a’)} and the number of (» —1)-cubes in & S is 2(cx — §) at most. In order to prove
that the number of (r—1)-faces is not increased by adjoining (b, b’) and deleting
(2, ¢’) simultaneously, it is sufficient to prove that

«<p (4.11)

We shall prove that the inequality « > 8 is contradictory. By the definition of 8 we
find that

(bas b)) = (0, 1), if a>p. (4.12)

By (4.10) is b, =b, =0, whence B =y. Assume that 8>y and define the r-face (d, d')
by (an mdex b Aiow a numeral indicates its position)

d,d)=(b,..0..0..A..,b,..0..1..A..),
v «

8 o vy B
(di: di') = (bi: bi,) fOI‘ i=|=0(,,8
dy=d.=a,=a.=A. (4.13)

We find then by (4.10) and since b, =b; that
(a, a’)>(d, d’')>(b, b"),

which is in contradiction to (4.6) by (4.4) (v=«, p). Hence we conclude that
B=y (4.14)

By 4. 10) is a;<b; for 1,=i=y If b; =0 for an index % ==, then it follows that (a;,
ai) =(b;, b;) =(0, 0), which is impossible by (4.4), (4.6) and (4.7). Hence

=1 for i+y, b =0. (4.15)
By (4.8) and (4.10) it follows that
a;=b; for i=1,...,y—1.
We combine this fact with (4.15) and (4.10) and get
a;i=1 for i=1,...,9. (4.16)
By (4.4), (4.6), (4.7) and (4.14) it follows that
bi<bi, a;=aj for i=yp+1,...,n. (4.17)

We shall prove theserelationsalsofori=1, ..., —1. Assume that one could find an
index k such that

b =bj, k<.
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By (4.15) is then b, =b; =1, and it follows by (4.4), (4.6) and (4.16) that

(@ ak) = (0,1).
We define an r-cube (f,f’) by
+fHH=@®..0..0..1....,1..1..101..1..1),
k y a k 14 @
(£ fi)=(b;, bi') for ik, a
Then we find by (4.15), (4.16) and (4.17) that
(@ a@')>(f,)>(®,b).
These inequalities are in contradiction to (4.6) by (4.4) (for v=£, y) since (a,a;) =
(0, 1). Hence, the relation b, =by, is false, and (4.17) holds for every i =y.

It follows that r =dim (a, ') <1 and r =dim (b, ') >n —1, which is a contradiction
since 7 2> 3. This final contradiction shows that the relation «>f is false and (4.11) is
proved.

Let T'=8? U {(b, b')} —{(a, a’)}. We have proved above that |07'| <|287|. It is
easy to see that R,T=7T for v=1,2 ..., n, by the definition of 7. Hence, we can
iterate the adjunction and deletion with 7 in place of §7 if RT 47 and repeat until
we finally obtain the set RS,. We obtain (cf. (4.5))

|6 RS,| <|88,|.

Theorem 1 follows from the last inequality if RO RS,=2 RS,. This is true by the
following lemma.

Lemma 1. If RS,=8,, then R98,=08,.

Proof of Lemma 1. Let (e, ¢') and (f, f) be two (r —1)-cubes such that (e, e') <(f, ')
and (f, )€ (g, ¢'), where (g, )€ S,. We shall prove that (e, ¢’) € 88,. Consider two
cases.

Case 1. Assume that ¢’ =¢', whence ¢’ =f =g'. There is now an index « such that
fa=g,+1 and f,=g, for v+«. We define § such that e,=/, for v<f§ and ez >f,.

If x<f then we find that e; ... (6, —1) ... ¢,>g, hence (e, ... (e,—1) ... ¢,, ¢') €S,
and (e, €'} €28,. ]

If «>f and ¢,=1 for an index y>f, then it follows that

e ... (ey—1) . ey>fr o (fa—1) ... fr=g, and (e, ¢') €38,

If x>p and e,=0 for all v>§, then we find that f,=0 for v> g except whenv=«
(e and f have the same numer of 1’s). It follows that g=¢; ... ¢, 0... 0, and (e, ¢') €
o(g,g') since eg=1.

Case 2. We shall next assume that e’ <g'. If there is an index v such that e, =e, =1,
then (e, e') €98, follows since (e, ¢') €d(e; ... 0 ... €,, €1 ... 1 ... €,) and since
v

0
v
L..e)<(@,9).

’
(€g...0...€y01...
v

We now make the assumption that (e,, €,) =(0, 0) or (0, 1) for v=1, ..., n. We define
o such that e, =g, for » <& and e, <g,. If (e,, €,) =(0, 0) for some v >, then we obtain
(e, ') €08, as before.

Let (e,, €,)=(0, 1) for every v>a. Then we have

(e,€)=(0...0,91... 9,101 .. 1).
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The dimension of (e, ¢') is r—1 and the dimension of (g, ¢’) is 7. Since go=1, it follows
then that

9,9)=00...0,95...ga=11... 1).

Hence (e, ") € 2{g, ¢'), and the lemma, is proved.
This completes the proof of Theorem 1.

Proof of Corollary 1. By repeated application of the operator & it follows from the
theorem that

PRS, < Ro*S,, p=1,..,r. (4.18)

In particular is [6?RS,| <|&*S,| for p=1, ... 1.
In order to prove the second inequality we first observe that

o108, = 8,, 6o-15,= 8,. (4.19)
If we replace S, by ¢-18, in the theorem, we find that
8R0S, < Roo18,< RS,. (4.20)

If we apply &1 in both members of (4.20), we find by (4.19) that
Ro-18,201RS.. (4.21)

Iterated application of (4.21) then yields the second inequality in Corrollary 1.

We shall apply Theorem 1 to prove an extremal property for cubical complexes.
A similar result has been proved for simplicial complexes (see Theorem 1 in [10]
and Corollary 3 in [2]).

Let f(n,, ny, ..., n,) be a fuention which is symmetric in its arguments, i. e. invariant
by any permutation of its arguments. If n,, n,, ..., #,, are the dimensions of faces in
a cubical complex C, we shall write briefly f(C) = f(ny, 1, ..., Ty,). f(C) is non-decreasing
if it is non-decreasing in each of its arguments. The complex of the | C| first cubical
faces is denoted by FO.

Theorem 2. Let {(C) be a symmetric and non-decreasing function defined for cubical
complexes of a fixed number of faces. Then we have

HCO)<{(FO).
Proof. Let C, be the subset of all faces of dimension r in C. Let

RC= CJORC’,, (4.22)
7=

where RC, denotes the |C,| first cubes of dimension r. RC is a cubical complex for
we have by Theorem 1

o UORO,= UOERC‘,Q UOI%C’,E UORC‘,_lgRC.
r= r= r= r=
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Let (a, a’) be the last element in RC and let (b, b’) be the first cube which is not
in RC. If RC +FC we find that (b, b') <(a, a’) and

dim (a, a') +dim (5, b"). (4.23)

We want to prove that dim (a, a’) <dim (b, b’) by a contradiction.
Assume that dim (@, a') >dim (b, b’), i. e.

2 (as—a,)> 2 (b;—by). (4.24)
v=1 v=1
If ' >b" we can find % such that a;>b; and a,=b, for v=1, ..., k—1.

We define a function g(v) such that g{v) =0 if (a,, a,)>(b,, b;) and g(v) =1 in the
other case.

If g(v)=0 for v=1, ..., n then (b, d’) would be a face of (a,a’) and (b, ')ERC,
since (a, a’)€ RC and RC is a complex. But (b, '}¢RC, so there exists v such that
g(v)=1. By (4.24) it follows that

(@, —a,) — (b, — b,)] > v %)gl[(bé —by) = (a5~ @v)] (4.25)

v:g(v)=0

Because of (4.25) we can find (¢, ¢’)=(c, ... ¢,, €1 ... C5) such that
(bo, b2) < (Cs €) < (a5, @5) i g(v) =0,
ce=ay >by, c,=b, for w<k
(s €2)=(as, 8,) i glv)=1,
2. Uep—e) = (s —b)]=_ > [(bs—b,)—(a;—aJ)].

v:9()=0 vig(@)=1
It follows that dim (b, 8')=dim (¢, ¢’) and (¢, ¢’) > (b, ). Since (c,, ¢y) <(a,, a,) for
v=1, .., n and (a, a’) € RC, it follows that (c, ¢’) € RC and then (b, b') € RC by (4.22).
Since (b, b') ¢ RC we have the desired contradiction and the assumption dim (a, a’) >
dim (b, b") is wrong. Since we cannot have dim (a, a’) =dim (b, b’) by (4.23), we find
that
dim (a2, a’) <dim (b, ). (4.26)

If o' =% then the proof of (4.26) parallels the proof of Corollary 3 on p. 233 in
[2] and can be omitted here.

If (@, a’) is deleted from RC and (b, b’) is adjoined, we get a cubical complex K
with f(RC)<f(K). If K+FC we can repeat the procedure until we obtain FC. It
follows that

H(C) = {(RC) <f(FO),

which was to be proved.
As an application of Theorem 2, we shall optimize certain (+1)-determinants de-
fined with the aid of cubical complexes.

Example

A cubical complex C with the empty set ¢ adjoined is a semilattice with intersection
of faces as product operation. It is easy to see by our representation of faces as pairs

252



ARKIV FOR MATEMATIK. Bd 8 nr 24

(@, ") that C is a subsemilattice of the interval lattice of the (semi-)lattice of all
subsets of some finite set. The Mobius function of the last mentioned lattice takes
only the values 1 and —1 (see Corollary to Proposition 5 in [11]). From Theorem 6
in [3] it follows then that the Mébius function of our semilattice of cubical faces (and @)
assumes the values 1 and -1 and no other values. With the aid of the Corollary in
[9], we obtain a determinant of the order m=|C| +1, with all entries 1 or —1 and
the value

T @ +1) (4.27)

v=1

where 7y, 7y, ..., Ty are the dimensions of all faces in € (3" is the number of subfaces
of the vth face). The function (4.27) is symmetric and increasing function of its
arguments. Theorem 2 shows how to find the cubical complex with m —1 faces, which
maximizes (4.27).

5. A formula for the optimal number of faces

In [7] J. B. Kruskal conjectured a formula for the optimal number of faces (see
Introduction). We shall here derive such a formula with the aid of our Theorem 1.
It will be apparent that our result agrees with Kruskal’s conjecture in some instan-
ces, but disagrees with it in other instances. It will be possible to formulate our re-
sults in terms of functions, which have been introduced by J. B. Kruskal.

For any positive integer m we define the r-canonical representation (see [6])

m= (":1) + ( le) ot (r _’:“Jr 1), (5.1)

where we first choose m, as large as possible when (m1> <m, and then we choose
r
m, as large as possible such that (n:l) + (r”’_"zl) <m and so on until we finally
obtain equality. Then we have (a consequense of Pascal’s triangle)
My >mg> ... >my=2r—i+121. (6.2)
It is easy to prove that the representation (5.1) is unique, when (5.2) holds (see

Lemma 1 in [5]).
For any sequence of positive integers m,, m, ..., m;, we put

[y, Mg, ..., M, = (’Zl) + (r”fl) +o+ (r _’f::r 1) . (5.3)

Kruskal defines the fractional pseudopower (see [6] p. 253) m®™ as follows: If
m = [my, My, ..., m;],
is the r-canonical representation of m, then we let
m" = [my, my, ..., m, (5.4)
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For m=0 we put
0 = 0. (6.5)

A binary word of length n is a sequence of n 0’s and 1’s. Write
@y . B, S by L by,

if a;<b, for i=1, ..., n. A binary complez C is a set of binary words of length =, with
the property that if b is in €' and a< b, then @ is in C. The main result in [6] is the
following theorem:

Kruskal’s theorem

If a binary complex C has exactly m words of weight r, and if s>r(s<r), then the
mazimum (minimum) number of integers of weight s that it can have is m®'™.

We may think of a binary word as the binary notation of a non-negative integer,
80 we shall use the words »integer» and sbinary word» as synonyms.

The weight of an integer is the number of 1’s in its binary word. We shall omit the
easy proof of the following lemma.:

Lemma 2. Let my>my> ... >my be non negative integers. Then the number of in-
tegers of weight r, which are less than 2™ + ... + 27k, ig [m,, ..., My,

If 8 is some set of binary words of weight r then we define the set #(S) of related
words as the set of all words j such that either j<4 for some {€S, or $€S for each
1<j (i. e. 1<, 149), if i’s weight is 7.

We shall need the following lemma from which, by the way, Kruskal’s theorem
follows, if we apply Theorem 1 in [2].

Lemma 3. Let S be the m first non-negative integers of weight r. Then the number of
tniegers of weight s in r(S) is m“'”, and r(S) is the set of all non-negative integers, which
are less than 2™ + ... +2™ if m=[my, ..., m;], is the r-canonical represeniation of m.

Proof. The result follows from Lemma 2, if we show that 7(S) is the set of all
non-negative integers, which are less than M =2™+ ... 427,

We first observe that ¢ €r(8) implies 1 <M, if the weight of ¢ is less than r, for by
the definition of 7(S) there is 4 €S such that ¢< %, and i <h< M by Lemma 2.

Then we assume that ¢ €r(S) and that the weight of ¢ is s and s>r. If { <M were
not true, then for some integers n; >ny>... n,>0, we get

§=2M4 .. 2% >2M L - 2m= I,

Put j=2"+...+2". Since j<1, 1€r(S) and the weight of j is r, it follows that
j€8. Hence j<M by Lemma 2. From i>M and §<M it follows that n, =m,, n,=
Mg, ..., n,=m, and k>r. But we have k<r by the r-canonical representation of m
and by (5.2). We have arrived at a contradiction and ¢ <M must be true.

We have proved that i€r(S) implies <M and shall now prove the reversed
implication.
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Let + <M be non-negative of weights s <r. Then we have for some index » <r the
inequalities

2M L 2T Ce <™t L+ 2™, or $<2™,

In the first case we have m,,;=r—v>1 by (5.2) and it follows that we can find A
of weight r such that <k and

2m 4 2™ <h <24 4 2Mutl

Hence A €8 and 1 €¢(S) follows by the definition of #(:S). The second case, when 1 <2™,
is proved similarly.

If i<M is non-negative of weight s>r then A<M if h<i. We conclude that
1€r(8) by the definition of 7(S), and the proof of the lemma is completed.

Our next auxiliary function is

srim= 5 (™) 7 eee, 6

v=0 \" —

which was introduced by J. B. Kruskal in [7] for the problem we are studying. There
is another expression for g(r, 4, m) (see (5.7) below), which is more useful in this

paper.
With the aid of the well-known relations

(-5 (7)
() ()= () (zez),

it is easily proved that

g(r’ i’. m) _ Z (m) (7] +9— 1) . (5.7)
p=0 \V r
It is also easy to prove that
g(r, 5, m)+g(r, s+1, m) =g(r, 3, m +1) (5.8)

Given an integer m >0, we determine m,, m,, ..., mz such that
m = g(r, 1, m)+...+g(r, k, my) = Mg, 5.9

where we first choose m, as large as possible such that m>g¢(r, 1, m,), then m, as
large as possible such that m=g(r, 1, m;) +g(r, 2, m,) and so on in analogy with the
definition of the r-canonical representation of m. Because of the relation (5.8) we
get (cf. the analogous (5.2)):

my >my > >y =r—k+1. {5.10)
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Observe that we have equality in (5.1) and that this is not always the case in (5.9).
For the sequence defined in (5.9) we shall write

g(s, 1, my) +... +g(s, k, my,) = Mg, (5.11)

for any non-negative integer s (g(s, k, m;) is non-zero if and only if s—i+1<m,).
The lower semipower m,,, is defined in analogy with Kruskal’s definition of the
(upper) semipower m®/".
We can now state our main result on the optimal number of faces in cubical com-
plexes:

Theorem 3. If a cubical complex C has m faces of dimension r, and if s>r (s<r),
then the maximum (minimum) number of faces of dimension s that it can have is

_ @in
Mgy + (M — M),

If S is a set of cubical faces of dimension r then we define r({S), the set of re-
lated faces w,, such that w,, is either a subfaces of some w; €8, or w, €8 for each
subface w; of w,, if the dimension of w,, is 7. Hence

r8)= U ().

p=—r1

The following two lemmas are analogous to Lemma 2 and Lemma 3.

Lemma 4. Let m, >my> ... >m, be non-negative integers. Then the number of r-cubes
wyy, with §<2™ 4 4 2™ is

glr, 1, my) +... +g(r, k, my).

Lemma 8. Assume that m=my,, and let S be the m first r-cubes wy; in our total
ordering of cubes. r(S) is then the set of all cubes w,; for which j<2™ +...+2"%, The
number of s-cubes in r(8S) 18 my).

The proofs of these two lemmas are analogous to the proofs of Lemma 2 and
Lemma 3 and will be omitted. After this preparation we can prove our main result.

Proof of Theorem 3. By Corollary 1 to Theorem 1 we can assume that S, containg
the m=|8,| first r-cubes. If m =my,, then the conclusion in Theorem 3 holds by
Lemma 4 and by (5.5).

We can now assume that m>mey, =g(r, 1, m))+... +g(r, k, m;). Put M =2™
+...+2m, (8) contains all faces w,, for which § <M and in addition some faces w;y.

The number of r-faces w;y, in S is m —mg;, by Lemma 4. Observe that w,, €r(S)
if and only if w,,, is a subface of some r-face w;, €S or w,, €S for each subface w;y
of dimension r of w,,,. This means that w,, €7(S) if and only if M —w< M —i for some
wu €S or M, €S for each M —i< M —u if the weight of M —1 is r. The m—mqy,
first r-faces w;,, correspond to the m —m., first integers M —1 of weight r. The theo-
rem now follows by Lemma 3.

When m =, our result in Theorem 4 agrees with the conjecture by J. B. Kruskal
in [7]. But for m #my,, we have got an ‘“‘error-term” not foreseen by Kruskal. We
conclude by a simple example. Suppose we have four 2-faces in the 3-cube. The
minimum number of edges (1-faces) contained in these 2-facesis 11 by our Theorem 4.
From the last statement in [7] it would follow that the minimum is 12.
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