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The optimal number  o f  faces in cubical complexes 

B y  BERNT LINDSTR~M 

l .  In troduct ion  

Let  a cubical complex C be a set of faces of an n-dimensional cube, such tha t  if a 
face of dimension r, 1 ~r<.n, belongs to C, then all lower dimensional faces of this 
r-face belong to C. J.  B. Kruskal  suggested in [7] the problem to optimize the number  
of s-dimensional faces for complexes which contain a fixed number of faces of di- 
mension r. What  is required is to determine the maximum possible number  of s- 
faces if r<s and the minimum possible number  of s-faces if r>s and the minimum 
possible number  of s-faces if r > s tha t  C can have if the number  of r-faces in C is 
given. In  the special case r = 0, s = 1 this optimization problem has been solved by  
L. H. Harper  and A. J.  Bernstein in [4] and [1], and also by  J .  H. Lindsey I I  in [8]. 

For simplicial complexes a similar optimization problem was solved in full gene- 
rality by  J .  B. Kruskal  in [6]. G. Katona  has also solved this problem in [5] not aware 
of Kruskal 's  solution. Another different solution can be obtained by  the method used 
by  G. F. Clements and B. Lindstrbm in [2]. By  a similar method I will be able to 
solve Kruskal ' s  problem for cubical complexes for any r and s. 

We shall also consider the problem to maximize a non-decreasing function of the 
dimensions of faces in a cubical complex and apply the result to a determinant  de- 
fined by  means of the M6bius function of the complex. 

For the convenience of the reader we shall now give an outline of the method to 
be used in this paper. 

A major  step towards the solution of the problem is to find a suitable total  ordering 
of all faces in the n-cube. Then we define the replacement operator _R. I f  Sr is any set 
of cubical r-faces let RSr be the I S~I first r-faces in the total  ordering of faces (I X I 
is the cardinality of the set X). We define the boundary operator a such tha t  ~ST is 
the set of all ( r -1) - faces  of elements in S~. 

The following inclusion is now crucial 

~RST c_ RaST. 

We shall prove this inclusion by induction over n, the dimension of the cube which 
contains the set S T. To be able to use the induction hypothesis we have to introduce 
restricted replacement operators R~, which operate in n - 1 dimensions keeping the vth 
coordinate fixed. We first apply R 1 to ST, then R 2 to R 1 ST etc. After applying R~we apply 
R 1 and so on. I t  will turn out that  the sets "converge" and we obtain a set T~ such 
that  R~ T T = TT for v = 1 . . . .  , n. h general is TT distinct from RS~. Therefore we have 
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to an adjustment  by  replacing the  first element in R S , -  T~ by  the last  element 
in Tr and repeat  this if necessary. Finally we determine the number  of s-faces in 
the related complex r(RSr) as a function of the number of r-faces. The result can be 
expressed in terms of two functions introduced by  J.  B. Kruskal  in [6] and [7]. 

2. Total ordering of the cubical faces 

The vertices v t = ( x  x . . . . .  x~), x~=0 or 1 for v = l  . . . .  , n, are labelled such tha t  

i= ~ x~2 n-~, 
~=1 

or in binary notation i = x  xx z ... x,. 
I f  v~ = (x I . . . . .  x,) and vj = (Yl . . . .  Yn) are two vertices, then we shall write vi ~v~ if 

x, ~<Yv for v = 1 ... . .  n and v~ :~vj. This defines a partial  ordering of all vertices of the 
n-cube. 

Any face w u of the n-cube is de~ermined by  two vertices v~ and vj such tha t  v~ ~vj,  
and we shall also write w u =(v~, vj). The vertices of the n-cube are considered as 0- 
faces and we write v~=w~=(vt, v~). 

The faces of the n-cube are now total ly ordered by  < such tha t  

w~,j,<w~,j, if jl <i~ or i~=i2 and i2<i1, 

where ~1 < ~'2 and i~ < i 1 are inequalities between integers. 

3. Definition of the operators 

The set of all ( r -1 ) - faces  of an r-face w u is called the boundary of w u and will be 
denoted by  0w u. I f  S~ is any set of r-faces OS~ will be the set of all (r - 1)-faces, which 
belong to at  least one r-cube of S~. ~-xS~ will be the set of all (r + 1)-faces all r-faces 
of which are in S~. I f  the operator 0 is applied p times to S ,  we shall write the result 
~S~. ~-vS, is defined similarly. The boundary of a vertex is the zero set ¢. 

The operator 0 applied to an arbi t rary set of faces 0 yields ~C. A cubical complex 
is a set O of faces such tha t  OCc_ C. By the hull h(C) of a cubical complex C we shall 
understand the set of faces w o for which Ow~jc_C. h(C) is then a cubical complex.  

The number  of elements in a set X is denoted by  IX[.  I f  we replace Sr by  the [Srl 
first r-faces in the total  ordering of faces, the resulting set of r-faces is denoted by  

I f  v~ -<vj there are three possibilities concerning (xv, y,) for each v = 1 . . . .  , n : (x~, y.) = 
(0, 0), (1, 1) or (0, 1). According to these we divide any set of r-faces Sr into three dis- 
joint subsets S~.Jx~, y,). I f  we replace Sr.~(x~, y~) for some fixed v b y  the ] Sr.jX~, Y,)I 
first r-faces in the total  ordering, with the same combination (xv, y~) of coordinates, 
and take the union when (x~, y~)=(O, 0), (1, 1), (0, 1), then the result will be denoted 
by  R~S~. 

4. The crucial inclusion* 

The main result in this section is the following theorem: 

Theorem 1. Let S~ be a set or r-/aces in the n-cube, 1 <~ r <~ n. Let ~ and R be the operators 
defined above. Then we have 

RSr c ROBt. 

* The proofs of Theorem 1 and Lemma 1, as presented in this section, have been essentially 
rewritten in August 1970. 
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From this theorem we obtain easily the following corollary, which shows how to 
find the optimal number of s-faces for cubical complexes for a given number of r-faces. 

Explicit formulas for the optimal number of faces will be derived in the last sec- 
tion of this paper. 

Proo/o] Theorem 1. The proof will be by  induction from n -  1 to n. For  n = 1 and 
n = 2 there is only a small number of cases to consider. We leave the proof of these 
cases for the reader. 

The first few faces in the total ordering of faces are 

W00~ Wll~ W01~ W22~ W02~ W33~ W23~ W13~ W03, .-. 

We may associate an ordinal number with each face. If  S is any set of faces let n(S) be 
the sum of all numbers associated with the faces in S. 

Let  S~ be an arbitrary set of r-faces in the n-cube. We apply the operators R 1, 
Rs ..... R., R1, ... one after the other and obtain 

0__ "..~ __]? ,qn-1  ,qn+l  n S r - S , , S r  I = R  iSr, ~ i n S,  = R~S~, Sr - . . n  . . . .  , , = RiS~ . . . .  

If S~ +1 ~=S~ it follows that  n(S~ +1) <n(S~). Since the sequence of integers n(S°), n(S~), 
... etc. cannot decrease indefinitely there exists q such that  

S~ = Sq~+~ = ... = S~ +'~. (4.1) 

Assuming that  the theorem is true for (n-1)-cubes,  we shall now prove that  

<los l, . . . .  ( 4 .2 )  

There is no serious loss of generality if we assume that  v < n. 
If (x~, y , )=(0 ,  0) or (1, 1) then all r-cubes of Sr.'-l~ (x,, y,) lie in an (n-1)-d imen.  

sional face, and we may apply the assumption on induction to obtain 

v-1  v-1  8R,  S , . ,  (x,, y,) (4.3) ~_ R ~ S r .  ~ (x,, y~) 

Next we shall prove (4.3) also for (x,, y~)=(O, 1). Each r-cube of S~-~(0, 1)has one 
( r -1) - face  in each (n-1)- face  for which x ,=O or x , = l .  We choose the one with 
xv =0 to represent the r-cube. The remaining (r-1)-faces of the r-cube are represen- 
ted by their ( r -2)-faces  in the (n-1) - face  x,=O. The number of ( r -1)-faces  with 
x,,=O or x~--=l is not  changed if we apply the operator R, to the set of r-cubes. The 
number of (r-2)-faces of these ( r -1)-cubes  is not  increased after applying R, by the 
assumption on induction. Since they represent the above remaining (r-1)-faces,  it 
follows that  the number of these (r-1)-faees  is not increased, and (4.3) follows for 
(x~, y , )=(0 ,  1). We have proved (4.3), and (4.2) (for v -  1) then follows by the defi- 
nition of S~ and St TM. 

From (4.1) and (4.2) we find that  

R ,  Sq~=Sq~, v = l , 2  . . . . .  n (4.4) 

and ] aSr~ I ~<lSS~ ]. (4.5) 
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In general is RS~ =~S~ so we must show how to get RS~ = RS~ from S~ without in- 
creasing the number of (r-1)-faces of the boundary of the set. 

Let  (a, a')--(a~ ... a~, a~ ... a~) be the last r-cube of S~ in the total  ordering of faces. 
Let (b, b') = (bx ... bn, b; ... b~) be the first r-cube not in S~. Hence we have 

(a, a')~S~, (b, b')¢.S~. (4.6) 

Since RS~ ~=S~ by the assumption, it  follows that  

(b, b') < (a, a') C4.7) 

First we assume tha t  a'=b'. By (4.4), (4.6) and (4.7) it follows that  a~=b~,(v=l, 
n) and then, since a~ ~<a~ and b~ -~ b~, we get a'  --b' = 11 1. We apply Lemma 4 in 

[2] to the complements of a and b (i.e. a ' - a  and b' -b)  and obtain a~=0, bn---1. 
Since bn =b'~ ffi 1, it  follows that  every (r-1)-cube in ~(b, b') belongs to the boundary 
of an r-cube preceding ( b, b') in the total ordering. I t  follows that  ~( b, b') is contained 
in the boundary of S~ - {(a, a')}, since (b, b') is the first r-cube that  is not in S~. The 
number of (r-1)-cubes in the boundary is therefore not increased when (b, b') is 
adjoined to S~ and (a, a') is deleted. 

Next assume tha t  

a' > b'. (4.8) 

If  a~ > b~ and a;, > b~ for two indices j </c and if a~ =a'~ then we get the following 
inequalities between r-faces (note that  bk=b~ =0) 

(b,b')< (hi. .  b~,_la~,bk+l., bn, b; . .  b'~_la'kb'~+l., b~)< (a,a'). (4.9) 

These inequalities arc in contradiction to (4.6) by (4.4) (for v = 1,/¢ or n). A contradic- 
tion is also obtained when (ak, a~)--(0, 1) if we replace one pair (b~, b~)=(0, 1) by the  
pair (1, 1) in order to keep the dimension r of the intermediary face in (4.9). Therefore 
it  follows tha t  

t a~ > b~ for only one index ~. (4.10) 

Let ~ be the largest index for which an --a'~. We shall prove that  2 ( n -  ~) (r - 1)-cubes 
will disappear from the boundary of S~ U (Cb, b')} when ( a, a') is deleted. 

Let (a~, a'v) =(0, 1) for an index v<~.  We obtain two (r-1)-faces of a(a, a') by in- 
creasing a~ to 1 or decreasing a~ to 0. But these two (r-1)-faces are even in the 
boundary of S~- ( (a ,  a')}. For if we replace (aa, a~) by (0, 1) and increase a~ to 1 or 
decrease a~ to 0, then we find two r-faces which precede (a, a') in the total ordering 
of faces with at  least one component (at, a~), i ~=~, v, in common with (a, a'). These 
two r-faces belong to Srq-((a, a')} by (4.4) (v--i) and the union of their boundaries 
contains the two ( r - 1)-faces in question. 

If  i > ~  then (at, a~)=(0, 1). We find two (r-1)-faces of O(a, a') by increasing a~ to 
1 or decreasing a~ to 0. If  one or these two (r-1)-cubes is in the boundary of an 
r-cube (c, c')=~(a, a'), then c~ <c~ and a~--a~ for an index/¢ < ~ and (cj, c~)= (aj, aj') 
for ] =~i,/¢. Since (c, c') > (a, a') > (b, b') and (a, a') is largest in S~, it follows that  the 
two (r-1)-faces are not in the boundary of S~ U ((b, b')} even. We conclude that  
2 ( n - ~ )  (r-1)-cubes disappear from the boundary of S~rU ((b, b')} when (a, a') is 
deleted from this set. If  at ~=a~ for all indices i, then the same conclusion holds as 
before if we put ~ =0. 
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Let fl be the largest index for which b~=5~. By the assumption that  (5, 5') is the 
first r-cube not in ~r q, it follows that (c, c') < (b, 5') implies (c, c') ES~ when (c, c') is an 
r-cube. As in the above proof for (a, a') we find that  indices i <fl do not contribute 
with new (r-1)-faces when (b, b') is adjoined to ~rq-{(a, a')}. I t  follows that  the 
number of (r-1)-faces is increased by  2(n-f l )  at most when (b, b') is adjoined to 
s~ - {(a, a')}. 

The difference between the number of ( r -  1)-cubes in the boundary of S~ U {(b, b')} 
- {(a, a')} and the number of ( r -  1)-cubes in ~ S~ q is 2(~-f l )  at most. In order to prove 
that  the number of (r-1)-faces is not increased by adjoining (b, b') and deleting 
(a, a') simultaneously, it is sufficient to prove that  

~<f l  (4.11) 
We shall prove that  the inequality ~ >fl is contradictory. By the definition of fl we 

find that  

(b~, b') = (0, 1), if ~>fl.  (4.12) 
• r 

By (4.10) is b .  =b r =0, whence fl ~'7. Assume that fl >7  and define the r-face (d, d') 
by (an index be~ow a numeral indicates its position) 

(d,d')=(b:..  O.. 0 . .  A . . , b ; . .  0 . .  1 . . A . . ) ,  

(d,, g;) = (b,, b;) for i ~= ~, fl 

d~ = d~ -- a~ -- a', = A. (4.13) 

We find then by (4.10) and since b z =b~ that  

(a, a') > (d, d') > (b, b'), 

which is in contradiction to (4.6) by (4.4) (v =a ,  7). Hence we conclude that 

fl =7 (4.14) 

By (4.10) is a',~b~ for i4=7. If  b~=0 for an index i@y, then it follows that  (a~, 
a;)--(b,, b~)= (0, 0), which is impossible by  (4.4), (4.6) and (4.7). Hence 

t b~=l  for i~:y,  b r = 0 .  

By (4.8) and (4.10) it follows that  

a~=b~ for i = 1  . . . . .  7 - 1 .  

(4.15) 

We combine this fact with (4.15) and (4.10) and get 

a ~ = l  for i = l  . . . . .  Y. (4.16) 

By (4.4), (4.6), (4.7) and (4.14) it follows that 

5~<b~,a~=a~ for i = y + l  . . . . .  n. (4.17) 

We shall prove these relations also for i = 1 ....  ,7  - 1. Assume that one could find an 
index k such that  

b ~ = b ~ ,  k <  7. 
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B y  (4.15) is then  bk =b'~ = 1, and i t  follows b y  (4.4), (4.6) and  (4.16) t h a t  
t (ak, a~) -- (0,1 ). 

We define an  r -cube (], f )  b y  

( l , l ' ) = ( b l . .  0 . .  0 . .  1 . . . . .  1 . .  1 . .  1 0 1 . .  1 . .  1), 
k y tt /¢ y tt 

(],,[;)=(b,,b~) for  i # k , ~ .  

Then  we f ind b y  (4.15), (4.16) and  (4.17) t h a t  

(a, a') > (1, f ' )  > (b, b'). 
These inequali t ies are in contradict ion to (4.6) b y  (4.4) (for v=k,  7) since (a~,a~) = 
(0, 1). Hence,  the  relat ion bk =b'~ is false, and  (4.17) holds for  every  i =~ .  

I t  follows t h a t  r = d i m  (a, a ' )  < 1 and  r - -d im (b, b') > ~ n -  1, which is a contradict ion 
since n~> 3. This  final contradict ion shows t h a t  the  relat ion ~ >  ~ is false and  (4.11) is 
proved.  

Le t  T=S~ U {(b, b ' ) } - { ( a ,  a')}. We  have  p roved  above  t h a t  l aTI  < 1os l. ~t is 
easy  to  see t h a t  R ~ T = T  for v = l ,  2 ..., n, b y  the  definit ion of T. Hence,  we can 
i te ra te  the  ad junc t ion  and  delet ion wi th  T in place of S~ if R T  # T and repea t  until  
we finally ob ta in  the  set  RS,. We obta in  (el. (4.5)) 

Io- s,I < la ,l. 
Theorem 1 follows f rom the last  inequal i ty  if R ~ . R S , = ~ S r .  This is t rue  b y  the  

following lemma.  

Lemma 1. I f  RS,=S , ,  then  ROSr=OS r. 
Proof of .Lemma 1. Le t  (e, e') and (/, f )  be two (r - 1)-cubes such t h a t  (e, e') < (/,/') 

and ( ] , / ' )  E ~(g, g'), where (g, 9') E S,. We shall p rove  t h a t  (e, e') E ~S~. Consider two 
c a s e s .  

Case 1. Assume t h a t  e' =g', whence e' =t' =g'. There  is now an index ~ such t h a t  
l ~ = g a +  1 and  ~v=gv for  v = ~ .  We  define ~ such t h a t  ev=fv for  v</~  and  e~>fD. 

I f  0t</~ then  we find t h a t  e 1 ... ( c a - 1 )  ... en>g, hence (e 1 ... ( % - 1 )  ... en, e ' )ESr  
and (e, e') EOSr. 

If ~>~  and e~,--1 for  an index ~>/~,  then  it  follows t h a t  

el ... ( eT-1)  ... e , > h  ... ( / a - l )  . . . / , ,=g ,  and  (e, e') e0S, .  

I f  a > fl and  % = 0 for  all v > fl, t hen  we find t h a t / ,  = 0  for v > fl except  when v = 
(e and  / have  the  same numer  of l 's) .  I t  follows t h a t  g = e  1 ... ep_ 1 0 ... 0, and  (e, e') E 
~(g, 9') since ep = 1. 

Case 2. We shall nex t  assume t h a t  e' < g'. I f  the re  is an index v such t h a t  e~ = e'~ = 1, 
t hen  (e, e ' )e0S~ follows since (e, e ' )e0(el  ... 0 ... e~, e~ ... 1 ... e~) and  since 

V 

(el ... 0 . . .  e~, e~ ... 1 . . .  e ' )  < (g, g'). 

We now m a k e  the  assumpt ion  t h a t  (e~, e'~) = (0, 0) or (0, 1) for v = 1 . . . . .  n. We  define 
such t h a t  e'~ =g',, for  v < ~ and  e'~, <g~. I f  (e~, e'~) = (0, 0) for  some v > ~, then  we obtain 

(e, e ' )EaS ,  as before. 
L e t  (%, e~)=(0,  1) for  every  v > ~ .  Then  we have  

. . , 0  t I (e,e')=(O , g l . . .  g~-x01 . .  1). 

250 



ARKIV FSl~ MATEI~IiATIK. B d  8 n r  2 4  

The dimension of (e, e') is r - 1  and the dimension of (g, g') is r. Since g ' =  1, it follows 
then that  

0 ' t 1 (g,g') = (0 . . . .  gl ... g~-~ ... 1). 

Hence (e, e')E cO(g, g'), and the lemma is proved. 
This completes the proof of Theorem 1. 

Proo/el Corollary 1. By repeated application of the operator 8 it  follows from the 
theorem tha t  

8~RSrc_RS~S~, p = 1, ..., r. (4.18) 

In  particular is 10~RSrl ~ [8~Srl for p = l ,  ... r. 
In order to prove the second inequality we first observe that  

0 -10S~ -- S~, 0a-~S~___ St. (4.19) 

If  we replace Sr by  ~-iST in the theorem, we find that  

~Ra-iS~_ R~-iS~ c RS~. (4.20) 

If  we apply 8 -1 in both members of (4.20), we find by  (4.19) that  

R~-ISr c_ 8-1RSr. (4.21) 

I terated application of (4.21) then yields the second inequality in Corrollary 1. 
We shall apply Theorem 1 to prove an extremal property for cubical complexes. 

A similar result has been proved for simplicial complexes (see Theorem 1 in [10] 
and Corollary 3 in [2]). 

Let / (nl ,  n~ .. . .  , nm) be a fucntion which is symmetric in its arguments, i. e. invariant 
by any permutation of its arguments. If  nl, n~ ..... nm are the dimensions of faces in 
a cubical complex G, we shall write briefly/(C) = / ( n  1, n~, ..., nm)./(C) is non-decreasing 
if it is non-decreasing in each of its arguments. The complex of the ]G I first cubical 
faces is denoted by  _VC. 

Theorem 2. Let ](C) be a symmetric and non-decreasing/unction defined/or cubical 
complexes o /a  fixed number el/aces. Then we have 

/(o) < 1(~'o). 

Proo/. Let  O~ be the subset of all faces of dimension r in C. Let  

RO = U R O t ,  (4.22) 
r - O  

where ROt denotes the I Cr I first cubes of dimension r . / t O  is a cubical complex for 
we have by  Theorem 1 

r~O r~O r~O r-O 
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Let  (a, a') be the  last  e lement  in RC and let  (b, b') be the  first  cube which is no t  
in RC. If  RC # FC we find t h a t  (b, b') < (a, a ')  and  

dim (a, a ' )  ~=dim (b, b'). (4.23) 

We w a n t  to prove  t h a t  dim (a, a ' )  < d i m  (b, b') b y  a contradiction.  
Assume t h a t  dim(a, a ' )  > d l m  (b, b'), i. e. 

(a; - ao) > ~ (b,~ - b,,). (4.24) 
• - 1  v - 1  

I f  a '  > b '  we can find k such t h a t  ak' >b~ and  a~=b; ' for  v = l ,  ..., k - 1 .  
t ~ p We define a funct ion g(v) such t h a t  g(v)=0 if (a,, a v ) ~  (b~, b~) and  g(v)= 1 in the  

o ther  case. 
If  g(v)=O for  v = l  . . . . .  n then  (b, b') would be a face of (a, a ' )  and  (b, b')eRC, 

since (a, a ' )ERC and  RC is a complex.  B u t  (b, b')qRC, so there  exists  v such t h a t  
g(v) = 1. B y  (4.24) it  follows t h a t  

~. [(a; - a,) - (b; - b,)] > ~. [(b; - b,) - (a~' - a,)] (4.25) 
v :  ¢ ( v ) - O  v :  ¢ ( v ) = l  

Because of (4.25) we can f ind (c, c') = (cl .. .  c,, c~. . .  c~) such t h a t  

I (bo, b'~) < (%, c,) <~ (a~, a') if g(v) = O, 
t • • • t 

% = a ~ > b k ,  c,/>b~ for  v < k  

(c,,, c ' )  = (a,,, a ' )  i f  g(v)  = 1, 

E [(c; -- %) - (b; - b,)] = E [(b; - b,) - (a; - a,)]. 
v :  D ' (v ) -O v :  ¢ ( v ) = l  

! ! # ~ ! 
I t  follows t h a t  dim (b, b') = d i m  (c, c') and (c, c ) >(b,  b ). Since (%, %) -~(a~, av) for 
v = 1  . . . . .  n and  (a, a') ERO, i t  follows t h a t  (c, c') ERC and then  (b, b') ERC b y  (4.22). 
Since (b, b') $ RO we have  the  desired contradic t ion and  the  assumpt ion  d im (a, a ' )  > 
dim (b, b') is wrong. Since we cannot  have  dim (a, a') =dim (b, b') b y  (4.23), we find 
t h a t  

dim (a, a') < dim (b, b'). (4.26) 

I f  a' = b' t hen  the  proof  of (4.26) parallels  the  proof  of Corollary 3 on p. 233 in 
[2] and  can be omi t t ed  here.  

If  (a, a') is deleted f rom RO and (b, b') is adjoined,  we get  a cubical complex K 
w i t h / ( R C )  <./(K). If  K ~ F C  we can repea t  the  procedure  unt i l  we obta in  FC. I t  
follows t h a t  

/(C) =/(RC) </(FC), 

which was to  be proved.  
As an  appl icat ion of Theorem 2, we shall opt imize  certain ( +  1)-determinants  de- 

fined with  the  aid of cubical complexes.  

Ezamp~ 
A cubical complex 0 wi th  the  e m p t y  set  ~ adjoined is a semilat t ice with intersect ion 
of faces as p roduc t  operat ion.  I t  is easy  to see b y  our  representa t ion  of faces as pairs  
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(a, a ')  t ha t  C is a subsemflattice of the interval lattice of the (semi-)lattice of all 
subsets of some finite set. The ]gSbius function of the last mentioned lattice takes 
only the values 1 and - 1  (see Corollary to Proposition 5 in [11]). From Theorem 6 
in [3] it  follows then tha t  the MSbius function of our semilattice of cubical faces (and ~) 
assumes the values 1 and - 1  and no other values. With the aid of the Corollary in 
[9], we obtain a determinant  of the order m = ] C ] + 1, with all entries 1 or - 1 and 
the value 

rn-1 
FI (3 TM + 1) (4.27) 

v=X 

where rl, r e . . . .  , rm_l are the dimensions of all faces in C (3 TM is the number  of subfaces 
of the v t h  face). The function (4.27) is symmetric and increasing function of its 
arguments.  Theorem 2 shows how to find the cubical complex with m -  1 faces, which 
maximizes (4.27). 

5. A formula for the optimal number of faces 

In  [7] J .  B. Kruskal  conjectured a formula for the optimal number  of faces (see 
Introduction). We shall here derive such a formula with the aid of our Theorem 1. 
I t  will be apparent  tha t  our result agrees with Kruskal ' s  conjecture in some instan- 
ces, but  disagrees with it in other instances. I t  will be possible to formulate our re- 
suits in terms of functions, which have been introduced by  J.  B. Kruskal. 

For any  positive integer m we define the r -canonica l  represen ta t ion  (see [6]) 

m =  + r - 1  + ' " ÷  r - i + l  ' 
(5.1) 

where we first choose ml as large as possible when ( : z )  ~< m, and then we choose 

m 2 as large as possible such tha t  + r - 1  

obtain equality. Then we have (a eonsequense of Pascal 's  triangle) 

m 1 > m  s > ... > m ;  > ~ r - - i + l  >~ 1. (5.2) 

I t  is easy to prove tha t  the representation (5.1) is unique, when (5.2) holds (see 
Lemma 1 in [5]). 

For a n y  sequence of positive integers ml, m e . . . .  , m~, we put  

m f  

Kruskal  defines the/ract ional  p s e u d o p o w e r  (see [6] p. 253) m (s/r) as follows: I f  

m = [ml,  ms,  . . . ,  m~] r 

(5.3) 

is the r-canonical representation of m, then we let 

m (s/r) = [ml, ms .. . .  , mi]8 (5.4) 
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For  m = 0 we pu t  

0 ('1~) = 0 .  ( 5 . 5 )  

A binary word of length n is a sequence of n O's and  r s .  Wri te  

a 1 ... a~ _c b 1 ... b~, 

if a~<~bt for i = 1  . . . .  , n. A b/nary comp/ex C is a set of binary words of length n, with 
the  p roper ty  t h a t  if b is in C and  ac_b, then a is in C. The main  result  in [6] is the  
following theorem: 

K r u s k a l ' s  t h e o r e m  

I f  a binary complex C has exactly m words of weight r, and i / s  > r (s < r), then the 
maximum (minimum) number of integers o/weight s that it can have is m (sir). 

We m a y  think of a binary word as the  b ina ry  nota t ion  of a non-negat ive  integer, 
so we shall use the  words ,integer~ and *binary wor&~ as synonyms.  

The weight of an  integer is the  number  of l ' s  in its b inary  word. We shall omit  the 
easy proof of the  following lemma: 

L e m m a  2. Let m 1 > r a n >  ... >ink be non negative integers. Then the number o / in-  
tegers of weight r, which are less than 2 m' + ... + 2 ink, is [m 1 . . . . .  mk]r. 

I f  S is some set  of b inary  words of weight  r then  we define the  set r(S) of related 
words as the set of all words ?" such t h a t  either i_ci for some iE~,  or iES  for  each 
i c j  (i. e. i_c], i # i ) ,  if i ' s  weight  is r. 

We shall need the  following lemma from which, b y  the way,  Kruska l ' s  theorem 
follows, if we apply  Theorem 1 in [2]. 

Lemma 3. Let S be the m first non-ne41ative integers of weight r. Then the number o/ 
integers of weight s in r(S) is m (sIr), and r(S) is the set of all non-negative integers, which 
are less than 2 m' + ... + 2 m~, if m = fro1, ..., m~]r is the r-canonical reFresentation of m. 

Proof. The result  follows f rom L e m m a  2, if we show tha t  r(S) is the set of all 
non-negat ive integers, which are less than  M = 2  m' + ... + 2  m~. 

We first observe t h a t  iEr(S)  implies i < M ,  if the  weight of i is less t h a n  r, for b y  
the  definition of r(S) there is hES such tha t  it_h, and i<h< M b y  L e m m a  2. 

Then  we assume t h a t  iEr(S) and  t h a t  the  weight  of i is s and  s>r.  I f  i < M  were 
no t  true, then  for some integers n 1 > n 2 >. . .  n s > 0, we get  

i = 2 m A- . . .  "{- 2 ~s > / 2  m' -{- . . .  A- 2 mk = M .  

P u t  i - - 2 " ' + . . . + 2  "r. Since j c i ,  lEt(S) and  the  weight of j is r, i t  follows t h a t  
i e S .  Hence ~ '<M by  L e m m a  2. F r o m  i>~M and  ] < M  it  follows t h a t  n l = m l ,  n~ = 
m2 . . . . .  nr=mr and k > r .  Bu t  we have k~<r b y  the  r-canonical representat ion of m 
and  by  (5.2). We have arrived at  a contradict ion and i < M  must  be true. 

We have proved t h a t  iEr(S) implies i < M  and  shall now prove the  reversed 
implication. 
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Let  i < M be non-negative of weights s < r. Then we have for some index v < r the 
inequalities 

2 ml + . . .  + 2 m~ ~< i < 2 m~ + . . .  + 2 my+i, or i < 2 ~1. 

In  the first case we have mv+l>~r-v>~l by  (5.2) and it  follows tha t  we can find h 
of weight r such tha t  i c  h and 

2 ml+  . . .  + 2 m y < h < 2  m l + . . .  + 2  m~+i. 

Hence h E S and i E r(S) follows by  the definition of r(S). The second case, when i < 2 m', 
is proved similarly. 

If i < M  is non-negative of weight s>r then h < M  if hc i .  We conclude that  
i E r(S) by  the definition of r(S), and the proof of the 1emma is completed. 

Our next  auxiliary function is 

g(r,i,m)= ~ o ( r m v ) ( i v l ) 2  "-(r-È), (5.6) 

which was introduced by  J .  B. Kruskal  in [7] for the problem we are studying. There 
is another expression for g(r, i, m) (see (5.7) below), which is more useful in this 
paper. 

With the aid of the well-known relations 

and ( : ) ( r i ~ ) = ( r : ~ )  ~m-(r-~)~'\v-(r-~)] 

it is easily proved tha t  

(5.7) 

I t  is also easy to prove tha t  

g(r, i, m)+g(r, i+ l ,  m) =g(r, i, m + l )  

Given an integer re>O, we determine mi, m s . . . .  , m% such tha t  

m >~ g(r, 1, mi) +. . .  +g(r, k, mk) = m(r/r), 

(5.8) 

(5.9) 

where we first choose m i as large as possible such tha t  m>~g(r, 1, mi), then m S as 
large as possible such tha t  m>~g(r, 1, mi) +g(r, 2, ms) and so on in analogy with the 
definition of the r-canonical representation of m. Because of the relation (5.8) we 
get (cf. the analogous (5.2)): 

m~ >m~ >... >m~ ~ r - k + l .  (5.10) 
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Observe tha t  we have equality in (5.1) and tha t  this is not  always the case in (5.9). 
For  the sequence defined in (5.9) we shall write 

g(s, 1, rex) + ... +g(s, k, ran) = m(,/r), (5.11) 

for any  non-negative integer s (g(s, k, rot) is non-zero if and only if s - i + l  <~m~). 
The lower semipower m(~tr) is defined in analogy with Kruskal ' s  definition of the 

(upper) semipower m (81r). 
We can now state  our main result on the optimal number  of faces in cubical com- 

plexes: 

Theorem 3. I f  a cubical complex C has m/aces o/dimension r, and i / s  > r (s <r) ,  
then the maximum (minimum) number o//aces el dimension s that it can have is 

mc,/r) + (m - mcr/~)) ('lr~. 

I f  S is a set of cubical faces of dimension r then we define r(S), the set of re- 
lated faces wuv such tha t  wu~ is either a subfaces of some w 5 ES, or w~j EEfor  each 
subface wij of w~ if the dimension of w~ is r. Hence 

r(,S) = U o~(S). 

The following two lemmas are analogous to Lemma  2 and Lemma 3. 

Lemma 4. Let m a >m2> . . .  > m~ be non.negative integers. Then the number o/r-cubes 
w~j, with ? '<2m'+  ... + 2  ~ ,  is 

g(r, 1, ml) + ... +g(r, k, m~). 

Lemma 5. Assume that m--m(,ir ) and let S be the m ]irst r-cubes w~j in our total 
ordering o/cubes, r(S) is then the set o /al l  cubes w~j /or which j < 2 m ' + . . . + 2  m~. The 
number o] s-cubes in r(S) is m(s/~). 

The proofs of these two lemmas are analogous to the proofs of Lemma 2 and 
Lemma 3 and will be omitted. After this preparation we can prove our main result. 

Proof el Theorem 3. By Corollary 1 to Theorem 1 we can assume tha t  ST contains 
the m = ISrl first r-cubes. I f  m~m(rlr) then the conclusion in Theorem 3 holds by  
Lemma  4 and by  (5.5). 

We can now assume tha t  m>m~rlr)-~g(r, 1, m l ) + . . . + g ( r ,  k, mk). Put  M = 2  ml 
+.. .  + 2 m~. r(S) contains all faces w~j for which 2" < M and in addition some faces WiM. 

The number  of r-faces W~M in S is m-re(fir) by Lernma 4. Observe tha t  W~MEr(S) 
if and only ff WuM is a subface of some r-face wtuES  or W~MES for each subface WiM 
of dimension r of W~M. This means tha t  W~M E r(S) if and only ff M - u _ c  M -  i for some 
W,MES o r  M~MES for each M - i c M - u  if the weight of M - i  is r. The m-mtTIr) 
first r-faces w ~  correspond to the m -m(rlT~ first integers M - i  of weight r. The theo- 
rem now follows by  Lemma  3. 

When m--rncTt~ ) our result in Theorem 4 agrees with the conjecture by  J .  B. Kruskal  
in [7]. But  for m 4m(~tr ) we have got an "error- term" not foreseen by  Kruskal. We 
conclude by  a simple example. Suppose we have four 2-faces in the 3-cube. The 
minimum number  of edges (1-faces) contained in these 2-faces is 11 by  our Theorem 4. 
From the last s ta tement  in [7] it would follow tha t  the minimum is 12. 
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A C K N O W L E D G E M E N T  

I am indebted to Professor H.  Tverberg, Univers i ty  of Bergen, Norway, for his discovery of 
an  inconsistency in an  earlier version of this  paper  (Section 4.). 

Dr. Klans  Leeb has  informed me in a le t ter  of Ju ly  20, 1970 t h a t  he has proved the  ma in  
result  (Theorem 3) in an  old paper.  Dr. Leeb's  paper  is probably  unpublished. ][ quote from Dr. 
Leeb's letter: "Yes terday  I read your abs t rac t  in AMS Notices. I suppose you not  only did 
complexes over powers of 2, bu t  general for k. I d id  the  same thing when reading about  
Harper-codes in an  old paper . "  
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