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T r a n s l a t i o n  i n v a r i a n t  c o n v e x  m e t r i c s  

B y  JAN-0LOF EKLUNDH 

1. Introduction 

In  this paper  we shall consider metric linear topological spaces with a metric tha t  
is translation invariant  and convex. A metric d on a set of points M will be called 
convex if for all points x, y EM and for all ~1 ~>0, ~2 >~0 such tha t  ~1 ÷ ~ =d(x, y) there 
exists a point zEM with d(x, z)=~1 and d(z, y) =~2. 

The concept of a convex metric was first introduced by Menger [3]. According to 
his definition a metric space M is convex if for all points x, y E M there exists a metric 
midpoint (i.e. ~1 = ~ above). 

Only slight modifications are needed to make our proofs valid under the weaker 
assumption of midpoint convexity. I f  the space is complete it follows from the theo- 
rems of Menger tha t  the definitions are equivalent. 

I t  can be proved tha t  an invariant  convex metric defining the topology of a linear 
topological space is a norm if and only if the spheres around the origin are convex. 
On the other hand such a space might have spheres which are not  convex even if i t  is 
locally convex. R£dstrSm [5] has given an example of this in L 1 [0, 1]. However, 
assuming local convexity we shall show tha t  the space is isomorphic to a normed 
space. We also give an explicit expression of an equivalent norm in the convex met- 
ric. Furthermore we shall show tha t  if the space is reflexive and separable it is iso- 
metric to a Banach space. 

2. An~iliary theorems on convex metrics 

I f  A and B are subsets of-a linear space X we write A +B={xEX; x=a+b, aEA, 
b E B). A family of subsets of X will form a commutative semigroup if it is closed 
under this addition. Such a semigroup will be called a one-parameter semigroup if 
there is an application ~-~A(~) from the positive real numbers onto the semigroup 
satisfying 

A (51 + ~)  = A(~I) +A(O2) (1) 

The definition of a one-parameter semigroup usually contains some assumption of 
continuity, but  this will not  be needed here and is omitted. 

Let  X be a metric linear topological space with a metric d tha t  is translation in- 
variant.  Denote the open sphere of radius 8 around the origin by  S(~). I t  then follows 
(see [4]) tha t  the metric is convex if and only if the sets S(~) form a one-parameter 
semigroup, the bar  denoting the closure. We need the "only if" par t  of this s ta tement  
for the open spheres. 
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Lemma 1. I / Z / s  a metr/c linear topological space, whose metric is translation invariant 
and convex, it~ o~n spheres around the origin/orm a one-Tarameter semigroup. 

Proo/. S(~I+~2)DS(~I)+S(r~) follows immediately from the triangle inequality. 
Suppose now that  xES(~I+~). Choose r 1 and r~ such that  rl <~l, r2<~ 2 and r l+r~ = 
Ixl, where Ixl denotes d(x, 0). Because of the convexity of the metric we can find x 1 
and x 2 such that I~l --,1, Ix~l =r~ and xl+xz=x. But then xlES(dl) and x2ES(~s), 
which proves the lemma. 

If we apply the theorems of [4] to a linear space X with the above properties it  
follows that  the convex metric is a norm if and only if the spheres S(~) are convex. 
Here we give a simple direct proof of this statement. 

Suppose tha t  the spheres are convex and let x E X. As the metric is convex there 
exist points y, ~ x  such that x = y + ~  and Ivl = I~1 = i l x l  • Consequently i x=~y+  
½z and ½x E~q(½[xt) since the closure of a convex set is convex. This implies ]½x ~< 
½]x [. On the other hand the triangle inequality gives [½x [ >/½Ix I that  is [ ½x [ = ½ x 
for all xEX. 

Then 2 -=x [  = 2- 'x[  for all n~>0. Moreover Ix = [2- '2"x =2 -~ 2~x that  is 
2 = x = 2=x[. Now if k~>l and if kx =k x then k x[ = [kx <~ [(k.--1)x I + Ix I ~< 
( k - I )  Ixl + l x l  =k  Ix I so ( k - l )  Ixl = l ( k - 1 ) x l .  Hence ]kx] =k  x] for all k~>0 
by ~-duetion. From th~  and the fact that I - x t  = Ixl we i ~ e r  that lrx = r x fo~ 
all rational numbers of the form r =m2 - ' .  The continuity of ~ ]~x] then gives tha t  
I ~ l  = t a l  Ixt for all real a, tha t  is the metric is a norm. The converse is trivial. 
Incidentally it follows from this tha t  if the metric is not a norm there exists a neigh- 
bourhood basis consisting of spheres which are not convex. Because if we put  r =inf  
{~; ~ >/0 and S(~) is not convex} and suppose that  r > 0, we can choose ~ such tha t  
0 < ~ < 2 r  and S(~) is not  convex. Now by (1) S(a)=S(a/2)+S(a/2) and S(a/2) is 
convex. But  the sum of convex sets is convex, which contradicts the choice of g. 

I t  is obvious that  this proof is based only on the existence of a metric midpoint. 
Moreover, a similar reasoning can be applied to prove Lemma 1 using Menger's 
notion of convexity. From this observation and the fact tha t  subsequent arguments 
referring to convexity will be based only on the existence of midpoints, it  follows 
that  the theorems are true whichever definition of convexity is used. 

If x and y are two points in X, a segment joining x and y is a set {z(~)EX; 0 <~ a <~ 
i v - ,  I, ~:(o) = x ,  ~ : ( I , -  x I)  = , }  s a l l y i n g  I ~ ( ~ )  - z(,~,) I = I ~-, - ~ ,  I- 

One of the theorems of Meager states tha t  if the space is complete any two points 
can be joined by  a segment. I t  can be verified that  a set of points obtained by  par- 
titioning and reordering a segment is also a segment. 

In a normed space the straight lines are segments. If  the space is linear and if the 
metric is not  a norm the follwing propositions show that  there are segments of an 
entirely different type. 

Proposition 1. For any point x E X  the distance between a segment joining 0 and x 
and t ~  point ix  ~ not u~s t ~ n  I ix  l - t I xl. 

Proo/. Suppose that  y is a point on a segment joining0andx.  Then y + y - x ]  = 
]x . The triangle inequality gives i x - y  >1 tx  - y and l i x - y l  = l i x ' ( x - y )  l >t 
[ixl - I x - y [ .  Adding these inequalities we obtain 2 1 i x - y  [ >~2llx I - [ y l  - [ x - y l ,  
that is l t x - y  I > / l i l x .  
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Proposition 2. I f  the metric is not a norm there exist a point x and a number 8 > 0  
such that the distance between any segment ]oining 0 and x and the point ½x is not 
less than ~. 

Proof. We have seen tha t  if the metric is not  a norm then there is a point x such 
tha t  [ ~x[ - ½ [ x [ > 0. Wi th  ~ -- [ ½x [ - ½ Ix[ the s ta tement  follows from Proposition 1. 

3. The normabillty theorem 

For  any subset A of a linear space X,  H(A) denotes the convex hull of A. I t  is 
well-known tha t  H(A) is the set of all convex combinations Z ~ l  2~x~ of elements 
x~EA. A consequence of this definition is the following lemma, proved in a different 
way in [6]. 

Lemma 2. For arbitrary sets A and B in a linear space 

H(A + B) = H(A) + H(B) (2) 

Proof. I f  x E H ( A  + B), x is of the form x = ~_~51 )it(at + hi) where a~ EA, b~ E B and 
the combination is convex. Hence x = ~'~-i ).ia~ + ~%i).ib~ E H(A) + H(B). I f  on the 
other hand xEH(A)  + H(B) then for some convex combinations x = ~ - 1  a~a~ + ~ = i  
fl, b,. Using tha t  ~ = i  a, = ~ = l  fl, = 1 we write x = ~ - i  Z ~ i  a,flja, + ~ = l  ~=~ a~fl~b¢ 
= ~ 2 ~  ?~(c~ + d~), where ?~ = a, fl¢, c, = a, EA, d~ = b~EB, that  is xEH(A  + B). 

Theorem 1. Let X be a metric linear topological space with a metric that is convex and 
translation invariant and suppose that X is locally convex. Then X is normable and 
the convex hulls of the metric spheres form a family of normed spheres. 

Proof. Pu t  T(8)=H(S((~)), the convex hull of the open metric sphere around the 
origin of radius 8. I t  is well-known tha t  the convex hull of an open bounded set is 
open and bounded. This implies tha t  the sets T(8) axe neighbourhoods of the origin 
and tha t  the gauge function p of T(1) is a norm. Pu t  p ( x ) =  fix H . From Lemma 1 and 
Lemma  2 we conclude tha t  T(~ i + 8~) = Y(~i) + T(~).  As the sets T(~) are convex this 
implies tha t  T(~)=ST( l ) ,  so {x; [[x[[ <8} =T(~). 

I t  remains to prove tha t  the metric and the normed topologies coincide. Suppose 
>0.  Evidently S(~)c  T(~). Thus the normed topology is coarser. On the other hand, 

as X is locally convex, to every ~ > 0  there is a convex neighbourhood U of the origin, 
such tha t  UcS(~) .  But  then we can find ~ i>0  such tha t  S(Si)c  U, which implies 
T(Si)c  U, as U is convex. Consequently T(~l)cS(8  ) and the normed topology is 
finer, which proves the theorem. 

4. The norm expressed in the metric 

We shall now consider the mappings x ~  ]x I.--2-~12~xl where x E X and n is 
integer. The convexity of [. I used on the point 2nx shows tha t  [. [~ is also a convex 
metric on X. This metric makes X a linear topological space with the same topology 
as tha t  given by  [" . To see this we put  S~(~) = {x; ]x ]~ < ~}. The triangle inequality 
implies tha t  [x n÷i ~< [xln, so S,(~)cSn+l(8). The fact tha t  each n-sphere contains 
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an (n+l) -sphere  is a corollary to the following theorem which shows, tha t  in the 
limit, the sequence S.(~) increases to the convex sphere T(~). 

Theorem 2. / /I1" II ~ the norm d ~ d  abo~e t ~  

Prod/. The decreasing sequence [x[~ has a limit q(x)>-0. We show that  q is a 
seminorm. I t  is evidently subadditive. Furthermore q(m2-~x) = lim,_.+~ 2 -"  2=-~mx 
= lira ~-,+¢o 2-~-k [2~mx[ =2-~ q(mx) <m2-~q(x). Hence we have q(;tx) ~< 2 q(x) for 
all real 2 and all xEX. But this implies q(;tx)= 12[q(x), so that  q is homogeneous. 
Write P(~) = {x; q(x) < ~}. Then S(1)~ P(1) because q(x) ~ I xl and since P(1) is convex 
T(1)=H(S(1))~P(1). If on the other hand xfiP(1), there is an N such that  n > h  r 
implies 2-n12=~1 < L N o w  since l" [ is convex we eanfind x,ES(1), i = 1  ..... 2 -~, such 
that  Z ~  x~=2"x. From this it  follows that  x = l / 2 "  Z ~n ~=~ x~ belongs to H(S(1))= 
T(1), tha t  is P (1)=T(1)  and q(x)= II~ll. 

Corollary. The metrics l" I. define the same topology. 

Proo/. Reasoning as in the proof of Theorem 1, for all n and for all ~ > 0 we can 
find ~1 > 0 such that  S~+I(~1) ~ T(~)  c S.(~), since S.+~(~0 ~ T(~)  by  Theorem 2. 

5. Reflexive spaces 

The relation between the spheres S=(d) and Sn+l(~ ) can be writ ten 

Sn+x(~) = ½(Sn(~) + ~qn(~)) (3) 

Actually since [. [n is a convex metric, Lemma 1 implies tha t  ½(S=(O)+Sn(~)) = 
½~q.(2~). Moreover xE½~q.(2~) if and only if 2xESn(2~) or 2-"12~+~x] <25 that  is 
x E~q=+l(~ ). The equality (3) states tha t  Sn+l (~) is obtained from Sn(~) by adding all 
the midpoints of points in S=(~). 

Analogously, because the statement of Lemma 1 is true also when the spheres are 
closed and since it follows from the above argument that  
½ S.(2~) = Sn+l(~) we have 

& + l  (8) = ~(s=(8) + s.(o)) (4) 

Assume now that  x is an extremal point of T(1) and that  xE~n(1) for some n. We 
shall show that  this implies that  I ~  I = [~ [I x I for all real ~ or in other words that  
the norm and the metric coincide on the subspace spanned by x. First, if x Ekq~(1) but  
x~S=_l(1), according to (4) there exist points y, zESn_l(1)c T(1) such tha t  x =  
½(y + z). Then, since x is extremal in T(1), we conclude x = y = z ,  contradicting that  
x(~S,_l(1 ). Consequently xES,(1) for all n, tha t  is 12"x[ =2~lx] for all n. Secondly, 
since [ 2~2"x [ = 2"+" [ x I = 2~ [ 2=x for all n, p, we can argue as in section 2 to show tha t  
]m2-~xl =Im2-~l  I~1 for an m, which by continuity implies I~x = ~ • • 

The next  theorem will show tha t  if the space is reflexive and separable then the 
normed and the metric spheres will have enough extremal points in common to span 

274 



ARK.IV FOR M~4.TEMATIK. Bd 8 m- 26 

the whole space. In  order to prove this theorem we shall consider the strongly exposed 
points of the normed unit  sphere. 

Le t  0 be a convex set in a Banach space X. A strongly exposed point of C is a 
point xEC such tha t  there is an [EX*,  the topological dual of X, for which (i) f(y) < 
[(x) for all y6C,  y . x ;  and (ii)f(x.)--÷/(x) and {x~}~=lcC imply [[x~-xl]-~0. I f  the 
condition (i) is satisfied but  not necessarily (ii) the point x is said to be an exposed 
point  of C. 

The concept of an exposed point was introduced by  Straszewiez [6] who showed 
tha t  if C is a compact convex subset of a finite dimensional euclidean space then C 
is the closed convex hull of its exposed points. This and similar notions have at t racted 
some at tent ion lately and several theorems of content analogous to tha t  of Stras- 
zewicz have been showed. We shall use the following theorem of Lindenstrauss [2]: 
Every  weakly compact convex subset of a separable Banach space is the closed con- 
vex hull of its strongly exposed points. 

We now give our theorem which is of a converse character to the example in L 1 
given by  R£dstrSm [5] of a convex metric tha t  is not a norm. 

Theorem 3. Let X be a ~etric linear topological space with a metric that is convex 
and translation invariant and vuppose that X is locally convex. Then, if X is reflexive 
and separable, the metric is a norm, that is X is isometric to a Banach space. 

Proof. For  simplicity we write T =  T(1) and S=S0(1 ). Being normable, complete 
and reflexive, X considered as a normed space will be a reflexive space and hence 
complete. I t  then follows by  the Alaoglu theorem [1 p. 425] tha t  T is weakly compact. 

Suppose now tha t  x is a strongly exposed point of T and tha t  x ~ S. Since S is 
closed there is an e > 0  such tha t  U={y;  [ly-z]] <~} does not intersect S. I f  we 
choose rEX* according to the definition of x being strongly exposed, there is an n 
such tha t  y E T and f(y) >f(x) - (I/n) imply y E U. Then S c  V = (y;/(y) <~[(x) - (l/n)}, 
but  since V is closed and convex it follows tha t  T c V, contradicting the fact tha t  
x ~ V. Hence all the strongly exposed points of T belong to S. 

We finally prove tha t  this implies T = S. Assume tha t  x E T. As T is weakly com- 
pact  and convex the theorem of Lindenstranss states tha t  T is the closed convex 
hull of its strongly exposed points. Since the metric and the normed topologies coin- 
cide, it follows that  for all e > 0  there is a convex combination ~ffi12,x~ of strongly 
exposed points of T such that  x - ~ _ 1 2 ~ x ,  < e. Using tha t  [2~x, = )it ]x,I and 
Ix, l=1 we have Ixl= < 
+Z~=~ 2 , ] ]x , ]=l+e  that  is x ~<1. Hence T c S .  But  Z c T  by definition so S = T  
and the metric is a norm. 
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