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1. Introduction 

1. Let E be a closed set in the complex plane and f a meromorphic function 
outside E omitting a set 3". We shall consider the following problem: I f  E is 
thin, under what conditions is F thin, too? In Chapter 2 we consider the case 
when E and F are of Hausdorff dimension less than one. In Chapter 3 E and F 
are countable sets with one limit point, and in Chapter 4 E is a countable set 
whose points converge to infinity, f is entire, and F is allowed to contain at  
most one finite value. 

2. Sets of dimension less than one 

2. Let f be meromorphic and non-constant outside a closed set E in the 
complex plane. I t  is known that  if the logarithmic capacity of E is zero then f 
cannot omit a set of positive capacity, and if E has linear measure zero then f 
cannot omit a set of positive (1 ~- e)-dimensional measure. I f  the dimension of 
E is greater than one then there exists a non-constant function f which is regular 
and bounded outside E. Carleson [13 has proved tha t  there exists a set E of 
positive capacity such tha t  if f omits 4 values outside E then f is rational. We 
consider the following problem: Let E be of dimension less than one. Can f omit 
a set whose dimension is greater than the dimension of E? 

We denote by Dim (A) the Hausdorff  dimension of a set A, and let dim (A) 
be the dimension of A obtained by using coverings consisting of discs with equal 
radii. For example for usual Cantor sets these dimensions are equal. We have the 
following answer to our question: 

THEORE~ 1. Let E be a closed set with dim (E) < 1. I f  f is merornorphic 
and non-constant outside E and omits F then Dim (F) _< dim (E). 

The proof will be given in 3 and 4. 

1 This research was done at the Inst i tut  Mittag-Leffler. The author takes pleasure in thanking 
Professor Lennart  Carleson for helpful suggestions. 
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3. I t  does no t  mean  a n y  essential res t r ic t ion to  assume t h a t  m E F ,  
E C {z : Iz[ < 1}, and  t h a t  f is non-ra t ional .  In  order  to  p rove  Theorem 1 it  is 
suff icient  to  p rove  t h a t  for  a n y  ~, d i m ( E ) < ~ <  1, and  an y  R ,  0 < R <  m, 
we have  D i m ( B )  < a  where B = 2 ' 1 3 { w :  ]w I < R } .  Le t  these ~ and /~ be 
chosen. We define 

U(a , r) = {z : ]z - -  a I < r} . 

Then  we can choose a sequence r= wi th  lira r= = 0 and  coverings 
n - -~  c o  

N, 
(J U(a~, r )  ~ E 

v ~ l  

li:m N . r ~  = 0 .  (1) 
r t  - ->  o o  

such t h a t  

F o r  a n y  a E B we define 

f~ is regular  in 

{z : 3 < Izl < 4}. 
(a E B) for a ny  f ixed 

for a n y  a E B .  
We assume t h a t  

siderations. Le t  D 

f~(z) - -  2~ri (f($) - -  a)($ --  z) " 

]z] < 4 and therefore  f~(z) ~ 1/(f(z) - -  a). We set G = 
Because fa(z) and  1 / ( f ( z ) -  a ) a r e  cont inuous  funct ions  of  a 

r~ < 1/2 for a n y  n. Le t  n be f ixed  in the  following con- 
be the  componen t  of  the  complement  of 

N= 
I.J U(a~, 2 r )  

which contains the  poin t  a t  infini ty.  The  b o u n d a r y  of  D consists of  simple closed 
curves. These can be divided into cont inuous curves y~, v = 1 , 2 . . . .  , N, ,  such 
t h a t  the  length of  any  y~ is a t  most  4zr~. Then  we get for  z C G ,  a E B ,  

fa(Z) 1 1 N~ f dr ] Nn 1 

7v 

where % ( a ) =  rain I f ( z ) -  a L. I t  follows f rom (2) t h a t  there  exists a cons tan t  
z E y  v 

fi > 0 no t  depending on the  choice of  n such t h a t  

Nn 

v = I  

for  a ny  a E B '  

z E G and  B is compact ,  the re  exists fll > 0 such t h a t  

f~(z) 1 sup > ~1 (2) 
= ~ G  f ( z )  - a 
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We need  the  following 
LI~MMA. There  exists  an  absolute constant  K > 4 such that i f  o , (a)  <_ ~ (q > O) 

.for some a E B then o~(b) > K e  fo r  a n y  b E B - -  U(a , 2K~) .  
Proof .  The  length  of  y~ is a t  mos t  4zr~ and  U($ , r= )  f3 E = 0 for a n y  

E 7~. The  l emma follows f rom Scho t tky ' s  theorem.  

4. Le t  2, ~ < 2 < 1, be chosen. We choose a posi t ive  in teger  k such t h a t  

> a(1 + Xk) . (b) 

L e t  q o = N , .  F o r  m---- 1 , 2  . . . .  , k  we set 

~,~ ~ 2"r~q,,_lf1-1 , (c) 

qm = (P,~/r,) ~ , (d) 

and  let  p~ be the  in teger  def ined b y  qm --< P ,  < q ,  ~- 1. Le t  Qk+l be def ined 
b y  (c) and  qk+l --= Pk+l ---- 1. I t  follows f rom these defini t ions t h a t  for 1 < m < k -r 1 

~m = MmrnN~n m-1 (e) 

where M~ is a posi t ive cons tan t  depending only  on /5. I t  does no t  mean  a n y  
essential  res t r ic t ion  to  assume t h a t  -]~n ~ GO as ~--~ OO because otherwise  E 
consists of  a f ini te  n u m b e r  of  points.  Therefore  i t  follows f rom (e) t h a t  we can  
assume t h a t  em+~ < e~ for any  m. 

Le t  m, l < m < k A - 1 ,  be f ixed.  I f  possible, we choose bm,~EB such t h a t  
the  inequa l i ty  %(bz, 1) ~< ~ is satisfied at  least for  p~ different  values of  v. W e  
set  C~, ~ = U(b~, 1 , 2 K e z )  where K is the  cons tan t  of  the  lamina. In  the  s am e  
manner ,  s tar t ing  wi th  the  set 

s--1 

B - - U C m , p  
p=l 

(s > 1) we define the  disc Cm, s. Le t  this m e t h o d  yieId the  discs C~ .... 
s - - -  l ,  2 . . . . .  Sin. Then  i t  follows f rom the  l emma t h a t  S,~ < Nn/qm. 

Le t  us suppose t h a t  there  exists 

k + l  S m 

b E B - -  U U C m , p  �9 
rn=l  p = l  

The n  o,(b) > ~k+l for each v and  ~m+l < %(b) < ~m (1 < m < k) is sat isf ied at~ 
m o s t  for  p ~ -  1 different  values of  v. Therefore  i t  follows f rom (e) t h a t  

N= N~ P l -  1 P k - -  1 k+l fi 
Z <_ - -  + - -  + . . .  + - -  <_ y < S/ro.  

v = l  e l  ~2 ~k-I- 1 m = l  

This  is a cont rad ic t ion  to (a) and so 

k+l Sm 

BeD U C,~,p. 
m = l  p = l  
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I t  follows f rom (d) and  (e) t ha t  the  radii  of  C m ,  P sat isfy the  inequal i ty  

k+s k+s N,Q~ A ~s+;~k~ ~. 
5 Sm(2Ke ,,,)~ ~< "AS ~ - -  < " ' 2 ' ' n  " n  

m=S m=S qm - -  

where As and  .4 2 are posi t ive cons tants  no t  depending on the  choice of  n. F r o m  
(t)  and  (b) i t  follows t h a t  

1 + 2k~, 
N .  , .  < (N.r~) s+~'k --~ 0 

as n - - > ~ .  Therefore  D i m ( B )  < 2 .  This is t rue  for an y  2 > a  and  so 
:Dim (B) < a. This completes the  p roo f  of  Theorem 1. 

3. Countable sets 

5. Le t  A and  B be two countab le  sets whose points  converge to  inf ini ty.  
I f  B is given then  i t  is a lways possible to  cons t ruc t  A such t h a t  the re  exists a 
meromorph ic  funct ion omi t t ing  B outside A. In  fact ,  we t ake  an ent i re  funct ion  
f and  set A = f - l ( B ) .  In  this  manner ,  i t  is easy to  cons t ruc t  A such t h a t  there  
exists a countable  f ami ly  of  ent i re  funct ions  omi t t ing  B outside A. Then  the  
following quest ion arises: Is the  fami ly  of  t r anscenden ta l  ent ire  funct ions  omi t t ing  

outside A always at  most  countable?  Theorem 2 gives a negat ive  answer. 
THEOREM 2. Given any  countable set B = {bn} wi th  lira b n = ~ then we can 

construct a countable set A ~ (a,} with  l im a~ ~ ~ such that there exists a non-  

countable f a m i l y  o f  transcendental  entire f unc t ions  omi t t ing  B outside A .  

Proof.  Le t  a 0 # 0 and  a 0 g B. We shall choose induc t ive ly  a sequence {f.} 
of polynomials  such t h a t  the  p roduc t  

a o " ~  (fn(Z)) ~ (1) 
n~S  

(e~(1 --  e~) = O) converges un i fo rmly  in hounded  domains  for an y  choice of the  
sequence {e,}. 

Le t  f l ( z ) = z  and r s =  1 +  [bs[. Le t  f~ and  G be def ined for v--~ 
I , 2 , . . . ,  n - -  1 (n > 1). We denote  b y  G, the  fami ly  of the  polynomials  

n--S 

g(z) = a o ~-[ (f~(z))~ 
v=S 

where e ~ ( 1 -  e~ )=  0 for any  v. We choose r .  > 2rn_s such t h a t  g ( z ) r  on 
~lz[ ---- r .  for  a n y  g q G.. Then  the re  exists 8. > 0 such t h a t  Ig(z) - -  bl > 5. on 
~ z l = r .  for  all b C B  and  g E G . .  We set 

M .  = m a x  {max ]g(z) l } 
gEGn Izl = r  n 
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and A . =  [J {z:g(z) E B  and [z I < r , } .  
g E G  n 

Because lim b~ = co and G, consists of finitely many polynomials, A,  contains 
a finite number of points. We define 

= ] - [  (z  - a ) "  
a E A  n 

where t~ is the largest multiplicity of the root a of the equations g(z) ~ b for all 
g e G. and b E B. We set f . (z)  = 1 - -  e,,h.(z) where e, ~ 0. Let b e B and 
g e G . .  On ]z] -----r, we have 

g(z) f~(z) - g(z)] M.e. lh . (z)]  

g(z) - -  b l ~-- ~ .  

Now we see tha t  we can choose the sequence {Q~} such tha t  

g(z) ~ _ b [ 
] '~ (f,(z)) ~, - -  g(z) 

< 1 (2) 

on ]z] = r ,  for all b E B  and g C G , ,  and any sequence (e,} (n>__2). 
Let F be the family of entire functions defined by (1). We define 

A -= U (z : f(z)  E B } .  
f E F  

Let f e F  and b E B. We choose n _> 2. We write 

f(z) = g(z) T-T (f~(z)) "" (3) 

where g E G,. I t  follows from (2) and Rouch6's theorem tha t  the functions f and 
g have the same number of b-points in IzL < r,. I t  follows from the construction 
of the sequence (f~} tha t  the b-points of g lying in [z[ < r ,  are b-points of f ,  
and not of smaller multiplicity. Therefore in lz[ < r,, f can take a value of B 
only at  the points of A,  and we see tha t  

A c U A ~ .  
n ~ 2  

I f  we choose f such tha t  f E G.+~ we get 

(A.+I -- A.) fl {z : ]z I < r,} = 0 

and we see tha t  co is the only limit point of A. Clearly F contains a non-countable 
set of transcendental entire functions. Theorem 2 is proved. 
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4. Picard sets  for entire funct ions  

6. Following Lehto ,  we call a set E in the  complex plane a Picard  set for ent i re  
functions i f  every non-rat ional  entire funct ion omits at  most  one finite value outside 
E. Leh to  [3] has proved tha t  a countable set E = {a.} whose points converge to  
inf in i ty  is a Picard set for entire functions if  the points a ,  sat isfy the condit ion 

[a,,/an+l[ = O(n-2) . 

Matsnmoto  [5] has proved the same assertion under  the  condit ion 

exp (K/log la.+x/anl) 
lim,~.o~sup log lan+l[ < O0 

(K a positive constant)  when ([an]}~=l,2 .... is s t r ic t ly increasing. Winkler  [6] has 
proved this assertion in the case t h a t  E is a finite union of sets whose points sat isfy 
the condit ion la=+x/a=l _> q > 1 and  

{z  : e -laz~ < Lz - aI < lal -~ }  fl  E = 0 

(e > 0, p > 0) for all sufficiently large la[, a E E. We shall give an  essentially 
best possible dens i ty  condit ion under  which a countable set is a Picard set for  
ent ire  functions.  

7. We shall need the  following results in our considerations. We define 

If'(z) l 
e(f(z)) -- 1 + If(z)[ m ' 

and  by  h(r) we denote an  a rb i t ra ry  positive funct ion of the positive variable r, 
wi th  the  p roper ty  h ( r ) =  O(r) as r--~ ~ .  Lehto  [4] has proved the  following 

THEOREM A. Let f be meromorphic in a neighbourhood of the singularity z = oo. 
I f  for a sequence {z,}, l imzn = oo and 

n - - ~  o o  

lim h(Iz . l  ) e(f(zn)) = oo 
I I . ->  oo  

then Picard's theorem holds for f in the union of any infinite subsequence of the discs 

C. = { z :  Iz - z.I < ~h( lz . I )}  

for each e > O. 
Clunie and  H a y m a n  [2] have proved the  following 
THEOI~I~M B. ] f  f is an entire non-rational function then 

[zle(f(z))  
limz~| logIz] --  oo .  
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8. Now we prove  the  following 
TREOREM 3. A countable set E ~ (an) whose points converge to inf ini ty  is a 

Picard set for entire functions i f  there exists e > 0 such that 

[  !~ I 
z : 0  < ] z - - a ~ ]  < log l a n [ / l ' l E =  O (1) 

for all sufficiently large n. 
Proof. Cont ra ry  to  our  assertion, let  us suppose t h a t  there  exists an ent ire  non- 

ra t ional  funct ion  f omi t t ing  two f ini te  values outside E.  Then  we can assume 
t h a t  f omits  the  values 0 and  1 in the  complement  of  E.  

F r o m  Theorem A and  Theorem B it follows t h a t  we can choose a sequence {zn} 
such t h a t  l im z, ---- ~ and  Picard ' s  t heo rem holds for  f in the  union  of  an y  infini te  
snbsequence of  the  discs Cn ~- U(zn, r,) where 

~[z.I 

r ,  - -  8 log [znl " 

Then  C~ contains  at  least  one zero or 1-point of f for suff icient ly large n, say 
for n > nl. I t  follows f rom (1) t h a t  U(zn, 4r,) contains a t  most  one poin t  of E 
if  n is large enough,  say  if  n > n  2 > n  1. Le t  n > n  2. Le t  us suppose t h a t  Cn 
contains a 1-point of  f .  Because f has no zeros in U(z , ,  2rn), it  follows f rom the  
m a x i m u m  principle t h a t  there  exists a poin t  ~ on ] z -  zn[ ~ 2rn such 
t h a t  If(~)l ~ 1. Because f has ne i ther  zeros nor  1-points in the  ring domain  
r ,  < Iz - -z~]  < 4rn, i t  follows f rom Scho t tky ' s  t heo rem t h a t  If(z)[ < M on 
]z - -  z~l ---- 2r ,  where M is an absolute constant .  Then  If(z)[ < M in C,. I f  C~ 
contains a zero of  f we consider the  funct ion 1 - - f ( z ) ,  and  we see t h a t  
If(z)] < M Jr 1 in C~ for n > n2. This is a cont rad ic t ion  because f omits  a t  
most  one f ini te  va lue  in the  union  of  these discs. Theorem 3 is proved.  

9. We now prove  t h a t  the  condi t ion (1) is best  possible. 
THEOREM 4. Corresponding to each real-valued funct ion h(r) satisfying the 

condition h(r) ---> oo as r ---> ~ ,  there exists a countable set E -~ {an} whose points 
converge to infinity,  which is not a Picard set for entire functions, and which satisfies 
the condition 

z : 0 <  I z - - a , l  < 

for all sufficiently large n. 

laol ] 
n E : D 

h(ia~]) log Ia,] ] 
(2) 

Proof. In  order  to  p rove  our  assertion,  we shall show t h a t  the  set of  the  zeros 
and  1-points of the  ent i re  funct ion  

f(z) = ~ (1 - -  z/e'-)'- 
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(t n being positive integers, tn+ 1 ~ 4tn) satisfies the condition (2) if tn tends to 
infinity with a sufficient rapidity. 

Let n ~ 3 .  We define D n = { z :  Iz-etnl ~ e x p ( t n - - l t n _ l ) }  and 

n-- I  
g ( z )  = (1  - Z/etn)'n ] - - [  (1  - -  

I t  is easy to see that  if t~ tends  to infinity sufficiently rapidly then 

If(z) --  g(z) I <_ �88 Ig(z) l (3) 

in D n. On the boundary of D~ we have Lf(z)l >__ �89 > 2. Therefore f has only 
a finite number of 1-points outside the union of the discs D~, ~ _> 3. 

Let  $~, ~---- 1 , 2  . . . .  , t , ,  be the 1-points of g. We set 

Then C, c D ~ .  On the boundary rays of C, we have R e g ( z ) : 0 .  Then it is 
easy to see that  ]g(z) l < 211 -- g(z) l at the boundary points of D~ and Q,  ~ ---- 
1 , 2  . . . . .  t,. Now it follows from (3) and Rouch6's theorem that  f has exactly 
t, 1-points in Dn, each C~ containing one 1-point of f. Then the distance between 

n--1 

two different 1-points of f in D,  is at  least r----t~ -~ exp ( t , -  ~ t~). Because 
n--1 v = l  

the term ~ t~ does not depend on t~, we can assume that  tn is chosen so large 
that  ~=1 

Izl 
r ~  

h(lzl) log ]zl 

for any z E D.. Therefore if E = {an} is the set of the zeros and 1-points of f 
then E satisfies the condition (2) for all sufficiently large n. Theorem 4 is proved. 
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