Some remarks on the value distribution of meromorphic functions

Sakari Toppila
Institut Mittag-Leffler, Djursholm, Sweden and University of Helsinki, Finland ${ }^{1}$

1. Introduction

1. Let E be a closed set in the complex plane and f a meromorphic function outside E omitting a set F. We shall consider the following problem: If E is thin, under what conditions is F thin, too? In Chapter 2 we consider the case when E and F are of Hausdorff dimension less than one. In Chapter $3 E$ and F are countable sets with one limit point, and in Chapter $4 E$ is a countable set whose points converge to infinity, f is entire, and F is allowed to contain at most one finite value.

2. Sets of dimension less than one

2. Let f be meromorphic and non-constant outside a closed set E in the complex plane. It is known that if the logarithmic capacity of E is zero then f cannot omit a set of positive capacity, and if E has linear measure zero then f cannot omit a set of positive ($1+\varepsilon$)-dimensional measure. If the dimension of E is greater than one then there exists a non-constant function f which is regular and bounded outside E. Carleson [1] has proved that there exists a set E of positive capacity such that if f omits 4 values outside E then f is rational. We consider the following problem: Let E be of dimension less than one. Can f omit a set whose dimension is greater than the dimension of E ?

We denote by $\operatorname{Dim}(A)$ the Hausdorff dimension of a set A, and let $\operatorname{dim}(A)$ be the dimension of A obtained by using coverings consisting of discs with equal radii. For example for usual Cantor sets these dimensions are equal. We have the following answer to our question:

Theorem 1. Let E be a closed set with $\operatorname{dim}(E)<1$. If f is meromorphic and non-constant outside E and omits F then $\operatorname{Dim}(F) \leq \operatorname{dim}(E)$.

The proof will be given in 3 and 4.

[^0]3. It does not mean any essential restriction to assume that $\infty \in F$, $E \subset\{z:|z|<1\}$, and that f is non-rational. In order to prove Theorem 1 it is sufficient to prove that for any $\alpha, \operatorname{dim}(E)<\alpha<1$, and any $R, 0<R<\infty$, we have $\operatorname{Dim}(B) \leq \alpha$ where $B=F \cap\{w:|w| \leq R\}$. Let these α and R be chosen. We define
$$
U(a, r)=\{z:|z-a|<r\}
$$

Then we can choose a sequence r_{n} with $\lim _{n \rightarrow \infty} r_{n}=0$ and coverings

$$
\bigcup_{\nu=1}^{N_{n}} U\left(a_{v}, r_{n}\right) \supset E
$$

such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} N_{n} r_{n}^{\alpha}=0 \tag{1}
\end{equation*}
$$

For any $a \in B$ we define

$$
f_{a}(z)=\frac{1}{2 \pi i} \int_{|\zeta|=4} \frac{d \zeta}{(f(\zeta)-a)(\zeta-z)} .
$$

f_{a} is regular in $|z|<4$ and therefore $f_{a}(z) \neq 1 /(f(z)-a)$. We set $G=$ $\{z: 3<|z|<4\}$. Because $f_{a}(z)$ and $1 /(f(z)-a)$ are continuous functions of a $(a \in B)$ for any fixed $z \in G$ and B is compact, there exists $\beta_{1}>0$ such that

$$
\begin{equation*}
\sup _{z \in G}\left|f_{a}(z)-\frac{1}{f(z)-a}\right|>\beta_{1} \tag{2}
\end{equation*}
$$

for any $a \in B$.
We assume that $r_{n}<1 / 2$ for any n. Let n be fixed in the following considerations. Let D be the component of the complement of

$$
\bigcup_{\nu=1}^{N_{n}} U\left(a_{\nu}, 2 r_{n}\right)
$$

which contains the point at infinity. The boundary of D consists of simple closed curves. These can be divided into continuous curves $\gamma_{\nu}, \nu=1,2, \ldots, N_{n}$, such that the length of any γ_{v} is at most $4 \pi r_{n}$. Then we get for $z \in G, a \in B$,

$$
\left|f_{a}(z)-\frac{1}{f(z)-a}\right|=\left|\frac{1}{2 \pi i} \sum_{\nu=1}^{N_{n}} \int_{\gamma \nu} \frac{d \zeta}{(f(\zeta)-a)(\zeta-z)}\right| \leq 2 r_{n} \sum_{\nu=1}^{N_{n}} \frac{1}{\omega_{\nu}(a)}
$$

where $\omega_{\nu}(a)=\min _{z \in \gamma_{\gamma}}|f(z)-a|$. It follows from (2) that there exists a constant $\beta>0$ not depending on the choice of n such that

$$
\begin{equation*}
\sum_{\nu=1}^{N_{n}} 1 / \omega_{\nu}(a)>\beta / r_{n} \tag{a}
\end{equation*}
$$

for any $a \in B$.

We need the following
Lemma. There exists an absolute constant $K>4$ such that if $\omega_{\nu}(a) \leq \varrho(\varrho>0)$ for some $a \in B$ then $\omega_{\nu}(b)>K \varrho$ for any $b \in B-U(a, 2 K \varrho)$.

Proof. The length of γ_{v} is at most $4 \pi r_{n}$ and $U\left(\zeta, r_{n}\right) \cap E=\emptyset$ for any $\zeta \in \gamma_{v}$. The lemma follows from Schottky's theorem.
4. Let $\lambda, \alpha<\lambda<1$, be chosen. We choose a positive integer k such that

$$
\begin{equation*}
\lambda>\alpha\left(1+\lambda^{k}\right) \tag{b}
\end{equation*}
$$

Let $q_{0}=N_{n}$. For $m=1,2, \ldots, k$ we set

$$
\begin{gather*}
\varrho_{m}=2^{m} r_{n} q_{m-1} \beta^{-1} \tag{c}\\
q_{m}=\left(\varrho_{m} / r_{n}\right)^{\lambda} \tag{d}
\end{gather*}
$$

and let p_{m} be the integer defined by $q_{m} \leq p_{m}<q_{m}+1$. Let ϱ_{k+1} be defined by (c) and $q_{k+1}=p_{k+1}=1$. It follows from these definitions that for $\mathrm{l} \leq m \leq k+1$

$$
\begin{equation*}
\varrho_{m}=M_{m} r_{n} N_{n}^{\lambda^{m-1}} \tag{e}
\end{equation*}
$$

where M_{m} is a positive constant depending only on β. It does not mean any essential restriction to assume that $N_{n} \rightarrow \infty$ as $n \rightarrow \infty$ because otherwise E consists of a finite number of points. Therefore it follows from (e) that we can assume that $\varrho_{m+1}<\varrho_{m}$ for any m.

Let $m, 1 \leq m \leq k+1$, be fixed. If possible, we choose $b_{m, 1} \in B$ such that the inequality $\omega_{\nu}\left(b_{m, 1}\right) \leq \varrho_{m}$ is satisfied at least for p_{m} different values of ν. We set $C_{m, 1}=U\left(b_{m, 1}, 2 K \varrho_{m}\right)$ where K is the constant of the lemma. In the same manner, starting with the set

$$
B-\bigcup_{p=1}^{s-1} C_{m, p}
$$

$(s>1)$ we define the disc $C_{m, s}$. Let this method yield the discs $C_{m, s}$, $s=1,2, \ldots, S_{m}$. Then it follows from the lemma that $S_{m} \leq N_{n} / q_{m}$.

Let us suppose that there exists

$$
b \in B-\bigcup_{m=1}^{k+1} \bigcup_{p=1}^{S_{m}} C_{m, p}
$$

Then $\omega_{\nu}(b)>\varrho_{k+1}$ for each ν and $\varrho_{m+1}<\omega_{\nu}(b) \leq \varrho_{m}(1 \leq m \leq k)$ is satisfied at most for $p_{m}-1$ different values of ν. Therefore it follows from (c) that

$$
\sum_{v=1}^{N_{n}} 1 / \omega\left(b_{v}\right) \leq \frac{N_{n}}{\varrho_{1}}+\frac{p_{1}-1}{\varrho_{2}}+\ldots+\frac{p_{k}-1}{\varrho_{k+1}} \leq \sum_{m=1}^{k+1} \frac{\beta}{2^{m} r_{n}}<\beta / r_{n}
$$

This is a contradiction to (a) and so

$$
B \subset \bigcup_{m=1}^{k+1} \bigcup_{p=1}^{S_{m}} C_{m, p}
$$

It follows from (d) and (e) that the radii of $C_{m, p}$ satisfy the inequality

$$
\sum_{m=1}^{k+1} S_{m}\left(2 K \varrho_{m}\right)^{\lambda} \leq A_{1} \sum_{m=1}^{k+1} \frac{N_{n} \varrho_{m}^{\lambda}}{q_{m}} \leq A_{2} N_{n}^{1+\lambda^{k}} r_{n}^{\lambda}
$$

where A_{1} and A_{2} are positive constants not depending on the choice of n. From (l) and (b) it follows that

$$
N_{n}^{1+\lambda^{k}} r_{n}^{\lambda}<\left(N_{n} r_{n}^{\alpha}\right)^{1+\lambda^{k}} \rightarrow 0
$$

as $n \rightarrow \infty$. Therefore $\operatorname{Dim}(B) \leq \lambda$. This is true for any $\lambda>\alpha$ and so $\operatorname{Dim}(B) \leq \alpha$. This completes the proof of Theorem 1 .

3. Countable sets

5. Let A and B be two countable sets whose points converge to infinity. If B is given then it is always possible to construct A such that there exists a meromorphic function omitting B outside A. In fact, we take an entire function f and set $A=f^{-1}(B)$. In this manner, it is easy to construct A such that there exists a countable family of entire functions omitting B outside A. Then the following question arises: Is the family of transcendental entire functions omitting B outside A always at most countable? Theorem 2 gives a negative answer.

Theorem 2. Given any countable set $B=\left\{b_{n}\right\}$ with $\lim b_{n}=\infty$ then we can construct a countable set $A=\left\{a_{n}\right\}$ with $\lim a_{n}=\infty$ such that there exists a noncountable family of transcendental entire functions omitting B outside A.

Proof. Let $a_{0} \neq 0$ and $a_{0} \notin B$. We shall choose inductively a sequence $\left\{f_{n}\right\}$ of polynomials such that the product

$$
\begin{equation*}
a_{0} \prod_{n=1}^{\infty}\left(f_{n}(z)\right)^{\varepsilon_{n}} \tag{1}
\end{equation*}
$$

$\left(\varepsilon_{n}\left(1-\varepsilon_{n}\right)=0\right)$ converges uniformly in bounded domains for any choice of the sequence $\left\{\varepsilon_{n}\right\}$.

Let $f_{1}(z)=z$ and $r_{1}=1+\left|b_{1}\right|$. Let f_{v} and r_{v} be defined for $v=$ $1,2, \ldots, n-1 \quad(n>1)$. We denote by G_{n} the family of the polynomials

$$
g(z)=a_{0} \prod_{v=1}^{n-1}\left(f_{v}(z)\right)^{\varepsilon_{v}}
$$

where $\varepsilon_{v}\left(1-\varepsilon_{\nu}\right)=0$ for any v. We choose $r_{n}>2 r_{n-1}$ such that $g(z) \notin B$ on $|z|=r_{n}$ for any $g \in G_{n}$. Then there exists $\delta_{n}>0$ such that $|g(z)-b| \geq \delta_{n}$ on $|z|=r_{n}$ for all $b \in B$ and $g \in G_{n}$. We set

$$
M_{n}=\max _{g \in G_{n}}\left\{\max _{|z|=r_{n}}|g(z)|\right\}
$$

and

$$
A_{n}=\bigcup_{g \in G_{n}}\left\{z: g(z) \in B \text { and }|z| \leq r_{n}\right\}
$$

Because $\lim b_{v}=\infty$ and G_{n} consists of finitely many polynomials, A_{n} contains a finite number of points. We define

$$
h_{n}(z)=\prod_{a \in A_{n}}(z-a)^{t_{a}}
$$

where t_{a} is the largest multiplicity of the root a of the equations $g(z)=b$ for all $g \in G_{n}$ and $b \in B$. We set $f_{n}(z)=1-\varrho_{n} h_{n}(z)$ where $\varrho_{n}>0$. Let $b \in B$ and $g \in G_{n}$. On $\quad|z|=r_{n}$ we have

$$
\left|\frac{g(z) f_{n}(z)-g(z)}{g(z)-b}\right| \leq \frac{M_{n} \varrho_{n}\left|h_{n}(z)\right|}{\delta_{n}}
$$

Now we see that we can choose the sequence $\left\{\varrho_{\nu}\right\}$ such that

$$
\begin{equation*}
\left|\frac{g(z) \prod_{v=n}^{\infty}\left(f_{v}(z)\right)^{\varepsilon_{v}}-g(z)}{g(z)-b}\right|<1 \tag{2}
\end{equation*}
$$

on $|z|=r_{n}$ for all $b \in B$ and $g \in G_{n}$, and any sequence $\left\{\varepsilon_{v}\right\} \quad(n \geq 2)$.
Let F be the family of entire functions defined by (1). We define

$$
A=\bigcup_{f \in F}\{z: f(z) \in B\}
$$

Let $f \in F$ and $b \in B$. We choose $n \geq 2$. We write

$$
\begin{equation*}
f(z)=g(z) \prod_{v=n}^{\infty}\left(f_{v}(z)\right)^{\varepsilon_{v}} \tag{3}
\end{equation*}
$$

where $g \in G_{n}$. It follows from (2) and Rouche's theorem that the functions f and g have the same number of b-points in $|z|<r_{n}$. It follows from the construction of the sequence $\left\{f_{\nu}\right\}$ that the b-points of g lying in $|z|<r_{n}$ are b-points of f, and not of smaller multiplicity. Therefore in $|z|<r_{n}, f$ can take a value of B only at the points of A_{n} and we see that

$$
A \subset \bigcup_{n=2}^{\infty} A_{n} .
$$

If we choose f such that $f \in G_{n+1}$ we get

$$
\left(A_{n+1}-A_{n}\right) \cap\left\{z:|z|<r_{n}\right\}=\emptyset
$$

and we see that ∞ is the only limit point of A. Clearly F contains a non-countable set of transcendental entire functions. Theorem 2 is proved.

4. Picard sets for entire functions

6. Following Lehto, we call a set E in the complex plane a Picard set for entire functions if every non-rational entire function omits at most one finite value outside E. Lehto [3] has proved that a countable set $E=\left\{a_{n}\right\}$ whose points converge to infinity is a Picard set for entire functions if the points a_{n} satisfy the condition

$$
\left|a_{n} / a_{n+1}\right|=O\left(n^{-2}\right)
$$

Matsumoto [5] has proved the same assertion under the condition

$$
\limsup _{n \rightarrow \infty} \frac{\exp \left(K / \log \left|a_{n+1} / a_{n}\right|\right)}{\log \left|a_{n+1}\right|}<\infty
$$

(K a positive constant) when $\left\{\left|a_{n}\right|\right\}_{n=1,2, \ldots}$ is strictly increasing. Winkler [6] has proved this assertion in the case that E is a finite union of sets whose points satisfy the condition $\left|a_{n+1} / a_{n}\right| \geq q>1$ and

$$
\left\{z: e^{-|a|^{\varepsilon}}<|z-a|<|a|^{-p}\right\} \cap E=\varnothing
$$

$(\varepsilon>0, p>0)$ for all sufficiently large $|a|, a \in E$. We shall give an essentially best possible density condition under which a countable set is a Picard set for entire functions.
7. We shall need the following results in our considerations. We define

$$
\varrho(f(z))=\frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}
$$

and by $h(r)$ we denote an arbitrary positive function of the positive variable r, with the property $h(r)=O(r)$ as $r \rightarrow \infty$. Lehto [4] has proved the following

Theorem A. Let f be meromorphic in a neighbourhood of the singularity $z=\infty$. If for a sequence $\left\{z_{n}\right\}, \lim _{n \rightarrow \infty} z_{n}=\infty$ and

$$
\lim _{n \rightarrow \infty} h\left(\left|z_{n}\right|\right) \varrho\left(f\left(z_{n}\right)\right)=\infty
$$

then Picard's theorem holds for f in the union of any infinite subsequence of the discs

$$
C_{n}=\left\{z:\left|z-z_{n}\right|<\varepsilon h\left(\left|z_{n}\right|\right)\right\}
$$

for each $\varepsilon>0$.
Clunie and Hayman [2] have proved the following
Theorem B. If f is an entire non-rational function then

$$
\limsup _{z \rightarrow \infty} \frac{|z| \varrho(f(z))}{\log |z|}=\infty
$$

8. Now we prove the following

Theorem 3. A countable set $E=\left\{a_{n}\right\}$ whose points converge to infinity is a Picard set for entire functions if there exists $\varepsilon>0$ such that

$$
\begin{equation*}
\left\{z: 0<\left|z-a_{n}\right|<\frac{\varepsilon\left|a_{n}\right|}{\log \left|a_{n}\right|}\right\} \cap E=\varnothing \tag{1}
\end{equation*}
$$

for all sufficiently large n.
Proof. Contrary to our assertion, let us suppose that there exists an entire nonrational function f omitting two finite values outside E. Then we can assume that f omits the values 0 and 1 in the complement of E.

From Theorem A and Theorem B it follows that we can choose a sequence $\left\{z_{n}\right\}$ such that $\lim z_{n}=\infty$ and Picard's theorem holds for f in the union of any infinite subsequence of the discs $C_{n}=U\left(z_{n}, r_{n}\right)$ where

$$
r_{n}=\frac{\varepsilon\left|z_{n}\right|}{8 \log \left|z_{n}\right|}
$$

Then C_{n} contains at least one zero or 1-point of f for sufficiently large n, say for $n>n_{1}$. It follows from (1) that $U\left(z_{n}, 4 r_{n}\right)$ contains at most one point of E if n is large enough, say if $n>n_{2}>n_{1}$. Let $n>n_{2}$. Let us suppose that C_{n} contains a l-point of f. Because f has no zeros in $U\left(z_{n}, 2 r_{n}\right)$, it follows from the maximum principle that there exists a point ζ on $\left|z-z_{n}\right|=2 r_{n}$ such that $|f(\zeta)| \leq 1$. Because f has neither zeros nor 1 -points in the ring domain $r_{n}<\left|z-z_{n}\right|<4 r_{n}$, it follows from Schottky's theorem that $|f(z)|<M$ on $\left|z-z_{n}\right|=2 r_{n}$ where M is an absolute constant. Then $|f(z)|<M$ in C_{n}. If C_{n} contains a zero of f we consider the function $1-f(z)$, and we see that $|f(z)|<M+1$ in C_{n} for $n>n_{2}$. This is a contradiction because f omits at most one finite value in the union of these discs. Theorem 3 is proved.
9. We now prove that the condition (1) is best possible.

Theorem 4. Corresponding to each real-valued function $h(r)$ satisfying the condition $h(r) \rightarrow \infty$ as $r \rightarrow \infty$, there exists a countable set $E=\left\{a_{n}\right\}$ whose points converge to infinity, which is not a Picard set for entire functions, and which satisfies the condition

$$
\begin{equation*}
\left\{z: 0<\left|z-a_{n}\right|<\frac{\left|a_{n}\right|}{h\left(\left|a_{n}\right|\right) \log \left|a_{n}\right|}\right\} \cap E=\emptyset \tag{2}
\end{equation*}
$$

for all sufficiently large n.
Proof. In order to prove our assertion, we shall show that the set of the zeros and 1 -points of the entire function

$$
f(z)=\prod_{n=1}^{\infty}\left(1-z / e^{t_{n}}\right)^{t_{n}}
$$

(t_{n} being positive integers, $t_{n+1}>4 t_{n}$) satisfies the condition (2) if t_{n} tends to infinity with a sufficient rapidity.

Let $n \geq 3$. We define $D_{n}=\left\{z:\left|z-e^{t_{n}}\right| \leq \exp \left(t_{n}-\frac{1}{2} t_{n-1}\right)\right\}$ and

$$
g(z)=\left(1-z / e^{t_{n}}\right)^{t_{n}} \prod_{v=1}^{n-1}\left(1-e^{t_{n}} / e^{t_{v}}\right)^{t_{v}}
$$

It is easy to see that if t_{v} tends to infinity sufficiently rapidly then

$$
\begin{equation*}
|f(z)-g(z)| \leq \frac{1}{4}|g(z)| \tag{3}
\end{equation*}
$$

in D_{n}. On the boundary of D_{n} we have $|f(z)| \geq \frac{1}{2}|g(z)|>2$. Therefore f has only a finite number of l-points outside the union of the discs $D_{v}, v \geq 3$.

Let $\zeta_{\nu}, v=1,2, \ldots, t_{n}$, be the 1 -points of g. We set

$$
C_{v}=\left\{z:\left|\arg \frac{z-e^{t_{n}}}{\zeta_{v}-e^{i_{n}}}\right|<\frac{\pi}{2 t_{n}}, \quad 1 / 2<|g(z)|<2\right\} .
$$

Then $C_{\nu} \subset D_{n}$. On the boundary rays of C_{ν} we have $\operatorname{Re} g(z)=0$. Then it is easy to see that $|g(z)| \leq 2|1-g(z)|$ at the boundary points of D_{n} and $C_{v}, v=$ $1,2, \ldots, t_{n}$. Now it follows from (3) and Rouche's theorem that f has exactly t_{n} 1-points in D_{n}, each C_{v} containing one 1-point of f. Then the distance between two different l-points of f in D_{n} is at least $r=t_{n}^{-1} \exp \left(t_{n}-\sum_{\nu=1}^{n-1} t_{p}\right)$. Because the term $\sum_{v=1}^{n-1} t_{\nu}$ does not depend on t_{n}, we can assume that t_{n} is chosen so large
that

$$
r>\frac{|z|}{h(|z|) \log |z|}
$$

for any $z \in D_{n}$. Therefore if $E=\left\{a_{n}\right\}$ is the set of the zeros and 1-points of f then E satisfies the condition (2) for all sufficiently large n. Theorem 4 is proved.

References

1. Carleson, L., A remark on Picard's theorem. Bull. Amer. Math. Soc., 67 (1961), 142 - 144.
2. Clunie, J.\& Hayman, W. K., The spherical derivative of integral and meromorphic functions. Comment. Math. Helv., 40 (1966), 117-148.
3. Lehto, O., A generalization of Picard's theorem. Ark. Mat., 3 (1958), 495-500.
4. -»- The spherical derivative of functions meromorphic in the neighbourhood of an isolated singularity. Comment. Math. Helv., 33 (1959), 196-205.
5. Matsumoto, K., Remark on Lehto's paper »A generalization of Picard's theorem». Proc. Japan Acad., 38 (1962), 636-640.
6. Winkler, J., Über Picardmengen ganzer Funktionen. Manuscripta Math., 1 (1969), 191-199.

Sakari Toppila,
Maalinauhantie 10 B 36, Rajakylä,
Finland

[^0]: 1 This research was done at the Institut Mittag-Leffler. The author takes pleasure in thanking Professor Lennart Carleson for helpful suggestions.

