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1. Introduction 

L e t  C be a measurable set in R n+l and  set 

~c(~) = ;u(x) e~<x'~> dx, ~ e / ~  n+l , u e C ~ ( R n + I ) .  
J 

C 

The  order of magni tude  of uc(~) when ~--> ~ is f requent ly  of importance in 
harmonic  analysis, for example in application to analyt ic  number  theory.  However,  
,even if  one assumes t h a t  C is the closure of an  open set wi th  boundary  aC C C ~ 
r known results are far  from complete. I t  is known then  t h a t  

~c(~)  = 0(1~1-("+2)/~),  ~ - +  0o;  u e C ~  ; (1.1) 

i f  and  only if  the  Gaussian curvature  of 0C never vanishes (I-[erz [1], I-Ilawka [2], 
L i t t m a n  [3]). Randol  [4], [5] has also s tudied the case where C is convex and  aC 
is analyt ic .  I~is result  is t h a t  the ))maximal function)) 

g(~) -= sup r("+:)121gc(r~)l , ~ E S (1.2) 
r > o  

is then  in LP(S ") for some p > 2 if  OC is analytic.  In  fact,  Randol  proved t h a t  
this  is t rue for precisely those p > 2 such t h a t  

ofc K(x)(2-P)12 dS(x) < oo (1.3) 

where K(x) is the Gaussian curvature  at  x E OC. The necessity of (1.3) follows 
easily from the  fact  t h a t  

r ("+2)1214c(r~) [ ---> c(Iu(x+)IK(x+) -11~ q-- ]u(x_)IK(x_) -1/2) 
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when r--> oo prov ided  t ha t  the  Gaussian curva tu re  of  0C is # 0 a t  the  poin ts  
x~ where the  normal  is • ~ and  t h a t  u vanishes a t  one of  these points.  

In  this paper  we shall prove  t h a t  (1.3) implies t h a t  ~ E LP(S ") for  all u e C~' 
provided  t ha t  C is convex,  0C C C ~ and  0C has no t angen t  of  inf ini te  order .  
This of  course includes the resul t  of  Randol  [5]. In  fact ,  our  methods  allow us to  
t r e a t  also the  case when 0C has only  a f ini te  n u m b er  of  derivat ives.  Moreover ,  
when n ~ 1, we shall give a ve ry  precise es t imate  f o r  ]]~]]LP(s ,) val id  for  v e r y  
general  convex compact  sets C. In  t h a t  case the  p roof  is a consequence of  t h e  
H a r d y -  Li t t l ewood maximal  theorem.  

The  subject  of  this paper  was suggested b y  Lars  HSrmander .  I t h a n k  him for  
valuable  advice and  ve ry  great  help dur ing m y  work. 

2. Var iants  of v a n  der Corput's l e m m a  

Le t  f be a convex increasing funct ion  on the  in terval  [0, 1] and  le t  
u E C~~ - oo,  1). In  this section we shall give some est imates  for  the  integral  

1 

1(4) ~ / e i~f(r) u(r)rkdr (2. 1) 
J 
0 

where k > - -  1. T h e y  are closely re la ted  to  the  v an  der Corput  l emma (see [6], 
p. 197), and  similar est imates  also occur in Randol  [5]. 

Le t  us split the  integral  in one f rom 0 to t and  one f rom t to  1. The first  p a r t  
can be es t imated  b y  sup lu]tk+l/(]c ~- 1). In  the  second we in tegra te  b y  par ts ,  
assuming t h a t  f'(t) ~- 0 

1 1 

/ e~X$(r) u(r)rkdr _~_ [(iX)-l ei~$(r)u(r)rk/f'(r)]l t _ /(i~)-lei~$(r)d(u(r)rk/f'(r))" 
t t 

We assume now t h a t  k _~ 0 so t h a t  rk/f'(r) is decreasing. Then  the  integral  can  
be es t imated  b y  M~-it~/f'(t) where 

M : sup [u[ ~- va r  u ,  
[0,11 [0,11 

va r  u denot ing the  to ta l  var ia t ion  of  u. Heuce  

]1(4)] ~ M(tk+l/(/c ~- 1) -~ 3t~/2f'(t)). 
Now we assume t h a t  

f'(r) ~_ar,  0 < r  < 1 (2.2) 

where a ~ 0. Then  we have  
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1I(~)1 ~_ M(t~+l/(k + 1) + 3 tk - I /a2) .  

With  t = 1 / % / - ~  we obta in  the bound  4(k + 1)-lM(a2) -(k+l)/2 provided t h a t  
a)t ~ 1. The same bound  is also valid in the opposite case since ]I(2)1 ~ max  ]u]. 
In  the proof we only used t h a t  u E C1([0,1]) so we have proved 

LEM~A 2.1. I f  (2.2) is valid and - -  l < k < 0, then 

1I(2)I < 4(k -~- 1)-i(sup lul -~ var  u)(a~) -(k+l)/2 , u E C1([0 ,1]) .  (2.3) 
[0,11 [0,11 

Remark .  A change of variable shows t h a t  

d 

t f  < 4(sup Inl vat (2.3)' e~f(r) u(r)dr § u)(a~) -112 
[0, d] [0, d] 

0 

i f  u E C1([0, d]) and  (2.2) is val id for 0 < r < d. This will be useful in section 5" 
We shall now give a similar est imate for larger values of k. To do so we have 

to integrate  by  parts  several t imes in (2.1) and  shall have to require addit ional  
bounds of the  form 

lr~q+l)(r)l < Cd'(r) , 0 < r < 1 ,  i =- 1 , 2 , . . . , j .  (2.4) 

This condition will be examined in section 3. We shall ac tual ly  use a condit ion 
equivalent  to (2.4) namely  tha t  if  g(r) = 1/f '(r), then  

Ir~g(O(r)[ <_ C[g(r) ,  0 < r < l ,  i ~-- 1 , 2 . . . . .  j .  (2.5) 

The equivalence follows induct ively if one differentiates the equat ion g(r)f'(r) = 1 
using Leibniz'  rule. 

We shall now split the integral (2.1) as before in an integral f rom 0 to t ~ 1 /%/-~  
and  one from t to 1. For  the  first  par t  we clearly have the bound  (2.3.) In  the  
second par t  we shall integrate  by  parts  j t imes if  k ~- 1 -- 2j < 0. In  doing so 
we note t ha t  

e~f(~) = (i2)-lg(r)d(e~f(r))/dr. 

This gives, if  D is the differential operator d/dr g(r) = g(r)d/dr ~- g'(r): 

1 1 

With  

/ eilf(r) u(r)rkdr ~ (i/,~) j / eitf(r) DJ(u(r)rk)dr - -  

t t 

j - 1  

(i/ 2) ~+ ' ei~f(') g(t)D"(u(t)t k) . 
0 

J 
I% = Z max lu(')[ 

0 

i t  follows from (2.5) t h a t  
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](d/dr)'D'(u(r)r~)[ ~ CIu[i rk- ' - 'g(r)  ~ , v d- # ~ _ j .  (2.6) 

I n  fact ,  th is  is obvious  for v ---- 0, and  if  we k n o w  (2.6) for a cer ta in  va lue  of  v ~ j 
i t  follows for  v replaced  b y  v d- 1 since 

(d/dr), -1 n ~+1 = (d/dr)'g(r)n ~ = ~ (~)g('-")(r)(d/dr)"n ~ �9 

Using (2.6) wi th  # ~ 0  and  (2.2) we now ob ta in  since / c - - 2 j ~ - -  1 

1 
j-1 

e~Xf(du(r)r~dr ~-- Cluls ~o ~-~-1 t~ - l -~  a-~- i  : C, luli(aA)-(~+~)/2 
t 

where we have  in t roduced  t : 1/% / a ~ .  Thus  we have  p r o v e d  

LEMMA 2.2. Let f satisfy (2.2). Then we have i f  /c ~_ 0 

lI(;t) l _< Cklulj(a~)-(~+~)/~ (2.7) 

i f  (2.4) is valid for an integer j ~ (Is -4- 1)/2. 

3. Remarks on the condition (2.4) 

I f  we in t roduce  the  non-nega t ive  funct ion  u --~ f" ,  we can if  f ' (0 )  = 0 wri te  
(2.4) in the  fo rm 

r 

r~[u(O(r)[ ~ C~+lr -1 / u ( t ) d t ,  i =  0 , 1 , . . . , j - - 1 .  (3.1) 
L] 

0 

To s t u d y  (3.1) we give a v a r i a n t  of  the  well k n o w n  es t imates  be tween  the  m a x i m a  
of  the  de r iva t ives  of  a funct ion.  

L~MMA 3.1. I f  I is an interval C R with length llI, then 

f 
In(Ol I/[ ' ___ C(I / I  -~ I [u(t)[dt + m a x  ]u(k)lllk]), u E Ck(1) , (3.2) m a x  

i . ]  i 
i 

provided that 0 ~_ i ~ Is 
Proof. We m a y  assume t h a t  I - -~  [ 0 , 1 ] .  F i r s t  assume t h a t  i - - - -0 ,  /c ~ 1. 

I f  0 ~ e ~  1 we have  

L e t  now 

lu(x)I ~ e m a x  lu'l + min  [u(y)I ~ s m a x  lu'l + e -1 f Iu(y)ldy.  
I [ x - y l < ~  I 

I 

i ---- 0 b u t  /c be  a rb i t r a ry .  Then  it  is well known  tha~ 

m a x  ]u' I ~ C(max  lul d- maxlu(k)]) (3.3) 
I I I 
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and  if  we combine the  two inequali t ies taking e small enough we obta in  (3.2). 
Hav ing  found  an  es t imate  for  m a x  ]u] we obta in  the  general  s t a t emen t  (3.2) b y  
using the  est imates  of  the  form (3.3) which are val id for  der ivat ives  of  order  be tween  
0 and  k. 

I t  follows f rom (3.2) t h a t  if  (3.1) is val id  for one va lue  of  i wi th  u(O(r) replaced 
b y  sup {]u(0(t)I; 0 ~ t ~ r} it  is also fulfilled for an y  smaller  value.  Indeed ,  we 
need only app ly  L e m m a  3.1 wi th  I ~ [ 0 , r ] .  So if  u (i-1) is bounded,  t h en  a 
sufficient  condi t ion for (3.1) is of course t h a t  

r 

f u(t)dt cri (3.4) 

0 

for some c ~ 0 .  

I f  (3.4) is val id  and  u is in a bounded  set in C i-~ we also obta in  f rom (3.2) t h a t  

r 
/ i  

lu(O) l ~ Cr -1 / u(t)dt (3.5) 
J 
0 

We have  proved:  
LEMMA 3.2. Let M be a bounded set of convex functions in C i+1 such that f'(O) ~- 0 

when f E M and for some constant c ~ 0 

r 

f f'r(t)dt ~ < r < , f (3.6) c r ]  ~ 0 1 E M .  

0 

bf"lO~ Then we have (2.2) with a = ~ , j, where b is independent of f E M; in addition 
(2.4) is uniformly valid for f E M.  

To a pp ly  the  preceding lemma we need  the  following one: 
LEMMA 3.3. Let u o E Ck(I) where I is a compact interval in t~ and assume 

that all derivatives of order ~ k of u o never vanish simultaneously in I .  Then there 
is a neighbourhood ~2 of u o in Ck(1) and an integer s such that for every u E Y2 
and e ~ 0 there exist at most 1V subintervals of length ~ e containing {x ; x E I ,  
lu(x)l < ~}. 

Proof. There  is no th ing  to  p rove  when ]c = 0, so we assume t h a t  ]c ~ 0 
and  t h a t  the  s t a t emen t  is p roved  for smaller values of  k. The  hypothes is  implies 
t h a t  u 0 has only  f in i te ly  m a n y  zeros. We can therefore  f ind  a f ini te  decomposit ion 

k 

I = tJ I ,  in closed intervals  such t ha t  in each I~ ei ther  u 0 r 0 or else ~ [u (~) ] r 0. 
1 

I n  the  first  case there  is a f ixed  lower bound  for Iu] in 1, for all u in a neigh- 
bourhood  of  u 0, and  in the  second case the  hypotheses  of  L e m m a  3.3 with ]c re- 
placed by  k -  1 are fulfilled in I~ by  u' for  all u in a ne ighbourhood of  u 0. 
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B y  the  induct ion hypothes is  we t h e n h a v e  lu'] > e k-~ in I~ outside N intervals  
of  length _< e, which implies t ha t  ]u] > 8 k in /~ outside these N intervals  
and  2N ~- 2 addi t ional  ones of  length a t  most  e. This completes  the  proof. 

We note  two impor t an t  consequences: I f  M is a compact  subset  of  Ck(I) and  
if  the hypotheses  of  L e m m a  3.3 are fulfilled for all u E M we have  for some posit ive 
constants  c ,  C 

Y 

x 

> clx --  yl k+~ i f  x , y E I , u E M (3.7) 

f ]u(t)t-~dt < C ( 1 - -  @)-x i f  0 < (~ < l /k, u E M .  
I 

(3.8) 

In  fact ,  by  the  Bore l - -Lebesgue  lemma M = U M~ where the  union is f ini te  
and  the  conclusion of  L e m m a  3.3 is val id for each Mi and  so for M. The es t imate  
(3.7) follows if  we choose e in L e m m a  3.3 so t h a t  Ns  ~ Ix --  yl/2, for t h en  the  
integral  is at  least sk[x -- yl/2. The proof  of  (3.8) is obvious. 

4. Est imates  for the m a x i m a l  funct ion 

We can now prove  the  extension of  a resul t  of  l~andol [5] refer red  to in the  
in t roduct ion.  A surface is said to  be f la t  of  order  a t  most  j if  the  distance to  the  
surface f rom a t ahgen t  has a zero of  order  j § 2. 

TItEORE~ 4.1. Let C be a convex set in R n+l with boundary aC flat of order 
at most j where j >_/~ with /~ the smallest integer > (n -~ 1)/2. Then ~z E LP(S n) 
holds for all u E C ' (R  ~+1) i f  (1.3) holds and OC E C il . These assumptions are fulfilled 
i f  OC E C h+2 and 2 < p < 2  ~- 2/h where h = n( j  --  1). 

COROLLARY 4.2. I f  ~C E C ~ and 0C has no tangent of infinite order there is a 
j such that the hypotheses of Theorem 4.1 are valid and so ~e E LP(S ") for 
all u E C"(R=+I). 

Proof. B y  the  divergence theorem we have  

0r 

r = / u(x)e ~'<~'~> dx = 
C 

u(x) <~ ,  v (x )>  e ~'<x'~> dS(x) + i/rk=l ~ / Sk~u(x)/Oxke~'<~'~> dx 

C 

Here  ~ is the  in ter ior  normal  and  I~l = 1. 

I f  we repea t  this procedure  # times, we get  
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4(r~) ~ ~l r-~ f w (x ' dS(x) -4- r -~ f "<x'̀> dx 
oc  c 

where w,( . ,  ~) is in bounded set in C"+~-'(Rn+~), 1 < v < / ~  + 1. We want  to 
est imate r(=+2)/21~(r~)l. Since # > (n + 1)/2 the est imates of  the last t e rm in 
the  sum and tha t  with integral over C are obvious so i t  is sufficient to prove t h a t  
for l < v < # - - i  

n + 2  

sup r v(x , ~)e ~'<~'~> dS(x) ~ L~(S ~) 
r 

oc  

if  v( . ,  ~) belongs to a bounded set in C'+i-~(Rn+l). 
Choose ~peC~(R) such tha t  ~p(t)= 1, Itl < ~i and  y~( t )=0 ,  ]t I > ~. Here (~ 

will be chosen below. Denote by  X($) the  point  on aC with interior normal  ~, and  
decompose v as a sum v ---- ~1 -~ ~2 + ~a where ~i(x ,  ~) ~-- v(x,  ~)yJ(<X(~) --  x ,  ~>) 
and  q~2(x, ~) = v(x,  ~)y~(<X(-- ~) -- x ,  ~>). I f  (~ , ~o) are polar coordinates in the 
t angen t  plane at  X(~), let f (~ ,  oJ, ~) describe the  intersection of 0C and  the plane 
through ~ containing ~o: 

f (~ ,  ~o, ~) = inf  {t;  X(~) -~ ~w -~ t~ E C}. 

I f  5 o is small enough and  I = { ~ ; 0  < ~  <~0}  then  f ( . ,o~ ,~)  ECi+I(I) for all 
E S n and all t angent  directions (o a t  X(~). 

Now we split the integral in three parts.  I f  2~ is smaller t h a n  the wid th  of C, 
the integral involving qJ3 is 0@ -("+1-0) as r--> ~ ,  uni formly in ~, for there is 
a lower bound independent  of ~, for the difference between ~ and a normal  to 
0C in supp ~a, (cf [3]). 

Now it is of course enough to examine 

f cf~(x , ~)e~'<~'~> dS(x) I 
oc  

In  terms of the polar coordinate system in the t angent  plane at  X(~) this integral 
becomes 

co 

s n - - 1  0 

Here ~(. ,~o, $) is in a bounded set in C"+~-~(I) and vanishes near  the  r ight  hand  
e n d  Point. 

Le t  us consider the map 

@, ~) -~f ( . ,  o~, ~) 
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from the uni t  sphere bundle of  the t angent  space of  S" to CJ+I(I). Since the domain  
is compact  and  the  map is continuous the image set in C-~+I(I) is compact.  B y  
hypothesis  all derivatives of  f ~ ( . , o ~ , ~ )  of order _ ~ j -  1 do not  vanish 
s imultaneously so we can apply  the lemmas in section 3. B y  (3.7) follows then  

so by  L e m m a  3.2 

r 

~(~ , ~ , ~)de >_ cri 

0 

f : ( e  , o~ , ~) > bf~"~(o , ~o , ~)  . e 

and  (2.4) is uni formly  valid for f(.  , m ,  ~). We can now apply L e m m a  2.2 and  get 

oo 

f e i'f(o'~~ dQ ~+2 +~ ~ " - ' ~ ( ~ ,  co, ~) _< C.+~_2.t~OI.+I_. (rbf:' e ( O , w ,  ~ 1 ) - ~ -  
0 

r  = ~ ( e , ~ ,  ~)e ~('-1) �9 

Next  we prove tha t  for 1 < v < # - -  1 

~(0, co, ~)--/~+~-~ d o  < CK(X(~) )  -~j2 

S n - - 1  

where K(x), x E OC, denotes the  Gaussian curvature  at  x. Of course it is enough 
to take  v ---- i and then  we shall prove equal i ty  with C equal to the volume of S ~-~. 

Now 

fs o~, ~)-./2 ____ ( A ~ ,  ~)-./2 = F(o)  

where A is the curvature  mat r ix  of f a t  0 = 0. The integral f F(w)do) is 
equal to the  integral of the differential form s"-~ 

(-- 1)~-' F(co)co~dCOl A . . .  A d/~i A . . .  Adco, 
i = l  

over the  uni t  sphere or any  cycle in _Rn~{O} homotopic to S n-l, for the exterior 
derivative 

[ ~ (o)iaF(w)/Ow~ -~ nF(w)]d~o 1 A . .  �9 A dw,~ 
i ~ l  

is zero by  Eulcr 's  theorem on homogeneous functions. 
i /t Thus we m a y  integrate  over an ellipsoid wi th  axes o) f~e(0 ,~o~, ~)-1/2 

i ~ 1 , 2 . . . .  , n, where wl ,  . . . , ojn are the  directions of principal curvature  a t  
X(~). The integral thus  reduces to C(K(X(~)))-~! 2 where C is the v o l u m e o f  S n-1. 
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Summing  up, we have proved  t h a t  

~(~) ~ C'(K(X(})) -1/2 -~- K(X(--  ~))-1]2 _}_ 1) 

The  proof  of  the  first pa r t  of  the theorem is now complete since 

/ K(X(~)) -pI: dop(~) = / K(x) (2-P)I~ dS(x) . 

To prove the  second s t a tement  we wan t  to es t imate  f K(x)-~dS(x) over a neigh- 
bourhood  of  a point  x 0 on aC. 

As before we describe aC near  x 0 ---- X(~o) b y  a set of  funct ions f C M C Ci+1(I), 
where M is compact .  We have f(0 , o9 , ~0) = f ' ( 0  , to , ~o) = 0 and  

f ( e ,  o9,~0) >~C"~ j+l for some C " > 0 .  (4.1) 

To prove  (4.1) we note  t h a t  L e m m a  3.3 implies 

m { q ; q e I ,  f ( q , o p , ~ o ) < t J + ~ } _ < N t .  

(4.1) follows if we take  t so t h a t  Nt ---- e, for f is an  increasing funct ion of  e- 

We m a y  assume t h a t  the  coordinates are chosen so tha t  x o : 0 and  

~o : (1 , 0 . . . . .  0). Wri te  x" = (x 2 , . . . , Xn+l). I f  f(e, r , ~o) >-- e we have  
e <~ (e/C") 1/(i+1} ~-- Y by  (4.1) which implies t ha t  ( f ,  Cop) e F, where 

F = { x ;  Xl >_ ~ l r l x " l } .  

I f  ~ C S "  and  X(~) E F  we have < X ( ~ ) , ~ > < 0  in view of  the convexi ty  of C 
.so ~ ~ _F* where 

F*  = {y ; <x , y> > o V x e F}  = {y ; lY"] <-- ell'Y1} 

:Thus ~ e F * f l S "  implies X ( ~ ) q / "  so x l ( ~ ) < e  and  ] x " ( ~ ) [ < y ,  

g(x)dS(x) > / d~ C(3)(e/~,)"= C(*)7 "i > (4.2) 
~J 

Ix~l < ~, F *  f l  S n 

F r o m  (4.2) it follows if K E C  h, h - = n ( j - -  1), t h a t  x 0 cannot  b e a z e r o o f  K 

of  order > h. I n  this conclusion x 0 m a y  of  course be any  point  on 0C. 

Regard ing  K in a ne ighbourhood of  x 0 in 0C as a funct ion of  x" in a neigh- 
bourhood  of 0 in ~n we m a y  assume t h a t  K, OK/Ox~ . . . . .  OhK/Ox~ do not  
vanish simultaneously.  For  a suitable a > 0 it follows b y  (3.8) t ha t  

/ K(x")-~ dx2 < < , Ix"[ < ~. C if ~h 1 

This implies t h a t  f K(x)-~dS(x) is finite over a ne ighbourhood of  x 0. The p r o o f  
of  the  theorem is complete. 



20 ARKIV l~SR MATEMATIK. V o l .  9 N o .  1 

To prove  the  corol lary we on ly  have to observe t h a t  i f  f~e(~, m,  ~) or some 
higher  order  der ivat ive  is different  f rom zero a t  (0,  o~, ~) t h en  the  same is t rue  in 
a ne ighbourhood  of  (~, ~o, ~). B y  the  Bore l - -Lebesgue  lemma this shows t h a t  t h e  
hypotheses  of  Theorem 4.1 are fulfilled for some j .  

5.  T h e  c a s e  n = 1 

Using L e m m a  2.1 and the  H a r d y - - L i t t l e w o o d  maximal  theorem (see [6], p. 32) 
we shall give a v e r y  precise resul t  in this case. 

THEOREM 5.1. Let C be any bounded strictly convex set such that the arc length 
s on the boundary is an absolutely continuous function of O, where 0 is the angle 
between the supporting line and some fixed direction. 

Then there is a constant M such that 

,,~l,LP(Sl) ~ M(p/p -- 2)l/2 ( f (ds/dO)P/2 dO)~/2 N(u) (5.1) 

OC 

where N(u) = ~ 11~l sup Ju(~)(x)l with l denoting the arc length of OC. 
t~!<2 xfiC 

Proof. By the  divergence theorem we have  

f u(x)ei '<'~>dx=i/r ./<G(x'~)'~(x)>ei'<~'~>ds(x) 
OC 

i f  v is the  inter ior  normal  and  

{ ~Gl(x , ~)/Ox 1 + OGdx , ~)/Ox2 = 0 

~lGl(x , ~) + ~G2(x  , ~) = u(x)  . 

We set <G(x, ~) , v(x)> = v(x, ~) and s tudy  

V/r  f v ( x ,  ~)e ~'<~'~> ds(x)  = 
d OC 

/ V(X , ~)e 'r<x''> d8(x) + V r  / v(x , ~)e 'r<x'~> d8(x) V7 
. 2  .d  

Yx Y~ 

where 71 and  y~ are the  two arcs of  OC separa ted  b y  the points  where a suppor t ing 
l ine is parallel  to  ~. 

We s tudy  one of  the  integrals  (the o ther  is quite  similar) and assume th a t  
~ ( 0 ,  1). I f  we take  the  arc length s def ined as 0 for x 1 = 0 we have  b y  L e m m a  

2.1 
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V-; f v(x , d (x) =- v/-; f v(x(s) , ds [ < 

8 sup ]s/x~(8) 1/2 I(var v § sup Ivl) 
s OC OC 

In  fac t  if  0 is the  angle be tween the  suppor t ing  line at  the  point  wi th  are length 
s and  the  xl-axis we have  dxz/ds = sin 0 which is an increasing funct ion of  s 
so x 2 is a convex funct ion.  Since 0/sin 0 < Jr/2 when  10] < ~/2 we obta in  

sup I s /x2(s )  l ~]2 = sup l s (O) / s i n  Of 1]2 < (2~/2) 1/2 SUp Is(O)/OI U2 < (~/2) 1/2 ~(0) 1/2 
$ 0 0 

where  S denotes  the  H a r d y - - L i t t l e w o o d  maximal  funct ion of  ds/dO. 
We shall now est imate  pa r  v -~ sup Iv I. We  have  

OC OC 

and  

sup ]v] < sup IGI 
OC oc 

v a r v =  / l d < G ' v > ' < - - / [ ( d G ' v > ] - ~  / 

<_ f ldr + f lGlid~,l < f ldVl + 2~sup Ir 

_< par  G 1 -h va t  G~ -~ 2z  sup IGI . 

oc oc Oc 

Since ~ =  ( 0 , 1 )  we can t ake  

G~(x , ~) = u(x) , 
Xl 

G~(x , ~) = -- f au(t , x2)/Ox2dt , 
0 

and  thus  we have  

v a r G j < l ( l ~  s u p l u ~ ! ~ - ~ s u p l u ~ l ) ,  j =  1 , 2 .  
[al=2 ~ec lal=1 

Thus we have  p roved  for 0 = 0 

~(0) < @ @ / 2  + S ( _  O)I/2)~(u)M1 

i f  we have t aken  the  angle 0 as a pa r ame te r  on S 1 so t h a t  0 : 0 corresponds 
to  ~ : ( 0 , 1 ) .  Since the  es t imate  is invar ian t  under  a congruence t rans format ion  
i t  is val id in general.  B y  the  K a r d y - - L i t t l e w o o d  maximal  theorem we have  i f  
q > l  
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2~e 2ze 

0 0 

so i f  p > 2  we  o b t a i n  

2 ~  

0 

a n d  (5.1) is p r o v e d .  
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