Estimates for the Fourier transform of the characteristic function of a convex set

Ingvar Svensson
University of Lund, Sweden

1. Introduction

Let C be a measurable set in R^{n+1} and set

$$
\hat{u}_{c}(\xi)=\int_{c} u(x) e^{i<x, \xi>} d x, \quad \xi \in R^{n+1}, u \in C_{0}^{\infty}\left(R^{n+1}\right)
$$

The order of magnitude of $\hat{u}_{c}(\xi)$ when $\xi \rightarrow \infty$ is frequently of importance in harmonic analysis, for example in application to analytic number theory. However, even if one assumes that C is the closure of an open set with boundary $\partial C \in C^{\infty}$ the known results are far from complete. It is known then that

$$
\begin{equation*}
\hat{u}_{c}(\xi)=O\left(|\xi|^{-(n+2) / 2}\right), \quad \xi \rightarrow \infty ; u \in C_{0}^{\infty} ; \tag{1.1}
\end{equation*}
$$

if and only if the Gaussian curvature of ∂C never vanishes (Herz [1], Hlawka [2], Littman [3]). Randol [4], [5] has also studied the case where C is convex and ∂C is analytic. His result is that the mmaximal function"

$$
\begin{equation*}
\tilde{u}(\xi)=\sup _{r>0} r^{(n+2) / 2}\left|\hat{u}_{C}(r \xi)\right|, \quad \xi \in S \tag{1.2}
\end{equation*}
$$

is then in $L^{p}\left(S^{n}\right)$ for some $p>2$ if ∂C is analytic. In fact, Randol proved that this is true for precisely those $p>2$ such that

$$
\begin{equation*}
\int_{\partial C} K(x)^{(2-p) / 2} d S(x)<\infty \tag{1.3}
\end{equation*}
$$

where $K(x)$ is the Gaussian curvature at $x \in \partial C$. The necessity of (1.3) follows easily from the fact that

$$
r^{(n+2) / 2}\left|\hat{u}_{c}(r \xi)\right| \rightarrow c\left(\left|u\left(x_{+}\right)\right| K\left(x_{+}\right)^{-1 / 2}+\left|u\left(x_{-}\right)\right| K\left(x_{-}\right)^{-1 / 2}\right)
$$

when $r \rightarrow \infty$ provided that the Gaussian curvature of ∂C is $\neq 0$ at the points $x_{ \pm}$where the normal is $\pm \xi$ and that u vanishes at one of these points.

In this paper we shall prove that (1.3) implies that $\tilde{u} \in L^{p}\left(S^{n}\right)$ for all $u \in C_{0}^{\infty}$ provided that C is convex, $\partial C \in C^{\infty}$ and ∂C has no tangent of infinite order. This of course includes the result of Randol [5]. In fact, our methods allow us to treat also the case when ∂C has only a finite number of derivatives. Moreover, when $n=1$, we shall give a very precise estimate for $\|\tilde{u}\|_{L^{p}\left(S^{2}\right)}$ valid for very general convex compact sets C. In that case the proof is a consequence of the Hardy - Littlewood maximal theorem.

The subject of this paper was suggested by Lars Hörmander. I thank him for valuable advice and very great help during my work.

2. Variants of van der Corput's lemma

Let f be a convex increasing function on the interval [0, 1] and let $u \in C_{0}^{\infty}(-\infty, 1)$. In this section we shall give some estimates for the integral

$$
\begin{equation*}
I(\lambda)=\int_{0}^{1} e^{i \lambda f(r)} u(r) r^{k} d r \tag{2.1}
\end{equation*}
$$

where $k>-1$. They are closely related to the van der Corput lemma (see [6], p. 197), and similar estimates also occur in Randol [5].

Let us split the integral in one from 0 to t and one from t to 1 . The first part can be estimated by $\sup |u| t^{k+1} \mid(k+1)$. In the second we integrate by parts, assuming that $f^{\prime}(t)>0$

$$
\int_{i}^{1} e^{i \lambda f(r)} u(r) r^{k} d r=\left[(i \lambda)^{-1} e^{i \lambda f(r)} u(r) r^{k} / f^{\prime}(r)\right]_{t}^{1}-\int_{t}^{1}(i \lambda)^{-1} e^{i \lambda f(r)} d\left(u(r) r^{k} / f^{\prime}(r)\right)
$$

We assume now that $k \leq 0$ so that $r^{k} / f^{\prime}(r)$ is decreasing. Then the integral can be estimated by $M \lambda^{-1} t^{k} / f^{\prime}(t)$ where

$$
M=\sup _{[0,1]}|u|+\operatorname{var}_{[0,1]} u
$$

var u denoting the total variation of u. Hence

$$
|I(\lambda)| \leq M\left(t^{k+1} /(k+1)+3 t^{k} / \lambda f^{\prime}(t)\right)
$$

Now we assume that

$$
\begin{equation*}
f^{\prime}(r) \geq a r, \quad 0<r<1 \tag{2.2}
\end{equation*}
$$

where $a>0$. Then we have

$$
|I(\lambda)| \leq M\left(t^{k+1} /(k+1)+3 t^{k-1} / a \lambda\right) .
$$

With $t=1 / \sqrt{a \lambda}$ we obtain the bound $4(k+1)^{-1} M(a \lambda)^{-(k+1) / 2}$ provided that $a \lambda \geq 1$. The same bound is also valid in the opposite case since $|I(\lambda)| \leq \max |u|$. In the proof we only used that $u \in C^{1}([0,1])$ so we have proved

Lemma 2.1. If (2.2) is valid and $-1<k \leq 0$, then

$$
\begin{equation*}
|I(\lambda)| \leq 4(k+1)^{-1}\left(\sup _{[0,1]}|u|+\underset{[0,1]}{\operatorname{var}} u\right)(a \lambda)^{-(k+1) / 2}, \quad u \in C^{1}([0,1]) \tag{2.3}
\end{equation*}
$$

Remark. A change of variable shows that

$$
\begin{equation*}
\left|\int_{0}^{d} e^{i \lambda f(r)} u(r) d r\right| \leq 4\left(\sup _{[0, d]}|u|+\underset{[0, d]}{\operatorname{var}} u\right)(a \lambda)^{-1 / 2} \tag{2.3}
\end{equation*}
$$

if $u \in C^{1}([0, d])$ and (2.2) is valid for $0<r<d$. This will be useful in section 5 .
We shall now give a similar estimate for larger values of k. To do so we have to integrate by parts several times in (2.1) and shall have to require additional bounds of the form

$$
\begin{equation*}
\left|r^{i} f^{(i+1)}(r)\right| \leq C_{i} f^{\prime}(r), \quad 0<r<1, \quad i=1,2, \ldots, j \tag{2.4}
\end{equation*}
$$

This condition will be examined in section 3 . We shall actually use a condition equivalent to (2.4) namely that if $g(r)=1 / f^{\prime}(r)$, then

$$
\begin{equation*}
\left|r^{i} g^{(i)}(r)\right| \leq C_{i}^{\prime} g(r), \quad 0<r<1, \quad i=1,2, \ldots, j \tag{2.5}
\end{equation*}
$$

The equivalence follows inductively if one differentiates the equation $g(r) f^{\prime}(r)=1$ using Leibniz' rule.

We shall now split the integral (2.1) as before in an integral from 0 to $t=1 / \sqrt{a \lambda}$ and one from t to 1 . For the first part we clearly have the bound (2.3.) In the second part we shall integrate by parts j times if $k+1-2 j<0$. In doing so we note that

$$
e^{i \lambda f(r)}=(i \lambda)^{-1} g(r) d\left(e^{i \lambda f(r)}\right) / d r .
$$

This gives, if D is the differential operator $d / d r g(r)=g(r) d / d r+g^{\prime}(r)$:

$$
\begin{gathered}
\int_{i}^{1} e^{i \lambda f(r)} u(r) r^{k} d r=(i / \lambda)^{j} \int_{i}^{1} e^{i \lambda f(r)} D^{j}\left(u(r) r^{k}\right) d r- \\
\sum_{0}^{j-1}(i / \lambda)^{+1} e^{i \lambda f(t)} g(t) D^{v}\left(u(t) t^{k}\right) \\
|u|_{j}=\sum_{0}^{j} \max \left|u^{(v)}\right|
\end{gathered}
$$

With
it follows from (2.5) that

$$
\begin{equation*}
\left|(d / d r)^{\mu} D^{\nu}\left(u(r) r^{k}\right)\right| \leq C|u|_{j} r^{k-\nu-\mu} g(r)^{\nu}, \quad v+\mu \leq j \tag{2.6}
\end{equation*}
$$

In fact, this is obvious for $\nu=0$, and if we know (2.6) for a certain value of $\nu<j$ it follows for v replaced by $v+1$ since

$$
(d / d r)^{\mu-1} D^{\nu+1}=(d / d r)^{\mu} g(r) D^{\nu}=\sum\binom{\mu}{\alpha} g^{(\mu-\sigma)}(r)(d / d r)^{\sigma} D^{\nu} .
$$

Using (2.6) with $\mu=0$ and (2.2) we now obtain since $k-2 j<-1$

$$
\left|\int_{i}^{1} e^{i \lambda f(r)} u(r) r^{k} d r\right| \leq C|u|_{j} \sum_{0}^{j-1} \lambda^{-\nu-1} t^{k-1-2 v} a^{-v-1}=C^{\prime}|u|_{j}(a \lambda)^{-(k+1) / 2}
$$

where we have introduced $t=1 / \sqrt{a \lambda}$. Thus we have proved
Lemma 2.2. Let f satisfy (2.2). Then we have if $k \geq 0$

$$
\begin{equation*}
|I(\lambda)| \leq C_{k}|u|_{j}(a \lambda)^{-(k+1) / 2} \tag{2.7}
\end{equation*}
$$

if (2.4) is valid for an integer $j>(k+1) / 2$.

3. Remarks on the condition (2.4)

If we introduce the non-negative function $u=f^{\prime \prime}$, we can if $f^{\prime}(0)=0$ write (2.4) in the form

$$
\begin{equation*}
r^{i}\left|u^{(i)}(r)\right| \leq C_{i+1} r^{-1} \int_{0}^{r} u(t) d t, \quad i=0,1, \ldots, j-1 \tag{3.1}
\end{equation*}
$$

To study (3.1) we give a variant of the well known estimates between the maxima of the derivatives of a function.

Lemma 3.1. If I is an interval $\subset R$ with length $|I|$, then

$$
\begin{equation*}
\max _{I}\left|u^{(i)}\right||I|^{i} \leq C\left(|I|^{-1} \int_{I}|u(t)| d t+\max _{I}\left|u^{(k)}\right|\left|I^{k}\right|\right), \quad u \in C^{k}(I) \tag{3.2}
\end{equation*}
$$

provided that $0 \leq i<k$
Proof. We may assume that $I=[0,1]$. First assume that $i=0, k=1$. If $0<\varepsilon<1$ we have

$$
|u(x)| \leq \varepsilon \max _{I}\left|u^{\prime}\right|+\min _{|x-y|<\varepsilon}|u(y)| \leq \varepsilon \max _{I}\left|u^{\prime}\right|+\varepsilon^{-1} \int_{I}|u(y)| d y
$$

Let now $i=0$ but k be arbitrary. Then it is well known that

$$
\begin{equation*}
\max _{I}\left|u^{\prime}\right| \leq C\left(\max _{I}|u|+\max _{I}\left|u^{(k)}\right|\right) \tag{3.3}
\end{equation*}
$$

and if we combine the two inequalities taking ε small enough we obtain (3.2). Having found an estimate for $\max |u|$ we obtain the general statement (3.2) by using the estimates of the form (3.3) which are valid for derivatives of order between 0 and k.

It follows from (3.2) that if (3.1) is valid for one value of i with $u^{(i)}(r)$ replaced by $\sup \left\{\left|u^{(i)}(t)\right| ; 0 \leq t \leq r\right\}$ it is also fulfilled for any smaller value. Indeed, we need only apply Lemma 3.1 with $I=[0, r]$. So if $u^{(j-1)}$ is bounded, then a sufficient condition for (3.1) is of course that

$$
\begin{equation*}
\int_{0}^{r} u(t) d t \geq c r^{j} \tag{3.4}
\end{equation*}
$$

for some $c>0$.
If (3.4) is valid and u is in a bounded set in C^{j-1} we also obtain from (3.2) that

$$
\begin{equation*}
|u(0)| \leq C r^{-1} \int_{0}^{r} u(t) d t \tag{3.5}
\end{equation*}
$$

We have proved:
Lemma 3.2. Let M be a bounded set of convex functions in C^{j+1} such that $f^{\prime}(0)=0$ when $f \in M$ and for some constant $c>0$

$$
\begin{equation*}
\int_{0}^{r} f^{\prime \prime}(t) d t \geq c r^{j}, \quad 0<r<1, f \in M \tag{3.6}
\end{equation*}
$$

Then we have (2.2) with $a=b f^{\prime \prime}(0)$, where b is independent of $f \in M$; in addition (2.4) is uniformly valid for $f \in M$.

To apply the preceding lemma we need the following one:
Lemma 3.3. Let $u_{0} \in C^{k}(I)$ where I is a compact interval in R and assume that all derivatives of order $\leq k$ of u_{0} never vanish simultaneously in I. Then there is a neighbourhood Ω of u_{0} in $C^{k}(I)$ and an integer N such that for every $u \in \Omega$ and $\varepsilon>0$ there exist at most N subintervals of length $\leq \varepsilon$ containing $\{x ; x \in I$, $\left.|u(x)|<\varepsilon^{k}\right\}$.

Proof. There is nothing to prove when $k=0$, so we assume that $k>0$ and that the statement is proved for smaller values of k. The hypothesis implies that u_{0} has only finitely many zeros. We can therefore find a finite decomposition $I=U I_{e}$ in closed intervals such that in each I_{e} either $u_{0} \neq 0$ or else $\sum_{1}^{k}\left|u_{0}^{(v)}\right| \neq 0$. In the first case there is a fixed lower bound for $|u|$ in I_{e} for all u in a neighbourhood of u_{0}, and in the second case the hypotheses of Lemma 3.3 with k replaced by $k-1$ are fulfilled in I_{e} by u^{\prime} for all u in a neighbourhood of u_{0}.

By the induction hypothesis we then have $\left|u^{\prime}\right|>\varepsilon^{k-1}$ in I_{e} outside N intervals of length $\leq \varepsilon$, which implies that $|u|>\varepsilon^{k}$ in I_{e} outside these N intervals and $2 N+2$ additional ones of length at most ε. This completes the proof.

We note two important consequences: If M is a compact subset of $C^{k}(I)$ and if the hypotheses of Lemma 3.3 are fulfilled for all $u \in M$ we have for some positive constants c, C

$$
\begin{gather*}
\left|\int_{x}^{y}\right| u(t)|d t| \geq c|x-y|^{k+1} \text { if } x, y \in I, u \in M \tag{3.7}\\
\int_{I}|u(t)|^{-\delta} d t \leq C(1-\delta k)^{-1} \text { if } 0<\delta<1 / k, u \in M . \tag{3.8}
\end{gather*}
$$

In fact, by the Borel-Lebesgue lemma $M=U M_{i}$ where the union is finite and the conclusion of Lemma 3.3 is valid for each M_{i} and so for M. The estimate (3.7) follows if we choose ε in Lemma 3.3 so that $N \varepsilon=|x-y| / 2$, for then the integral is at least $\varepsilon^{k}|x-y| / 2$. The proof of (3.8) is obvious.

4. Estimates for the maximal function

We can now prove the extension of a result of Randol [5] referred to in the introduction. A surface is said to be flat of order at most j if the distance to the surface from a tangent has a zero of order $j+2$.

Theorem 4.1. Let C be a convex set in R^{n+1} with boundary ∂C flat of order at most j where $j \geq \mu$ with μ the smallest integer $>(n+1) / 2$. Then $\tilde{u} \in L^{p}\left(S^{n}\right)$ holds for all $u \in C^{\mu}\left(R^{n+1}\right)$ if (1.3) holds and $\partial C \in C^{j 1}$. These assumptions are fulfilled if $\partial C \in C^{h+2}$ and $2<p<2+2 / h$ where $h=n(j-1)$.

Corollary 4.2. If $\partial C \in C^{\infty}$ and ∂C has no tangent of infinite order there is a j such that the hypotheses of Theorem 4.1 are valid and so $\tilde{u} \in L^{P}\left(S^{n}\right)$ for all $u \in C^{\mu}\left(R^{n+1}\right)$.

Proof. By the divergence theorem we have

$$
\begin{gathered}
\hat{u}(r \xi)=\int_{C} u(x) e^{i r<x, \xi>} d x= \\
i / r \int_{\partial C} u(x)<\xi, v(x)>e^{i r<x, \xi>} d S(x)+i / r \sum_{k=1}^{n} \int_{C} \xi_{k} \partial u(x) / \partial x_{k} e^{i r<x, \xi>} d x
\end{gathered}
$$

Here v is the interior normal and $|\xi|=1$.
If we repeat this procedure μ times, we get

$$
\hat{u}(r \xi)=\sum_{1}^{\mu} r^{-v} \int_{\partial \mathrm{C}} w_{\nu}(x, \xi) e^{i r<x, \xi>} d S(x)+r^{-\mu} \int_{\boldsymbol{C}} w_{\mu+1}(x, \xi) e^{i r<x, \xi>} d x
$$

where $w_{\nu}(., \xi)$ is in bounded set in $C^{\mu+1-v}\left(R^{n+1}\right), \quad 1 \leq \nu \leq \mu+1$. We want to estimate $r^{(n+2) / 2}|\hat{u}(r \xi)|$. Since $\mu>(n+1) / 2$ the estimates of the last term in the sum and that with integral over C are obvious so it is sufficient to prove that for $1 \leq \nu \leq \mu-1$

$$
\sup _{r} r^{\frac{n+2}{2}-\nu}\left|\int_{\partial C} v(x, \xi) e^{i r<x, \xi>} d S(x)\right| \in L^{p}\left(S^{n}\right)
$$

if $v(., \xi)$ belongs to a bounded set in $C^{\mu+1-\nu}\left(R^{n+1}\right)$.
Choose $\psi \in C_{0}^{\infty}(R)$ such that $\psi(t)=1,|t|<o$ and $\psi(t)=0,|t|>\delta$. Here δ will be chosen below. Denote by $X(\xi)$ the point on ∂C with interior normal ξ, and decompose v as a sum $v=\varphi_{1}+\varphi_{2}+\varphi_{3}$ where $\varphi_{1}(x, \xi)=v(x, \xi) \psi(\langle X(\xi)-x, \xi\rangle)$ and $\varphi_{2}(x, \xi)=v(x, \xi) \psi(\langle X(-\xi)-x, \xi\rangle)$. If (ϱ, ω) are polar coordinates in the tangent plane at $X(\xi)$, let $f(\varrho, \omega, \xi)$ describe the intersection of ∂C and the plane through ξ containing ω :

$$
f(\varrho, \omega, \xi)=\inf \{t ; X(\xi)+\varrho \omega+t \xi \in C\}
$$

If δ_{0} is small enough and $I=\left\{\varrho ; 0 \leq \varrho \leq \delta_{0}\right\}$ then $f(., \omega, \xi) \in C^{j+1}(I)$ for all $\xi \in S^{n}$ and all tangent directions ω at $X(\xi)$.

Now we split the integral in three parts. If 2δ is smaller than the width of C, the integral involving φ_{3} is $O\left(r^{-(\mu+1-\nu)}\right)$ as $r \rightarrow \infty$, uniformly in ξ, for there is a lower bound independent of ξ, for the difference between ξ and a normal to ∂C in $\operatorname{supp} \varphi_{3}$, (cf [3]).

Now it is of course enough to examine

$$
\left|\int_{\partial C} \varphi_{1}(x, \xi) e^{i r<x, \xi>} d S(x)\right|
$$

In terms of the polar coordinate system in the tangent plane at $X(\xi)$ this integral becomes

$$
\left|\int_{s^{n-1}} d \omega \int_{0}^{\infty} \varphi(\varrho, \omega, \xi) e^{i f f(\varrho, \omega, \xi)} \varrho^{n-1} d \varrho\right|
$$

Here $\varphi(., \omega, \xi)$ is in a bounded set in $C^{\mu+1-\nu}(I)$ and vanishes near the right hand end point.

Let us consider the map

$$
(\omega, \xi) \rightarrow f(\cdot, \omega, \xi)
$$

from the unit sphere bundle of the tangent space of S^{n} to $C^{j+1}(I)$. Since the domain is compact and the map is continuous the image set in $C^{i+1}(I)$ is compact. By hypothesis all derivatives of $f_{\rho \rho}^{\prime \prime}(\cdot, \omega, \xi)$ of order $\leq j-1$ do not vanish simultaneously so we can apply the lemmas in section 3. By (3.7) follows then

$$
\int_{0}^{r} f_{\mathrm{eq}}^{\prime \prime}(\varrho, \omega, \xi) d \varrho \geq c r^{j}
$$

so by Lemma 3.2

$$
f_{\varrho}^{\prime}(\varrho, \omega, \xi) \geq b f_{\varrho \varrho}^{\prime \prime}(0, \omega, \xi) \cdot \varrho
$$

and (2.4) is uniformly valid for $f(\cdot, \omega, \xi)$. We can now apply Lemma 2.2 and get

$$
\begin{aligned}
\left|\int_{0}^{\infty} e^{n-1} \varphi(\varrho, \omega, \xi) e^{i r f(\varrho, \omega, \xi)} d \varrho\right| & \leq C_{n+1-2 \nu}|\Phi|_{\mu+1-v}\left(r b f_{\varrho \varrho}^{\prime \prime}(0, \omega, \xi)\right)^{-\frac{n+2}{2}+v} \\
\Phi(\varrho) & =\varphi(\varrho, \omega, \xi) \varrho^{2(v-1)}
\end{aligned}
$$

Next we prove that for $1 \leq \nu \leq \mu-1$

$$
\int_{s^{n-1}} f_{\varrho \varrho}^{\prime \prime}(0, \omega, \xi)^{-n / 2+\nu-1} d \omega \leq C K(X(\xi))^{-1 / 2}
$$

where $K(x), x \in \partial C$, denotes the Gaussian curvature at x. Of course it is enough to take $\nu=1$ and then we shall prove equality with C equal to the volume of S^{n-1}.

Now

$$
f_{\varrho \varrho}^{\prime \prime}(0, \omega, \xi)^{-n / 2}=(A \omega, \omega)^{-n / 2}=F(\omega)
$$

where A is the curvature matrix of f at $\varrho=0$. The integral $\int_{S^{n-1}} F(\omega) d \omega$ is
equal to the integral of the differential form

$$
\sum_{i=1}^{n}(-1)^{i-1} \vec{F}(\omega) \omega_{i} d \omega_{1} \wedge \ldots \wedge{\widehat{d \omega_{i}}} \wedge \ldots \wedge d \omega_{n}
$$

over the unit sphere or any cycle in $R^{n} \backslash\{0\}$ homotopic to S^{n-1}, for the exterior derivative

$$
\left[\sum_{i=1}^{n}\left(\omega_{i} \partial F(\omega) / \partial \omega_{i}+n F(\omega)\right] d \omega_{1} \wedge \ldots \wedge d \omega_{n}\right.
$$

is zero by Euler's theorem on homogeneous functions.
Thus we may integrate over an ellipsoid with axes $\omega^{i} f_{\varrho \rho}^{\prime \prime}\left(0, \omega_{i}, \xi\right)^{-1 / 2}$ $i=1,2, \ldots, n$, where $\omega^{1}, \ldots, \omega^{n}$ are the directions of principal curvature at $X(\xi)$. The integral thus reduces to $C(K(X(\xi)))^{-1 / 2}$ where C is the volume of. S^{n-1}.

Summing up, we have proved that

$$
\tilde{u}(\xi) \leq C^{\prime}\left(K(X(\xi))^{-1 / 2}+K(X(-\xi))^{-1 / 2}+1\right)
$$

The proof of the first part of the theorem is now complete since

$$
\int K(X(\xi))^{-p / 2} d \omega(\xi)=\int K(x)^{(2-p) / 2} d S(x)
$$

To prove the second statement we want to estimate $\int K(x)^{-\delta} d S(x)$ over a neighbourhood of a point x_{0} on ∂C.

As before we describe ∂C near $x_{0}=X\left(\xi_{0}\right)$ by a set of functions $f \in M \subset C^{j+1}(I)$, where M is compact. We have $f\left(0, \omega, \xi_{0}\right)=f^{\prime}\left(0, \omega, \xi_{0}\right)=0$ and

$$
\begin{equation*}
f\left(\varrho, \omega, \xi_{0}\right) \geq C^{\prime \prime} e^{j+1} \text { for some } C^{\prime \prime}>0 \tag{4.1}
\end{equation*}
$$

To prove (4.1) we note that Lemma 3.3 implies

$$
m\left\{\varrho ; \varrho \in I, f\left(\varrho, \omega, \xi_{0}\right)<t^{j+1}\right\} \leq N t
$$

(4.1) follows if we take t so that $N t=\varrho$, for f is an increasing function of ϱ.

We may assume that the coordinates are chosen so that $x_{0}=0$ and $\xi_{0}=(1,0, \ldots, 0)$. Write $x^{\prime \prime}=\left(x_{2}, \ldots, x_{n+1}\right)$. If $f\left(\varrho, \omega, \xi_{0}\right) \geq \varepsilon$ we have $\varrho \leq\left(\varepsilon / C^{\prime \prime}\right)^{1 /(j+1)}=\gamma$ by (4.1) which implies that $(f, \varrho \omega) \in I$, where

$$
\Gamma=\left\{x ; x_{1} \geq \varepsilon / \gamma\left|x^{\prime \prime}\right|\right\} .
$$

If $\xi \in S^{n}$ and $X(\xi) \in \Gamma$ we have $\langle X(\xi), \xi\rangle<0$ in view of the convexity of C so $\xi \notin \Gamma^{*}$ where

$$
\Gamma^{*}=\{y ;\langle x, y\rangle \geq 0 \vee x \in \Gamma\}=\left\{y ;\left|y^{\prime \prime}\right| \leq \varepsilon / \gamma y_{1}\right\}
$$

Thus $\xi \in \Gamma^{*} \cap S^{n}$ implies $X(\xi) \notin \Gamma$ so $x_{1}(\xi)<\varepsilon$ and $\left|x^{\prime \prime}(\xi)\right|<\gamma$,

$$
\begin{equation*}
\int_{\left|x^{*}\right|<\gamma} K(x) d S(x) \geq \int_{\Gamma^{*} \cap S^{n}} d \xi \geq C^{(3)}(\varepsilon / \gamma)^{n}=C^{(4)} \gamma^{n j} \tag{4.2}
\end{equation*}
$$

From (4.2) it follows if $K \in C^{h}, \quad h=n(j-1)$, that x_{0} cannot be a zero of K of order $>h$. In this conclusion x_{0} may of course be any point on ∂C.

Regarding K in a neighbourhood of x_{0} in ∂C as a function of $x^{\prime \prime}$ in a neighbourhood of 0 in R^{n} we may assume that $K, \partial K / \partial x_{2}, \ldots, \partial^{h} K / \partial x_{2}^{h}$ do not vanish simultaneously. For a suitable $\sigma>0$ it follows by (3.8) that

$$
\int_{\left|x_{2}\right|<\sigma} K\left(x^{\prime \prime}\right)^{-\delta} d x_{2}<C \text { if } \delta h<1, \quad\left|x^{\prime \prime}\right|<\sigma
$$

This implies that $\int K(x)^{-\delta} d S(x)$ is finite over a neighbourhood of x_{0}. The proof of the theorem is complete.

To prove the corollary we only have to observe that if $f_{e \varrho}^{\prime \prime}(\varrho, \omega, \xi)$ or some higher order derivative is different from zero at (ϱ, ω, ξ) then the same is true in a neighbourhood of (ϱ, ω, ξ). By the Borel-Lebesgue lemma this shows that the hypotheses of Theorem 4.1 are fulfilled for some j.

5. The case $n=1$

Using Lemma 2.1 and the Hardy-Littlewood maximal theorem (see [6], p. 32) we shall give a very precise result in this case.

Theorem 5.1. Let C be any bounded strictly convex set such that the arc length s on the boundary is an absolutely continuous function of θ, where θ is the angle between the supporting line and some fixed direction.

Then there is a constant M such that

$$
\begin{equation*}
\|\tilde{u}\|_{L^{p}\left(\mathrm{~S}^{1}\right)} \leq M(p / p-2)^{1 / 2}\left(\int_{\partial C}(d s / d \theta)^{p / 2} d \theta\right)^{1 / 2} N(u) \tag{5.1}
\end{equation*}
$$

where $N(u)=\sum_{|\alpha| \leq 2} l^{|\alpha|} \sup _{x \in C}\left|u^{(\alpha)}(x)\right|$ with l denoting the arc length of ∂C.
Proof. By the divergence theorem we have

$$
\int u(x) e^{i r<x, \xi\rangle} d x=i / r \int_{\partial C}\langle G(x, \xi), \nu(x)\rangle e^{i r<x, \xi\rangle} d s(x)
$$

if v is the interior normal and

$$
\left\{\begin{array}{l}
\partial G_{1}(x, \xi) / \partial x_{1}+\partial G_{2}(x, \xi) / \partial x_{2}=0 \\
\xi_{1} G_{1}(x, \xi)+\xi_{2} G_{2}(x, \xi)=u(x)
\end{array}\right.
$$

We set $\langle G(x, \xi), v(x)\rangle=v(x, \xi)$ and study

$$
\begin{gathered}
\sqrt{r} \int_{\partial C} v(x, \xi) e^{i r<x, \xi>} d s(x)= \\
\sqrt{r} \int_{\gamma_{1}} v(x, \xi) e^{i r<x, \xi>} d s(x)+\sqrt{r} \int_{\gamma_{2}} v(x, \xi) e^{i r<x, \xi>} d s(x)
\end{gathered}
$$

where γ_{1} and γ_{2} are the two arcs of ∂C separated by the points where a supporting line is parallel to ξ.

We study one of the integrals (the other is quite similar) and assume that $\boldsymbol{\xi}=(0,1)$. If we take the are length s defined as 0 for $x_{1}=0$ we have by Lemma 2.1

$$
\begin{gathered}
\sqrt{r}\left|\int_{\gamma_{1}} v(x, \xi) e^{i<x, \xi>r} d s(x)\right|=\sqrt{r}\left|\int v(x(s), \xi) e^{i x_{2}(s) r} d s\right| \leq \\
8 \sup _{s}|s| x_{2}^{\prime}(s)^{1 / 2} \mid\left(\operatorname{var}_{\partial C} v+\sup _{\partial C}|v|\right)
\end{gathered}
$$

In fact if θ is the angle between the supporting line at the point with arc length s and the x_{1}-axis we have $d x_{2} / d s=\sin \theta$ which is an increasing function of s so x_{2} is a convex function. Since $\theta / \sin \theta \leq \pi / 2$ when $|\theta| \leq \pi / 2$ we obtain

$$
\sup _{s}\left|s / x_{2}^{\prime}(s)\right|^{1 / 2}=\sup _{\theta}|s(\theta) / \sin \theta|^{1 / 2} \leq(\pi / 2)^{1 / 2} \sup _{\theta}|s(\theta) / \theta|^{1 / 2} \leq(\pi / 2)^{1 / 2} S(0)^{1 / 2}
$$

where S denotes the Hardy-Littlewood maximal function of $d s / d \theta$.
We shall now estimate $\operatorname{var}_{\partial C} v+\sup _{\partial C}|v|$. We have

$$
\sup _{\partial C}|v| \leq \sup _{\partial C}|G|
$$

and

$$
\begin{gathered}
\underset{\partial C}{\operatorname{var} v=\int|d\langle G, v\rangle| \leq \int|\langle d G, v\rangle|+\int|\langle G, d v\rangle| \leq} \\
\leq \int|d G||v|+\int|G||d v| \leq \int|d G|+2 \pi \sup _{\partial C}|G| \leq \\
\leq \operatorname{var}_{\partial C} G_{1}+\underset{\partial C}{\operatorname{var}} G_{2}+2 \pi \sup _{\partial C}|G| .
\end{gathered}
$$

Since $\xi=(0,1)$ we can take

$$
G_{2}(x, \xi)=u(x), \quad G_{1}(x, \xi)=-\int_{0}^{x_{1}} \partial u\left(t, x_{2}\right) / \partial x_{2} d t
$$

and thus we have

$$
\operatorname{var} G_{j} \leq l\left(l \sum_{|\alpha|=2} \sup _{x \in C}\left|u^{\alpha}\right|+\sum_{|\alpha|=1} \sup \left|u^{\alpha}\right|\right), \quad j=1,2
$$

Thus we have proved for $\theta=0$

$$
\tilde{u}(\theta) \leq\left(S(\theta)^{1 / 2}+S(-\theta)^{1 / 2}\right) N(u) M_{1}
$$

if we have taken the angle θ as a parameter on S^{1} so that $\theta=0$ corresponds to $\xi=(0,1)$. Since the estimate is invariant under a congruence transformation it is valid in general. By the Hardy-Littlewood maximal theorem we have if $q>1$

$$
\int_{0}^{2 \pi} S(\theta)^{q} d \theta \leq 2(q /(q-1))^{q} \int_{0}^{2 \pi}(d s(\theta) / d \theta)^{q} d \theta
$$

so if $p>2$ we obtain

$$
\|u\|_{L^{p}\left(\mathrm{~S}^{1}\right)} \leq M N(u)(p / p-2)^{1 / 2}\left(\int_{0}^{2 \pi}(d s(\theta) / d \theta)^{P^{/ 2}} d \theta\right)^{1 / 2}
$$

and (5.1) is proved.

References

1. Herz, C. S., Fourier transforms related to convex sets. Ann. of Math., (2) 75 (1962), 215254.
2. Hlawka, E., Über Integrale auf Konvexen Körpern I. Monatsh. Math., 54 (1950), 1 - 36.
3. Littman, W., Fourier transforms of surfacecarried measures and differentiability of surface averages. Bull. Amer. Math. Soc., 69 (1963), 766-770.
4. Randol, B., On the Fourier transform of the indicator function of a planar set. Trans. Amer. Math. Soc., 139 (1969), 271-278.
5. -»- On the asymptotic behavior of the Fourier transform of the indicator function of a convex set. Trans. Amer. Math. Soc., 139 (1969), 279-285.
6. Zygmund, A., Trigonometric series, I. Cambridge, 1959.

Received October 2, 1970
Ingvar Svensson
Department of mathematics University of Lund Box 725
22007 Lund 7
Sweden

