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1. Introduction 

Let  E be a closed subset of R n and  K(E)  the  space of all functions in ~(Rn),  
vanishing in some neighborhood of E.  ~LI (R ~) is the Banach  space of Fourier  
t ransforms of functions in LI(Rn). ~ ( R  ") C ~LI(R~), and  we denote by  K- -~  
the  closure of K(E)  in ~LI(Rn). The well-known concept of sets of spectral 
synthesis can be defined as follows: E is a set of spectral synthesis if K(E) contains 
every element in ~LI(R n) t ha t  vanishes on E. 

C. Herz [3] has proved t h a t  S 1 C R 2 is a set of spectral synthesis. ]~is proof 
can unfor tuna te ly  not  be extended to obtain the  corresponding result  for more 
general curves. I t  is however possible to use a different  approach to get the desired 
extension of the  result of Herz (cf. [2]). We shall here apply  basically the same 
me thod  to investigate a still more general problem. 

As was discovered by  L. Schwartz [9], the sphere S ~-1 C R ~ is no t  of spectral 
synthesis,  if n ~_ 3. N. Th. Varopoulos [10] has invest igated this  question in more 
detail,  using methods  related to the Herz method  for n -~ 2. Le t  us denote,  for 
a n y  closed set E and  any  positive integer m, by  J,~(E) the space of functions in 
~(Rn),  n ~ 2, vanishing on E together  wi th  all their  part ial  derivatives of order 
_~ m -  1. Taking closures in ~/fl(Rn), we have then  

JI(S  ~-1) ~ J2(S ~-1) ~ . . .  ~ J[(~+1)/2](S ~-1) ---- K ( S  ~-1) , (1.1) 

where all inclusions are strict. I t  is very  easy to unders tand  from this why  there 
is a fundamenta l  difference between the  case n = 2 and the case n > 3 in this 
context .  

The cited paper  of Varopoulos does however contain a considerably more precise 
description of  the  s i tuat ion t h a n  the  one given above. Le t  us by  B~(S~-I), m ~ 1, 
denote the linear space spanned by  all measures on S "-~ with  inf ini tely differentiable 
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density function and by all partial derivatives of order < m -- 1 of those measures 
when considered as distributions on R". I t  is possible to show that  B,,,(S n-l) is a 
subspace of the dual of ~LI(R'), if m ~ (n ~- 1)/2, and in tha t  case we define 
I,,,(S ~-1) as the annihilator of B,,,(S n-l) in ~LI(R"). I t  is illuminating to regard 
Im(S ~-1) as a subspace of ~LI(R ") characterized by the vanishing on S ~-1, in a 
generalized sense, of the elements together with their partial derivatives of order 

m -- 1. This notion of vanishing is then the same as ordinary vanishing, if the 
element belongs to C m in a neighborhood of S ~-1. I t  follows from Theorem 3 in 
[10], tha t  

Im(S = g (sn-1), (1.2) 

for 1 < m  < ( n - } -  1)/2. In the case n =  2, (1.1) and (1.2) together imply the 
result of Herz. 

Our aim is to generalize (1.1) and (1.2). The generalization is two-fold. In the 
first place we replace La(R ") by the more general space L~(Rn), n _> 2, ~ real, 

of Lebesgue measurable functions f with the norm 

(1 + 

R ~ 

Secondly, and this is more important since it creates the need for a method different 
from the one developed by Herz and Varopoulos, we consider sets E on an arbitrary 
(n -- 1)-dimensional manifold M in R n, infinitely differentiable, without multiple 
points and with non-vanishing Gaussian curvature. The sets E are assumed com- 
pact and, in the main theorem, satisfying the restricted cone property (Definition 
3.3). K(E) and Jm(E) are then well defined, and for 1 _~m < ~  ~- (n ~- 1)/2, 
spaces I,,(E) can be defined as in the case E = S n-1 (Definition 2.5 and Definition 
2.8). Our results are formulated in Theorem 2.9 and Theorem 3.4, of which the 
second theorem is the most important. 

For sets E satisfying the restricted cone property it is possible to express some 
consequences of our results by generalizing some concepts from the theory of spectral 
synthesis. Thus it is natural to say that  E is of spectral synthesis with respect 
to L~(R"), if /I(E) = K(E). By our theorems this is true, if [c~ ~- (n ~ 1)/2] : 1, 
that  is to say if 1 < 2~ ~- n < 3. Adopting a notion introduced by Herz [4] one 
can say tha t  E is a smooth set with respect to L~(Rn), if II(E ) = JI(E)). This 
is always true if 2~ ~- n > 1. 

There are various possibilities for further generalizations. The spaces L~(R~ "), 
- -  p n n > 2, can thus be replaced by spaces L~(R ), 1 _< p < oo, defined by the norm 

~ [ f (~ ) , "  (1 ~-,~,)~'d~l ~/', 

R ~ 
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and similar results hold for these spaces. The infinite differentiability of the mani- 
fold M can be exchanged to differentiability up to a certain order, as was the 
assumption made in the study [2]. In the cases when the Gaussian curvature of 
M vanishes in some subset of E, or when the manifold M is of lower dimension 
than n -- 1, the corresponding problems can be stated but are in general still open. 

2. Preliminaries 

The following lemma of van der Corput type is of fundamental importance for 
our investigation. The lemma is essentially due to W. Li t tman [5]. 

LEMMA 2.1. Let q~ E ~(R~), m ~_ 1, be a function with its support contained in 
an open set B. Let yJ be real-valued and infinitely differentiable in B and such that I a2~ F 
the inverse of the Hessian determinant ~ !  exists and is bounded in B. 

Then there exists, for every real number A, a positive constant D such that 

e '(<x''*+~('):) ~(y)dy E <_ D(1 ]~[)-~/2 1 ~- 

R ~ 

for every • E R m , ~ E R. For fixed m , cf , B and A, the same constant D can be 
chosen for all functions ~v for which we have uniform bounds on the absolute values 
of the functions, on the absolute values of each of their partial derivatives and on the 
inverse of the Hessian of % 

Proof of Lemma 2.1. I t  is possible to write ~ as a finite sum of functions in 
!~(Rm), each of them with its support included in some closed sphere included in 
B. Hence it is allowed to assume from the beginning that  B is a sphere. 

For any set of (V, ~) such tha t  lyE/( 1 4- I~l) is uniformly bounded, the 
inequality follows from the above-mentioned paper of Lit tman. The only thing 
tha t  needs to be checked, since it is not explicitely stated by Lit tman,  is the claimed 
uniformity property of the constant D. An examination shows, however, tha t  
this is a direct consequence of his proof. 

Hence we can restrict our attention to the case when 

IV[ > 2(1 4- [~I)(1 4- sup Igrad ~vl). 

0 
We can then integrate partially p times in the direction t for which -~ <y, ~> = 1~], 

and this procedure gives tha t  the left hand member of (2.1) is dominated by 

D'(lVl-4- I ~ ] F ( I v l -  l~l(sup lgrad ~1)) -2p _< D"lvl -~ , 

where D' and D" are constants with the same uniformity properties as those 
claimed for D. Choosing p ~ m / 2  4- A,  we obtain (2.1). 
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We are going to study distributions on a fixed space R n. Later on we assume 
tha t  n > 2, but the case n = 1 can as well be accepted in this introductory dis- 

cussion. Functions and distributions on the dual R ~ are denoted by f , / t ,  etc., in 
order to distinguish them from functions and distributions f ,  #, etc. on the original 
R n , 

Definition 2.2. For every real ~ ,  LI(R ~) denotes the Banach space of all Lebesgue 

measurable functions ] on (the dual) R ~ with a finite norm 

and L~(R ~) 
on (the dual) 

[[J~12 -= ess. sup. If(~)I(1 + I~1) -~ . 
~ 1 ~  n 

We observe tha t  any function ] in L~(R") or L~(R =) 

R n 

denotes the Banach space of all Lebesgue measurable functions f 
R ~ with a finite norm 

can be considered as 

a distribution in the space 3'(Rn). Hence such a function f has, in ordinary 
distribution sense, a Fourier transform f ,  and we prefer to normalize the Fourier 
transformation in a way tha t  corresponds to the formal relation 

f (x)  = e-'~'~ 

R" 

x E tl  ~. We adopt the convention tha t  whenever pairs of functions or distributions 

f ,  f or /~, # etc. are mentioned in the same context they denote pairs of Fourier 
transforms. 

Definition 2.3. ~L~(R ") and ~L~~ ~) denote the Banaeh spaces of Fourier 

transforms f of elements f in L~(tP) and L~(R ") with the norms [ffiJ~ and 
][fJI~, respectively, defined by 

A 

l i f iJ~  = I l f l l ~ ,  I l fI l~  ~ = [ [ f l l 2  . 

L~(R n) can be considered as the Banach space of bounded linear functionals 
on /)(Rn), the corresponding is thus true for ~L~(R =) and ~L~(Rn), and we 
define 

" f I(~) " 
( f ,  g) = ( f ,  ~) -~ g(--~)d~, 

R n 

whenever f E ~L~(R=), g e ~L~~ I t  should be observed that  S(R n) is a subspaee 
of  L~(R ") and L~ ~ (R") as well as of the transform spaces, and that,  by our definition 
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( f ,  g) = (2~r)-"<f, g> ,  (2.2) 

whenever  f or g belongs to  3(1t~), where < ,  > has the  usual dis t r ibut ion meaning.  
We need some simple proper t ies  of  the  space ~ L I ( R  ") and  t h e y  are collected in 

the  following lemma.  All t h a t  is s ta ted  in it  is known,  b u t  we shall give the  proofs 
in order  to  avo id  too m a n y  tr ivial  references.  

L:EMMA 2.4. 

1 ~ Let g E ~L~~ ") and suppose that ( f ,  g) = 0 for some family of f E S ( l t ~  

such that the family of f is translation invariant. Then the support of g is contained 
in the set of common zeros of the functions f. 

2 ~ ~ ( l t  n) is a dense subspace of ~LI(R=). 

3 ~ Multiplication with a fixed ~ E 5(1t") is a bounded linear transformation 
from LI~(I! n) to itself and from L ~ ( R  n) to itself. 

4 ~ . ( f ~ v , g ) =  (f,q~g), i f  fE~LX~(Rn), g E  L~CR"),  ~ E  
5 ~ Every f e~L~(lt ~) can be approximated arbitrarily closely in ~Ll~(lt n) 

by elements of the form ~vf, where ~ E ~(R~).  
Proof of Lemma 2.4. 1 ~ follows f rom (2.2) and  e l ementa ry  dis t r ibut ion theory .  

Applying 1 ~ to  the  family  ~ ( t l  n) we f ind t h a t  g has e m p t y  suppor t ,  hence g ---- 0. 
Thus  2 ~ holds b y  the  H a h n - B a n a c h  theorem.  

To prove  3 ~ we observe t ha t  if  f E ~L~(R"), ~ E S(R~), t hen  

E tT n. 

and  

(~) = r - $0)~(~0)dr 

R rt 

Hence  b y  an easy applicat ion of  Fubini ' s  theorem 

and  3 ~ follows. 

r co ~x A co 

IIf~ll~ ~ Ilfll~ II~llt,~t, 

(2.3) 

i f  0 < e <  1. 5 ~ is thus  proved .  

4 ~ is a direct  consequence of  3 ~ and  Fubini ' s  theorem.  
F o r  the proof  of  5 ~ we choose a funct ion ~ E ~(1t")  such t h a t  ~(x) ---- 1, when 

x belongs to  some open set which contains x = 0. Then  we define ~ E ~( l tn) ,  
e > 0, by  the  relat ion r (x) = ~(ex), x E 1t n, and  observe t h a t  ]]f~0 - -  fl[ia --> 0, 
as e -~  0, for  eve ry  f E ~( l tn) .  B y  2 ~ i t  is thus  enough to  show t h a t  the  opera tor  
no rm of  ?~, when this funct ion is considered as mult ipl ier  on ~L~(tln), is uni- 
formly  bounded,  as e--> 0. B y  (2.3) this no rm is 

_< I,~(~/,~)l(l + I~1) ~ ~-~ < ll,~ll~,~, 
p.,,, 
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In  the  following we assume t h a t  n > 2, and t h a t  M is an (n - -  1)-dimensionaI 
inf ini te ly  different iable manifold  in R", wi thout  mult iple  points  and  wi th  non-  
vanishing Gaussian curvature .  E is a compac t  subset of  M and  E ~ denotes  i ts  
in ter ior  wi th  respect  to M. 

W e  shall in t roduce  some spaces of  dis tr ibut ions suppor ted  b y  E.  Th ey  are  
needed in order  to character ize  different  degrees of  vanishing on E ~ for  e lements  
in ~L~(R~). 

Definition 2.5. BI(E  ) denotes  the  space of  all measures on R ~ which can be  
ob ta ined  f rom the  uni form mass dis t r ibut ion on E ~ b y  mul t ip lying it  wi th  funct ions  
in ~(R~),  vanishing on E ~ E  ~ toge ther  wi th  all thei r  derivat ives.  For  m ~ 2, 
B,,(E) is the  l inear space spanned by  the  
par t ia l  der ivat ives  of  order  _~ m - -  1. 

The elements  in B~(E) are obviously 
The assumptions on M have moreover  
x o E M there  exists a neigborhood U~~ of  
one of the  coordinates in R" by  z and  
ordinate  vec tor  by  y, can be wr i t ten  in 

measures in B1(E ) toge ther  with the i r  

bounded  and regular  Borel  measures.  
the  following consequence. For  eve ry  
x 0 with respect  to  M which, denot ing 
the remaining ( n -  1)-dimensional co- 
the form 

{(y,z)]z = y~(y) , y E V} , 

where V is a closed ball in R n-l, and where ~ is real and inf ini tely differentiable 
with non-vanishing Hessian in V. Hence,  if  # C BI(E  ) has its suppor t  in U:~ 
its Four ie r  t r ans form ~ can be represented  in the form 

7*(9, ~) = (2~)-~/e~(<x''~+~J~(x)~) ~(y)dy ,  
. ]  

Rn - -1  

E R n-l, ~ E R, where cf E ~ ( R  "-x) has its suppor t  in V ~ I t  follows f rom L e m m a  
2.1, choosing 2A = m = n --  1 in (2.1) t h a t  ]~(~)I(1 § ]$])(=-~)/2 is bounded  for  

E R n. Taking an a rb i t r a ry  # E Bx(E), it  can b y  a s t anda rd  compactness  a rgument  
be par t i t ioned  into a f ini te  sum of  measures of  the  above type ,  and we obta in  there-  
fore the  following lemma.  

L]~MMA 2.6. ~(~)(1 § l~l) (~-1)/2 is bounded for $ E R ~, i f  # E BI (E  ). 
Let  us now assume tha t  # E BI(E ) and t h a t  D# is a par t ia l  der ivat ive  of  /z 

/N 

of  order  p _~ 0. Then  D# = P/~, where P is a monomial  of  degree p. Thus  

ID~(~)I(1 + I~]) (n-D/2-p 

is bounded  for ~ E R ", b y  L e m m a  2.6. For  # C B,,(E) we can thus  conclude t h a t  

Ih(~)[(1 + I~1) +-')/~==+~ 

is bounded,  for ~ E R ~, and this proves the  following lemma.  
n §  

LEMMA 2.7. B,~(E) C ~L~~ i f  m ~ o~ § 2 
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We are now prepared to introduce the subspaces of L~(R n) which shall be the 
objects of  our investigation. 

Defini t ion 2.8. 
1 ~ K ( E )  is the space of all functions in ~(Rn),  which vanish in a neighborhood 

of  E with  respect to R n. 
2 ~ For  every integer m _~ 1, Jm(E) is the space of all elements in ~(I ln) ,  

which vanish on E together  wi th  all their  part ial  derivatives up to the order 

3 ~ For  a ~ --  (n --  1)/2 and  fo revery  integer m ,  1 _~ m < ~  + (n + 1)/2, I , , (E) 
is the annihi lator  in ~L~(R n) of the subspace B,~(E) of ~ L ~ ( R  ~) (cf. L e m m a  2.7). 

4 ~ . For  every integer m ~_ 1 , Ca(E) is the annihi lator  in ~ L ;  ( R )  of the 
space Jm(E) in ~YL~(R~). 

The following theorem contains some prel iminary results on the relations between 
the  spaces int roduced in Definit ion 2.8. The theorem is no t  ent irely new and the 
methods  used in the proof  are known. Cf. Reiter  [7, pp. 37--39] and  Varopoulos 
~10] for results of a similar kind. 

THEO~E~ 2.9. n -  1 
1 ~ 7LI~(R n) ~ Ix(E ) ~ . . .  ~ I[~+(~+1)/2](E), i f  ~ 

2 
2 ~ JL~(R  ~) ~ JI(E) ~ J2(E) ~ . . . .  
3 ~ Let ~(~) = o(1 ~- I~]) -(n-I)!2, as l~]--> ~ ,  and let g have i t s suppor t inc luded  

~L~(R ). in E.  Then g = O. A s  a consequence ~ < -  (n - 1)/2 implies that K(  E) ~ 1 
4 ~ . Let ~(~) = o(1 ~ ]~])m--(~--1)12, as I~l ~ ~ ,  when m is an integer ~ 1, and 

let g have its support included in E.  Then <f  , g> = 0 for every f E J,~(E). A s  
a consequence a ~ - -  (n - -  1)/2 implies that K(E)  = J[:+(n+l)/21(E). 

5 ~ Let ~ ~ - -  ( n - -  1)/2,  l _ ~ m  < ~ +  (n -~  1)/2,  and suppose that 

f E ~L~(R n) VI C~-I(R~). Then f E Ira(E) i f  and only i f  f vanishes on E ~ together 
with its part ial  derivatives of order ~_ m --  1. 

Proof  of theorem 2.9. 1 ~ and  2 ~ are immedia te  consequences of Defini t ion 2.8. 
To prove 3 ~ and  4 ~ we shall use a method  due to A. Beurling [1] and  H. Pollard 

[6] (cf. also Herz [3]). Le t  the distr ibution g have its support  contained in E, 
a n d  Iet f E ~(Rn).  Choose ~ E ~ ( R  ~) so t h a t  it  vanishes outside {x I Ixl < 1} and 
such tha t  

f q~(x)dx = 1. (2~)-" 
, J  

For  every s > 0 we define ~ by  the  relat ion ~(x)~ = e-~q~(x/e), x E R ~, and pu t  
f = f ~  §  where f~ = f  on E2~ = {xldist(x,  E)_~  2e} and  f~ = 0 on CE2~. 
We define f .  % by  the relation 

f * ~ (x) = (2=)-off(x - (xo)dxo, 
a /  
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x E R  ", and define f ~ . q ~  and  f ' * q ~  in the corresponding way. We f ind 
f *  ~ E ~(R~),  f~ * ~ E ~ ( R  '~) and f~ �9 ~ E K(E), and form 

< f , g >  = < f - - f , w ~ , g >  + ( f ~ . ~ v ~ , g > - } -  ( f ' * w ~  , g > .  

The last t e rm vanishes and hence 

(2~)-"l(f, g>l < 
. ]  . ]  

ir n ir ~ 

E 3 (R  ~) and hence the first  t e rm of the r ight  hand  side tends to 0, as s --> 0, 
by  dominated  convergence. The second te rm is, by  Schwarz' inequali ty,  for any  

real fi, 

_ I~d~) l/@(~)['[g(- \1/~ < $/e)12d~) <_ 
R,~ Rn (/ ;2 

< ~-~-~ (2~)-~ IL(x)l~dx I~(~)1~(1 + l~l)vlO( - ~/~)l~(t + I~/~l)-Vd~ . 

~a R" 

The second factor  of the last expression tends to 0, by  bounded convergence, 

if  10(~)l = o(1 + IS1) ~, as 
t h a t  < f , g > = O ,  if 

is finite. 

t~L ~-> ~-  Hence the geometric properties of E2~ show 

lim s-  n/2--Z+ 1/2 sUp If(x) J 
e->O x~E2e 

Choosing fi ~ --  (n --  1)/2, we have ( f ,  g> ~- 0, for every f E ~ ( R ' ) ,  hence 
g = 0. The ann ih i la to r  of K(E) in L~(R ' )  is by  L c m m a  2.4, 1 ~ and  e lementary  
distr ibution theory  the subspace of all g E L~~ ~) wi th  support  included in E.  
I f  a < - -  ( n - -  1)/2, the only such g is the element g :  0. Hence 3 ~ is proved. 
4 ~ is proved in the same way.  

In  order to prove 5 ~ we use a method  of L. Schwartz [8]. I f  # E BI(E) and i f  
D is a part ial  derivat ion operator  of order p, 0 ~ p < m -- 1, we obtain by  p 
part ial  integrations 

( f ,  D~) = (2~)-~(f ,  Dy> = (2~)-~( - 1)P(Df, #7 . 

I t  follows from this t ha t  ( f ,  D/~) vanishes for every # E Bx(E) if  and only if Df 
vanishes on E ~ Varying p and  D we obtain from this the proper ty  5 ~ 
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3. The main  theorem 

We assume in the  following t h a t  ~ ~ - -  (n - -  1)/2 . 
I t  is a consequence of  Theorem 2.9, 5 ~ t h a t  if  E ~ is non-empty ,  t hen  all I,~(E) 

are different  whenever  t hey  are defined.  Another  consequence is t h a t  if  E ~ is non- 
empty ,  t he n  Jm(E) is included in Ira(E), b u t  J,~_I(E) is not  included in Ira(E), 
whenever  the  spaces are defined. Since Ira(E) is closed, we can conclude t h a t  all 
J,,(E) are different,  if  1 ~ m _~ ~ + (n + 1)/2 and E ~ is non-empty .  As for the  
inclusion J,~(E) c I,~(E) i t  is easy to  see t ha t  if  the  b o u n d a r y  of  E in M is too 
irregular,  t he n  the  inclusion m a y  be strict.  This is for instance the  case if  ~ = 0 
and  E contains an isolated point .  We  shall however  in this  section in t roduce  a regu- 
lar i ty  condit ion on E w h i c h g u a r a n t e e s t h a t  Jm(E) = I,~(E), I ~ m ~ ~ + (n + 1)/2. 
We shall in fact  prove  a sl ightly s t ronger  result,  namely  t h a t  eve ry  g E C,~(E) is 
the  limit in a(TL~~ n) , ~L~(Rn)) of a sequence {g~}~o , g, E B,~(E). 

We shall use the  following simple localization lemma,  where the  not ion of  weak 
convergence refers to  a(~ L~~ ~) , ~LI(R")) .  

LEMM& 3.1. Every g E C~(E), 1 ~ m ~ ~ + (n + 1)/2 , is the weak limit of a 
sequence {g.}~o, g, E B,,(E), i f  every point x E E has an open neighborhood U~ c I~ ~ 
such that every g E C,~(E f] ~ )  is the weak limit of a sequence {g~}~, g~ E BIn(E). 

Proof of Lemma 3.1. The  neighborhoods U~ cover  the  compac t  set E and  we 
can therefore  select a f ini te  subcovering (Uv)l q. There  exist  funct ions ~p E ~(R~),  
p = 1 . . . . .  q ,  such t ha t  the  suppor t  of  ~p is included in Up and  such t h a t  Z~e = 1 
in an  open set, containing E. B y  L e m m a  2.4, 3 ~ ~eg E ~ + JL~ ( R )  and, b y  L e m m a  
2.4, 4 ~ q~pg E C,~(E [~ U~). Now g : X~%g, and since every  ~eg is a weak l imit  
of  the  desired kind,  the  same holds for  g. 

The  regular i ty  condi t ion is in t roduced  b y  the  following two definitions.  
Definition 3.2. A closed set F c R n-1 is said to  have  the  restricted cone property 

at a point Yo E R "-1, if  there  exists a ne ighborhood V 0 of Y0 and  a cone K defined 
b y  

K = (y  E R n-1 I (1 - -  5)lYl ~ ( Y ,  Yl~ ~ (~}, 

where 0 <  5 <  1 , y l E R  n - l ,  [Y11= 1, such t h a t  

y - -  K c F ,  (3.1) 

for  eve ry  y E F f] V0. 
Definition 3.3. The  set E C M is said to  have  the  restricted cone property, 

i f  for every  x E E and eve ry  suff icient ly small ne ighborhood V of x wi th  respect  
to  R n, the  or thogonal  project ion of  E N V onto  the  t angen t  hyperp lane  at  x 
has the  res t r ic ted  cone p r o p e r t y  at  the  poin t  x. 

We are now in a posit ion to  fo rmula te  our  main  theorem.  
THnORW~ 3.4. I f  E has the restricted cone property, then every g E C~(E), 
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n + l  
1 ~ m  ~ - ~ -  2 , is the l imit  in a (~L~(R)  ~L~(Rn)) of a sequence (g~)~ 

of  elements in B~(E).  I n  particular, this implies that J,~(E) = Ira(E). 
The projection onto the hyperplane in Definition 3.3 can obviously be substituted 

by a projection onto a suitably chosen coordinate hyperplane. Using such a modi- 
fication of Definition 3.3 and applying the localization lemma 3.1, we see tha t  
Theorem 3.4 is proved, if we can prove the following proposition. 

PROI'OSITIO~ 3.5. Let F ,  V o and K be subsets of R n-~, satisfying the properties 

requested in Defini t ion 3.2, and let V 1 and V 2 be open sets in R "-1 such that 

and such that 

for every Yo E V o , y l  C V 1.  

Voc Lc 

Y 0 - - K c  V I , y l - - K c  V~ (3.2) 

v,,. Let ~f be real and inf ini tely differentiable with non-vanishing Hessian in 
We define in R n the sets 

M 0 ~ - { ( y , z )  l Y e V 2 ,  z=-~(y)}  

E 1 = {(y, z) J y e F F! V1, z = ~(y)} 

E 0 ----{(y,z) l y e F A  Vo, z = ~ ( y ) ) .  

M o is then an (n - -  1)-dimensional manifold with the same properties as those requested 

for  M .  E o and E 1 are considered as subsets of M o. 
n ~ - I  

Let 1 ~ m ~ ~ ~ 2 ' g E Cm(Eo). Then there exists a sequence (g~)~, 

g~ E B,~(E1), which converges in ~ ~ n , a(JL~ (R)  7L'~(R")) to g. 

4. Proof of Proposition 3.5 

This entire section is devoted to the proof of Proposition 3.5, which as we have 
remarked earlier implies our main result, Theorem 3.4. 

We shall first introduce two auxiliary functions fi and y. ~ E ~ ( R  "-1) is a 
function with its support contained in K, and satisfying 

(2~) -("-1) / fi(y)dy = 1 o (4.1) 
J 

Rn--1 

Y = ~(R"-I)  is assumed to take the value 1 in a neighborhood of Vo and to vanish 
outside V r We use the notation ? as well for the function on R ~ with values 
y(y) for every (y ,z )  E R  n. 
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We pu t  

W o - ~ ( ( y , z )  l y e  

W ~ - - ( ( y , z )  l Y e  

W~.----((y,z) [ y C  

and  in t roduce a bi ject ion S of  W2 onto  

V0, zeR} 

i tself  b y  the  def ini t ion 

S(y  , z) ~- (y , z - -  ~f(y)) , 

( y ,  z) C W 2. Obviously S and  its inverse S -1 are inf ini te ly  different iable  on W 2. 
For  every  differentiable func t ion  ~, def ined in a subset Q of  W 2, ~ o S and 
~o  S -1 are inf ini te ly  differentiable funct ions def ined in S-I(Q) and S(Q) 
respect ively.  For  a dis t r ibut ion v, suppor ted  b y  a subset Q of  W 2 we can in 
an analogous way  define dis tr ibut ions v o S and  v o S -I, suppor ted  b y  S-I(Q) 
and  S(Q), respect ively.  

For  a ny  h, 0 ~ h ~ 1, we denote  b y  fih the  measure suppor ted  by  
{ (y ,  z) I Y e R n-l, z ~- 0} and with densi ty  h-(n-1)fl(y/h), y e R n-1. fi~ denotes 
the  measure  suppor ted  b y  the  same hyperplane ,  b u t  wi th  densi ty  h-(n-1)fi( - y/h), 
y C R n-1. 

Defining convolut ion be tween funct ion and  measure in the usual  way,  we see 
t h a t  if  ~ is inf ini te ly  differentiable on W2, then  b y  (3.2) there  exists a differentiable 
funct ion  on W1, obtainable  b y  convolut ing ~ and /~h. We call this funct ion 

* fib. I f  v is a dis tr ibut ion,  wi th  suppor t  included in Wo, then  b y  (3.2) v �9 fib* 
has its suppor t  inc luded in W 1. Using this we can give the  following definition, 
where g is a dis tr ibut ion,  sat isfying the  conditions of  Proposi t ion 3.5. 

Definition 4.1. For  eve ry  h, 0 ~ h ~  1, we p u t  

T*g ~-- ((g o S-1) . /~h ~) o S 

and,  for eve ry  f e ~(Rn) ,  the  funct ion Thf  is def ined b y  

T h f ( y ,  z) ~ y(y)[((f  o S -1) �9 fib) o S ] ( y ,  z ) ,  i f  (y ,  z) e W~, 

T h f ( y , z ) : O ,  i f  ( y , z ) ~ W 1 .  

I t  is easy to  see t ha t  these defini t ions make  sense. We have use for the  following 
lemma,  where we assume 0 ~ h ~ 1: 

LEMMA 4.2. 
]% T*g C B~(E1).  
2 ~ For every f e ~ ( R ' )  we have T~f  e ~ ( R ' )  and 

iiTh f _ 1 7 f l l ~ - ~ 0 ,  as h - + 0 .  

3 ~ There exists a constant C, independent of h, such that 

~1 1 

/ f  f e %(R~). 
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We pos tpone  the  proof  of  the  lemma and  show first  how the  lemma can be 
used to  p rove  Propos i t ion  3.5. 

B y  L e m m a  4.2, 3 ~ Th can be ex tended  to  a bounded  l inear opera to r  f rom 
YL~(R n) into itself, wi th  opera tor  norm _< C, for eve ry  h. We cull its adjoint  AI,. 
Fo r  eve ry  f E %(R"),  e l emen ta ry  dis t r ibut ion theo ry  gives 

(2~)"(f ,  Ahg) ---- (2u)"(Thf,  g) = (y [ ( ( f  o S 1 ) ,  fib) o S ] ,  g)  = 

= ( ( ( f o  S -1) , fin) o S ,  g} = ( f ,  ((g o S -1) * /~1~) ~ S )  : 

--  ( f  , TZg}  = (2=)~ T ' e ) ,  

where the  symbol  ( ,  } refers to dis tr ibut ions on W 1. Hence  A,g ~-- T*g. 
Now it is easy to  conclude t h a t  T*g tends  to  g weakly,  as h--> 0. For  the  

no rm of  the  opera tor  Ah, considered as a bounded  l inear t r ans format ion  f rom 
~L~~ ") to  i tself  is _< C, hence the  elements  Ahg have uni formly  bounded  
norm in L~ ( R ) .  Hence  it  suffices to show, t h a t  ( f ,  Ahg) --> ( f ,  g), as h -+ O, 
for eve ry  f e %(R"). B u t  for such elemnts  f 

( f  , A h g )  - -  ( f  , g)  = ( T . f  - -  7 f  , g)  , 

and  the  r ight  hand  member  tends  to 0, b y  L e m m a  4.2, 2 ~ 
And  since, by  L e m m a  4.2, 1 ~ we have  T*g E BIn(E1), for eve ry  h, 0 < h < 1, 

Propos i t ion  3.5 is proved.  
_Proof of Zemma 4.2. 
1 ~ We know t h a t  the  suppor t  of  g is included in E0, hence g o S -1 has its 

suppor t  included in the  orthogonM project ion of  E 0 into the  coordinate  hyper -  
plane { (y ,  z) [ y C R "-1, z ---- 0}, in the following called the  y-hyperplane .  B y  (3.1) 
and  (3.2) and b y  the  def ini t ions of  E o and  E 1 we f ind t h a t  ( g o S  - 1 ) , f i * ,  for 
eve ry  h wi th  0 < h < 1, has its suppor t  included in the  orthogonM project ion 
of  E 1 into the  y-hyperplane.  Hence  the  supports  of  the  dis t r ibut ions T*g are 
included in E r 

I t  is wel lknown (Schwartz [8], p. 101) t h a t  we have  for some q a represen ta t ion  

q--1 
g o S -1 = ~ /tp @ (~(P) 

p=0 

where /tp are dis tr ibut ions on R "-1, wi th  compact  suppor t  and where  d (p) is the  
der ivat ives  of  order  29 of  the  ]) i rac measure  on R. This has then  to be inter-  
p re ted  in the  sense t h a t  the  represen ta t ion  of  R ~ as R "-1 • R corresponds to the  
coordinate  represen ta t ion  ( y ,  z), y E R "-1, z C R. F r o m  this i t  is easy to under-  
s tand  t ha t  we have  a represen ta t ion  

q.1 

p=0 

where  F~ now belong to  ~(R"-~) .  I t  is seen f rom this t h a t  the  suppor t  of  eve ry  
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~p @ d(P) is included in the support of (g o S -1) �9 fi*, and from this we see at once, 
by applying the mapping S to the two members, that  T*g  C Bq(E1). 

I t  remains to show tha t  ~-1 v a 0 implies tha t  q < m. I f  90q_1 # 0, then it is 
possible to find a function q C ~ ( R ' )  with support included in W 1, vanishing 
on the y - h y p e r p l a n e  together with all derivatives of order < q -- 2, but such that  

< ~ , ( g o S  -1) , f i~*># 0 .  

Hence 

<(~ * 8,,) o s, g} # o, 

which shows that there is a function in Jq_1(Eo), which is not annihilated by g. 

By the assumption g E Cm(Eo) , and thus q ~ m. 

2 ~ The infinite differentiability of Thf, for f E ~(Rn), is a consequence of 
the infinite differentiability of (f o S -1) �9 flh in W 1 and of the assumption on the 
support of 7. The compactness of the support is evident. Hence T h f  E ~(R~). 
The supports of T h f  for f fixed, h variable, are in fact included in a fixed com- 
pact subset of W e. Hence it suffices to show, due to well-known estimates, that  
all partial derivatives of T h f  converge uniformly to the partial derivative of yr. 

I t  is evident tha t  it suffices to show tha t  the partial derivatives of k *fih con- 
verge uniformly to /~ on every compact subset of W1, if k E %(R~), which is 
immediate. 

3 ~ Let us agree in the following to interpret the product of y and any complex- 
valued function defined in l~ ,  as a function on t l  ~ with values determined by 
the product in W1, and with the value 0 outside W 1. Then for f C %(R~), with 
the changes in the order of the integration motivated by absolute convergence, 
we have, for (y,  z) E R ~, 

Y(Y)/ f (Y - -  Yo, z -~ y ( y  - -  Yo) - -  ~(Y))h-(~-~)fl(Yo/h)dYo = T , f ( y  , Z) 

Rn-- 1 

r ( v )  / f ( y  - t ~  , z § w(v - h~) - -  V,(y))~(~)g~ = 

/ i  

, ]  

Rn--I 

R R rt-1 R n-1 

Hence, by Fourier's inversion formula, we have for every (y,  ~) E R ~ 

(2z)-1 / Thf(y  , z ) e~dz  ~- 

Ir 

: ~'(y) f f e--~(<Y--h'~'~l~ 
Rn--1 Rn--1 

and forming the Fourier transform of T h f  we thus obtain 
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(2:r), '-1 T h f ( v ,  $) = (2z) -1 T f f ( y ,  z)e ~zc+i<y''J* d z d y  = (4.2) 

R n-1  R 
f l  

/ d v o f ( ~ ] o  , $ )E(~  , ~]o , $ , h ) ,  
, ]  

Rn-1 

where ( ~ / , $ ) E R  n and where, for every  (V,~/o,$)  C R  2"-1 

J , ]  
Rn--1 Rn--1 

The funct ion ( y ,  a) --+ (~f(y - -  ha)  - -  ~p(y))/h is infinitely differentiable on the 
suppor t  of  ( x ,  y ) - +  y(y) f i (a)  because of  (3.2), and each par t ia l  der ivat ive has a 
bound,  uniform in h. Fur thermore ,  the  Hessian of  the  funct ion is - -  H ( y  - -  h a ) H ( y ) ,  
where H is the  Hessian of ~, hence its inverse has bounds,  which are uniform 
in h. Applying L e m m a  2.1 wi th  m =  2 n - -  2 and A = n ~ -  [~I, we obtain  for 
every  (~ , ~o, $) E R 2~-I, 

(  _o!t 
IE(v,  V0, r  h): ~ D(1 q- ISh:) -(~-:) 1 -~ 1 + t~h[! ' 

where D is a constant ,  independent  of  h, and b y  (4.2) we obtain  

II ~f[l~ = d~ IT~I(~, $)1(1 -t- 1(~, $)l)~d~ --< (4.3) 
,,J 
I~ i~n--1 

< (2:r) ~-~ d$ d~0]f(~o, $)1 E(W,W0, ~,  h)](1 § [(~, $)l)~d~. 

R R n -1  Rn--1 

B u t  e lementary  inequalit ies show tha t  

1 + < (1 + l(~o, ~)1) ~ 1 + : ~ l /  ' 

for every  (~ , ~]o, $) ~ R~n-~ and hence 

/ I E ( ~ , ~ o ,  h)l(1 + I(~, r < 

Rn--1 

D(1 -~ I(Vo, $)I) ~ (1 + IShl)-(n-a) 1 q- f - ~  ~ i ]  d~ = 

Rn--1 

= D1(1 q- ](r? o, $)[)~, 

for every  (~0, $) ~ R~, 

and 3 ~ is proved.  

where D 1 is independent  of  h. Hence  b y  (4.3) 

IIThfJ]~ ~ (2:r) 1-n Dl[[fll ~ , 
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