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1. Introduction 

We continue the programme begun in [1] of studying the (topological) eohomo- 
logy of operator algebras. In that  article, we proved that  cohomology of a type I 
roll  lXTeumann algebra with coefficients in the algebra vanishes [1: Theorem 4.4]. 
Employing that  theorem and the various preparatory results on centre adjustment 
of eocycles, we prove (Theorem 2.4), in this paper, that  each cocycle on a (general) 
yon Neumann algebra with coefficients in the algebra cobounds a cochain with 
coefficients in the algebra of all bounded operators on the t t i lbert  space on which 
the yon l~eumann algebra acts. This theorem is, then, used to prove (Theorem 3.1) 
that  cohomology with coefficients in the algebra vanishes for hyperfinite yon 
I~eumann algebras. 

The argument proving Theorem 2.4 is structurally the same as tha t  appearing 
in [4; Theorem 4]. I t  is made more difficult by  the fact that  higher-dimensional 
(norm-continuous) cocycles do not satisfy automatic weak continuity conditions 
(as do derivations [4; Lemma 3]). This same difficulty rules out certain direct 
approaches to dealing with the hyperfinite case. 

We wish to express our thanks for the hospitality of the Centre de Physique 
Th~orique, C.N.I~.S., Marseille and the Mathematical Insti tutes of the Universities 
of Copenhagen and Aarhus, Denmark during various stages of the research in this 
article. Both authors acknowledge with gratitude the partial support of the NSF, 
and the first-named author that  of the Guggenheim Foundation. 
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2. Cobounding in ~(c)/) 

In this section we show (Theorem 2.4) that  each n-cocycle with coefficients in 
our yon •eumann algebra ~ is the coboundary of a cochain with coefficients in 
~(Pd) .  This is precisely analogous to the step in the proof of the Derivation Theorem 
establishing that  derivations are ))spatial>> (cobound an operator ~7~ in ~ (9~)  -- 
see [4: Theorem 4]). The present proof is similar in structure to the proof for deri- 
vations. We extend our cocycle to the algebra generated by a maximal abelian 
subalgebra of the commutant  and our yon l~eumann algebra, after establishing 
suitable boundedness conditions. Unlike the derivation case, the extension of the 
cocycle from this algebra to its weak-operator closure, a yon Neumann algebra of 
type I, is not a result of automatic ultraweak continuity (as is the case with deri- 
vations [4; Lemma 3]). I t  is easy to convince oneself that  (norm-continuous) higher- 
dimensional cocycles are not necessarily ultraweakly continuous by  passing to the 
coboundary of a suitable (norm-continuous) eochain which is not ultraweakly 
continuous. 

In fact that  (Theorem 2.1), nonetheless, each cocycle on a (concretely repre- 
sented) C*-algebra with coefficients in its weak-operator closure can be adjusted 
by  a coboundary so that  the resulting cocyele has an extension to the weak-operator 
closure (which is, again, a coeycle) replaces the missing automatic ultraweak conti- 
nuity. This fact is established with the aid of [1; Theorem 3.4] (the centre adjustment 
of coeycles) and the properties of the universal representation. 

In the argument which follows, we will have occasion to extend a multilinear 
mapping from a C*-algebra to its weak-operator closure. One would hope, of course, 
that  when the mapping is ultraweakly continuous (separately) there is an ultra- 
weakly continuous extension. This has been proved in another connection and will 
appear elsewhere. I t  involves other techniques; and, since we will be dealing, here, 
with the universal representation, we have chosen (and are able) to use the simpler 
(more awkward) procedure of successive extensions. 

TI~.ORE~ 2.1. I f  q~ is a faithful representation of the C*-algebra 91 and 
e e Z~(~(~) , ~(~)-), there is a ~ in Z~(q~(91)-, q~(9~)-) whose restriction ~ to q~(9~) 
is cohomologues to ~ (in Z~(qJ(~), ~0(9/)-)). 

Proof. From the properties [3: pp. 181--182] of the universal representation 
of 9i, there is a central projection P in ~(9I)- and an isomorphism ~ of ~(91)-P 
onto ~(9/)- which extends the mapping ~f(A)P ~ ~(A). We denote by  ~,  the 
isomorphism induced by  ~ of the cohomology of ~p(?l)P and ~p(~)-P having 
coefficients in ~(9I)-P with that  of ~0(9~) and ~0(91)-, respectively, having coeffi- 
cients in ~(9i)-. Let  ~0 (in Z~(y~(91)P, ~(Pj[)-P)) be a;~(e). I f  there exist ~o 
(in C~-I(y~(~)P, y~(Pj[)-P)) and 3 0 (in Z~(~(91)-P, ~(~/)-P)) such that  ~ 0 -  A~0 : 
~o]~(~)P, let ~ (in Z:'(~(91)-, ~(~)-)) and ~ (in C~-~(~0(91), ~(91)-)) be a.(~0) 
and a.(~0), respectively. Since, also, ~ ~ a,(~0), it follows that  ~ -- z~ ---- u 
proving the theorem. I t  is now sufficient to consider the case in which ~ is the 
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fai thful  representat ion A ---> ~,(A)P of ~ (one could even assume t h a t  9/[ is given, 
acting on a Hi lber t  space 9~, in its universal representation,  and  q ( A ) =  A P  

for A in g[). 
Wi th  ~ ( A ) =  l v (A)P  and ~ replaced by  ~0, let ~1 in Z2(~v(N), ~v(91)-P) be 

fl ,  l(Qo), where fl is the isomorphism ~v(A)--->~,(A)P of ~v(9I) onto ~v(~)P (the 
ident i ty  isomorphism of ~o(91)-P being used in defining fi.). 

Since ~x is bounded,  using the properties of the universal representat ion [3; 
pp. 181--182], A --~ ~(A , A2,  �9 �9 �9 , An) has an u l t raweakly  continuous extension 
from ~v(~) to ~v(gi)-. The resulting mapping A 1 . . . . .  A - - ~ n ( A 1 , . . .  , An) is 
mult i l inear from ~v(91)- • ~v(91) • . . . • ~o(~) to ~v(N)-P. Continuing, wi th  successive 
extensions, we construct,  for each k ( =  1 , . . .  , n), a mapping ~lk which is multi-  
linear from ~v(91)- • . . . • ~v(N)- • ~v(91) • . . . • ~v(91) (where the first  k factors 
are ~v(91)- and  the  last n -  k are ~v(~)) into ~v(~)-P. Moreover, ~lk is ul t ra-  
weakly continuous in its k th  a rgument  and  extends and has the same bound as 
~lk-1- For  nota t ional  convenience, let ~x0 be ~1 and  gl be ~ln ( =  e1~+1). Then 
~ e c2(~(~)-, ~(~)-P). 

By showing, inductively,  t h a t  

(A~,k)(A~ . . . .  , An+~) = 0 ; A~ . . . . .  A,. ~ ~(9.1)- , A~+~ . . . . .  A,~+~ e ~(9.I) , (P~) 

we will establish (P,+~) t h a t  ~1 ~ Z](~v(~)-, ~v(gI)-P). Since ~x e Z2(~v(~ ), ~v(91)-P), 
(P0) follows. Suppose (P~_~) is given. Wi th  A o . . . . .  A~ in ~v(gl)- and 
A~+ 1 . . . .  ,A=+ 1 in ~o(gI), we have 

(z] elk)(/1 . . . . .  A~+~) ~- AI~Ik(A 2 , . . .  , An+~) 
n + l  

-- ~ (--)J~,,(A 1 . . . . .  A j _ 2 , A j _ I A j , A j + I , . . .  ,A~+I)  (1) 
j=2 

+ (--)n+~ol~(A~ . . . . .  An)An+~ �9 

By construction of ~,~ and ~ _ ~ ,  A~--> e~(A~ . . . . .  A~ . . . . .  A~+~) = 
~o~_~(A~ . . . . .  A~ . . . . .  A~+~) is u l t raweakly  continuous, as is each of the other 
terms on the r ight  side of (1) in its a rgument  A~. Thus A~---+ ( A ~ ) ( A ~  . . . . .  
A~, . . . , A,+t)  is u l t raweakly  continuous on ~o(0/)-. Now, (AO~)(A~ . . . . .  A,,+~) 
vanishes when A~ ~ ~0(9~), by  inductive hypothesis,  since (from (1)) it  coincides 
wi th  ( A ~ _ ~ ) ( A ~ , . . . ,  A,,+~), in this case. The ul t raweak densi ty  of y~(9~) in ~o(gI)- 
combined with the foregoing, yields (P~). 

F rom [1; Theorem 3.4], there is a cochain ~1 in C2-~(~o(N) -, ~0(9s such 

t h a t  ~ -  A ~  ( ~  u vanishes when any  of its arguments  lies in the centre of 

~(~l)-. Le t  ~o (in C2-~(y~(9~)P, ~(~I)-P)) be fi, (~I~p(9~)). F rom [1; L e m m a  3.2], 
~ ~NZy(w(~)- ,  F(~I)-P); so t ha t  

v~(A~P . . . .  , AnP)  = u . . . . .  A n ) P  = 71(A~ . . . . .  A~), 

for A ~ , . . . ,  An in ~o(91) (recalling t h a t  ~(A~ . . . . .  A,) ~o(9I)-P) .  Thus 
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It follows t h a t  e0 - -  A~0 = ~01~~ P ,  wi th  ~0 t a k e n  as 7~1[~0(~)-P (e Z2(~0(9/)-P, 
~(~)-P)). 

The  l e m m a  which follows describes a canonical  ex tens ion  of a centre  normal i sed  
n-cochain on a y o n  N e u m a n n  a lgebra  to  a centre  normal i sed  n-cochain  on a C*- 
a lgebra  wi th  t y p e  I yon  N e u m a n n  a lgebra  closure. 

LEM~A 2.2. I f  ~ is a yon N e u m a n n  algebra acting on a Hilbert  space c)C , d 
is a m a x i m a l  abelian *-subalgebra of ~ti', and  S is the C*-algebra generated by 

and  ~4, then each ~ in  N C ~ ( ~ ,  ~ )  extends uniquely  to an  element ~ of  

N C ~ ( 5 , S ) .  The  mapp ing ,  ~--->~, is l inear and  isometric; and  A~ = A~. 
Proof .  W i t h  ~ the  la t t ice  of  projec t ions  in d ,  a n d  50 the  set  of  all opera to r s  

of  the  fo rm E1T 1 H- �9 �9 �9 H- E, ,T , , ,  where E 1 . . . . .  E~ E ~ and  T 1 . . . . .  T~ E ~ ,  S o 
is a n o r m  dense *-subalgebra  of  3 .  Given  S 1 . . . . .  S ,  in 50, we m a y  suppose  
t h a t  

S i = Ei,  1Tj,~ @ . . .  + Ej, m(j)Tj,,,(j) ( j  = 1 . . . . .  n) (2) 

I f  a C N C ~ ( 5 , 5 )  then,  since each Ei,k lies in the  centre  ~ /  o f  5,  

-,0) m(~) 
a(S~, . . . ,  S~) = ~ . . .  ~ a(El.k0)Tl,k(1) . . . . .  En,k(,)T,,k(,~)) 

k(1)=1 k(~)=l 
re(l)  re(n)  

= ~ . .  �9 ~. El ,  k(x). �9 �9 E,,,k(,)a(T1, k(1), �9 �9 �9 , T~, k(,)) �9 
~(~)= 1 ~(~)= z 

I n  par t icular ,  if  ~ satisfies the  conclusions of  the  l emma,  t hen  

re(l)  re(n) 

~($1 . . . . .  S n ) =  ~ . . .  ~ Ex ,k0 ) - . .E , ,~ ( , )~ (TI ,  k ( , ) , - . - , T , , k ( , ) ) .  (3) 
k(1) = 1 k (n )  = 1 

This  equa t ion  de te rmines  ~(S1 . . . . .  S~) un ique ly  wheneve r  S1 . . . .  , S ,  E 50; 
and  the  uniqueness  of  } (if i t  exists)  now follows f rom its n o r m  cont inu i ty ,  t oge the r  
wi th  n o r m  dens i ty  of  S 0 in 5 .  

I n  order  to p rove  the  existence of  }, we show firs t  t ha t ,  for $1 . . . . .  S ,  in 50, 
the  r ight  h a n d  side of  (3) depends  only on $1 , �9 �9 �9 , S ,  (but  no t  on the  pa r t i cu la r  
w a y  in which these  opera tors  are represen ted  in the  f o r m  (2)). F o r  this,  i t  is suff icient  

to show t h a t  the  r ight  hand  side of  (3) is zero i f  Ei, 1 T j , 1  - @  . . . -~ Ei ,  m ( j ) T j ,  , . (1)  ~-- 0 
for some j ,  1 _ < j  < n. B y  [2: L e m m a  3.1.1], this  las t  condi t ion entai ls  the  
exis tence  of  opera tors  C~,~ ( r ,  s = 1 . . . . .  re(j)) in the  centre  ~ of  q~ such t h a t  

m(.i) 
C~,,Tj,~ -= 0 (S = 1 . . . . .  m( j ) )  , (4) 

r ~ l  

-*(1) 
Ej , ,Cr . ,  ~-- E j , ,  (r ---- 1 . . . . .  r e ( j ) ) .  (5) 

s = l  
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Since q E N C ' ~ ( ~ ,  c~ ) ,  i t  follows f rom (4) and  (5) t h a t  

-,(.i) 
E i,k(j)Q(Tl,k(1) , �9 �9 �9 , T j ,  k(j) ,  �9 �9 �9 , Tn,k(n)) 

k(j)=l 
m(j) m(j) 

= ~.  ~,  E i , , C k ( j ) , , e ( T l , k ( 1 ) , . . . ,  T j , k ( j ) , . . . ,  T,~,k(,)) 
k(j)=l s=1 

~(i)  ~(~) 
= ~, Ej,s ~, e (T l , k (1 ) ,  �9 �9 �9 , Ck(j ) , ,T j ,  k ( j ) , . . . ,  Tn,k(,,)) = O.  

s= 1 k(j) = 1 

B y  opera t ing  on the  left  h a n d  side of  th is  chain  of  equat ions  wi th  EI ,  k(1) �9 . '  
Ej_1,k(,._i)Ej+l,k(j+x) . .  �9 En, k(,), s u m m i n g  over  each  of  the  var iab les  k(1) , . . . .  
k ( j  - -  1), k ( j  ~- 1 ) , . . .  , k ( n ) ,  and  using the  c o m m u t a t i v i t y  of  the  projec t ions  
E . . . .  we deduce t h a t  

re(l) re(n) 

�9 "" ~ E l ,  k ( 1 ) . .  �9 E n ,  k (n )~ (T1 ,  k(1) . . . . .  T n ,  k(n)) = O .  
k(1)= l  k ( n ) = l  

This  shows tha t ,  i f  $1 ,  �9 �9 �9 Sn in S 0 are represen ted  as in (2), t hen  the  equa t ion  

re(l) re(n) 

~0(S1 . . . .  , ~qn) ~-- ~. �9 "" ~ El ,  k(1)" �9 �9 En, k(n)~(T1, k(1) . . . .  , Tn, k(n)) (6) 
k(1) = 1 k(n) = 1 

defines,  unambiguous ly ,  an  e l emen t  r . . . .  , S~) of  30. I t  is a p p a r e n t  t h a t  ~0 
is a mul t i l inea r  m a p p i n g  of  (30) ~ into ~0; and  ~0 ex tends  Q since 

~ 0 ( R 1  . . . .  , R n )  = ~ ( R  1 . / . . . .  , R~.  I )  = Q(R1 . . . .  , R=) when  R 1 , .  . . . .  R~ E ~ .  
Our nex t  objec t ive  is to p rove  t h a t  ~0 is bounded .  F o r  this,  suppos~ t h a t  

S 1 , . . . ,  Sn in 30 are r ep resen ted  as in (2). There  is an  o r thogona l  f ami ly  
{F1,  �9 �9 �9 F~} of projec t ions  in ~ such t h a t  each  Ej, k occurr ing in (2) is the  sum 
of a collection of  F j s .  E a c h  Sj can be expressed  in the  fo rm 

= F 1 R j , 1  -~ . . .  -~ F m R j ,  m ,  (7) 

wi th  the  Rj, k's in ~ ;  and,  since F~ . . . .  ,F,~ are pairwise or thogonal ,  

rn 

~0($1 . . . .  , S , )  = ~ F k ~ ( R x , k  . . . , R , ,  k) (8) 

W i t h  Qk the  cent ra l  carr ier  of  Fk in ~ ' ,  we can replace Fk b y  FkQk in (8). 
Since ~ E N C ~ ( ~ ,  ~,~), we ob ta in  

C o ( S 1 , . . . ,  S,~) = ~ F k e ( Q k R ~ , k  , . � 9  QkRn, k) �9 (9) 
k = l  

Since F 1 , . . . , F k are o r thogona l  pro jec t ions  which c o m m u t e  wi th  ~ (and thus  
wi th  each va lue  of  ~), while the  m a p p i n g  Q k R - +  F k R  is a *- i somorphism f rom 
~?~Q~ onto  ~)~F~ (and is therefore  isometric) ,  i t  follows f rom (9) and  (7) t h a t  



60 At~KIV l~6R MATE/CIATIK. Vol. 9 No. 1 

Ii~0(s~ . . . . .  S~)ll = max  ]IFk~(QkR~, k . . . . .  QkR=, k)Ii < max  He][ [IQkR~, ~ll. �9 �9 I[QkR=, kl[ 
l~k<_rn  l < k < m  

= max  II~ll IIFkR~, kl[. �9 �9 IIFkR~, k]l = max  II.oll IlFkSilI . . .  lYks,][ < I]QII llSx[I �9 �9 �9 IlSoll �9 
l<k<m l<k<rn 

Thus Qo is a bounded mult i l inear mapping of (50) = into 5o, and  II~01l < II~lt- 
The reverse inequal i ty  is apparent ;  so [IQoll : II~ll. Since go is norm dense in 5 ,  eo 
extends by  cont inui ty  to an element ~ of C2(5 ~ , 5), and  II~ll--l[e0!l = II~ll; the 
l ineari ty of the mapping e--~ ~ is evident.  

We show next  t h a t  ~ r NC'~(S,  3); t h a t  is, ~ ( $ 1 , . . . ,  E - I ,  E E ,  E+~ . . . .  , S~) = 
E ~ ( S ~ , . . . , S ~ )  for all S 1 , . . . , S ,  in ~ and E in the centre ~ of 5 ~. Since 

is the norm closed linear span of ~ and 5 o is norm dense in ~, it  is sufficient, 
by  the  cont inui ty  and mul t i l inear i ty  of ~, to establish this last equat ion for the 
case in which S ~ , . . . , S n e S o  and  E e ~  (whence, ~ can be replaced by  Co). 
We m a y  suppose t h a t  S~ . . . . .  Sn are represented as in (7); the corresponding 
expression for E S  i is then  EF~Ri,  1 - ~ - . . . - ~  EF,~Rj, m, and the appropriate 
equat ion of the form (6) yields 

eo(S~ . . . . .  S~_~ , E S  i , Sj+t . . . . .  S,,) = ~ E F ~ ( R 1 ,  ~ . . . . .  R,,, ~) = E~o(S ~ . . . . .  S,~). 
k = l  

I t  remains to prove t h a t  A~ = (A~i. Wi th  So . . . .  , S n in 50 represented as 
in (7), the corresponding expression for Sj_~Sj is F,Ri_I ,  ~Rj,~ q- . . .  q- FmRi_~, ~Ri, m. 
Since ~ extends ~0, and  F~ . . . . .  F= are pairwise orthogonal  projections which 
commute  wi th  c~ (and hence with  each value of ~), it  follows from (8) t h a t  

( ~ ) ( S o  . . . .  , s~) = ~'oeo(S1 . . . . .  s , )  + ~ ( -  1)Jeo(so,.. . ,  s j_ : ,  Sj_lSj ,  Sj§ . . . . .  so) 
j--1 

+ ( -  ~F+loo(So . . . .  , S~_l)S~ 

= ~ Fk{R0. ko(Rl~ . ~ . . . .  , R . , .  ~) 
k=l 

~- ~ (-- 1)Jo(Ro, k , " " " , Rj--2,  k ,  J~k--1, k ' R j ,  k ,  " R j - r l ,  k . . . . .  R n ,  k )  
j--1 

-[- ( - -  1 )n+l~(Ro ,  k . . . .  , R n - l , k l R n , k }  

: ~ Fk(d~)(Ro, k ,  �9 � 9  Rn,~) 
k - - 1  

= (~e)(s0 . . . . .  sn) 

(where the last step results from the equation,  corresponding to (8), for the element 

AQ of _YCy+l(~?~, c?~)). The mult i l inear  forms z]~ and  (zl~) on ~n+l are bounded,  
and take  the  same values on the dense subspace (50)"+1; so, by  continui ty,  

A~ = ( ~ ) .  
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COrOlLARY 2.3. With ~ ,  ~4 and S satisfying the conditions of Lemma 2.2, 
each ~ in N Z ~ ( ~ ,  c-~) extends uniquely to an element ~ of NZ~(J ,  5). 

Proof. I f  Q E NZ2(C2~, oN) then, by Lemma 2.2, ~ extends uniquely to an 

element ~ of NC~(3 ,~),  and A ~ =  ( A ~ ) =  0 = 0. Thus ~ E N Z 2 ( J , 5 ) .  
The possibility of extending a cocycle as in Lemma 2.2, ~)adjusting)) it and then 

extending it to the (type I) weakoperator closure (of 3) combined with the fact 
[1; Theorem 4.4] that  n-cocycles on type I yon Neumann algebras cobound allows 
us to prove: 

T~EoIcE~ 2.4. I f  cN is a v o n  Neumann algebra acting on a Hilbert space 9~ 
and o C Z2(C~,~) ,  there is a ~ in C~(Q~, ~ ( 9 ( ) )  such that ~ = AS. 

Proof. From [1; Theorem 3.4]; there is a ~ in C2-~(c~ , ~ )  such that  
-- A~ ( ~  ~) E N Z ~ ( ~ ,  ~ ) .  With ~ a maximal abelian *-subalgebra of ~ '  

and J the C*-algebra generated by q~ and ~4, there is, by  Corollary 2.3, a 
(unique) ~2 in NZ'2(g , J )  extending ~ .  Theorem 2.1 provides a S~ in 
C~-~(~ ,3- )  such that  ~ -  A~2 ( =  ~a) has an extension ~a in Z 2 ( $ - , ~ - ) .  

Since 5" contains both c/~ and ~ ,  and ~4 is maximal abelian in ~?~'; 
, ~ ' ~  Q4'fl r ~4. Thus ~-,  having an abelian commutant,  is of type I. 

From [1; Theorem 4.4], there is a ~a in C~-~(5 "- , g - )  such that  ~a = A~-~. Let 

~3 be ~1~74; so that  ~3 E C2-~(c~, S-)  and A~]3 = ~lc~. Let ~ be ~21~; so 
that  ~ ~ C2-~(c~, ~-).  With ~2 taken as O~ 1 ~74 , a2 E Z 2 ( ~  , 3) C Z2(c~ , ~-). 
Then % - -  zJ~]: -~ A~]3- BUt ~1 = ~21C~%) = 0"2 = zJ(V2 @ ~]3) ~- ~ - -  A~I" Now 
S ~ E C 2 - ~ ( ~ , ~ ) c C 2 - ~ ( ~ , X - ) ;  so that  0 = A ( ~  + ~ + S ~ ) ,  with ~z@~a-t-S1 
in C~-i((?~,S-). Choosing Vz + ~a + S~ as S completes the proof. 

3. The hyperfinite case 

In  this section, we prove that  the cohomology of a hyperfinite yon Neumann 
algebra with coefficients in that  algebra vanishes. The result that  cohomology of 
u.h.f. C*-algebras with coefficients in a dual module vanishes is established by 
meaning techniques. 

TItEOR~ 3.1. I f  ~'~ is a hyperfinite yon Neumann algebra H2(~4 , ~ ) =  O. 
Proof. Suppose, first, that  ~ '  is hyperfinite. From [5; Lemma 5], there is 

a bounded projection z of ~(gg) ,  the algebra of all bounded operators on the 
tIilbert space 9 i  on which ~ acts, onto c/~, having (among others) the property 
that  ~ ( A T B ) =  Aze(T)B, for A and B in c~. With ~ in Z2(c?,~, c~), Theorem 
2.4 tells us tha t  there i s a  S in C~-I(,~ , ,~/~(c)~)) such that  ~-----At. I f  ~ is ~ o S  
then ~ C C:-l(c/~, c~), and, with A s , . . .  , A ,  in ~?~, 
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( A ~ ) ( A , , . . . , A , ) =  A I ~ ( A 2 , . . .  , A ~ ) -  ~ ( - ) i ~ ( A ~  . . . .  , A  s : , A j A j _ x , A j + I , . . . , A n )  
j=2 

+ (--)"~(A1 . . . .  , An i)An 

= :~[A~(A1 . . . . .  , AD] = ~[e(A1 . . . . .  A,)] = ~(A 1 , . . . ,  A~) . 

Thus H~(~?~ , ~ ) - - - - 0  when c~, is hyperf in i te .  
F r o m  [6; Theorem 12.2], each yon  N e u m a n n  algebra can be represented  in a 

))standard>) form in which, in par t icular ,  it  is * ant i- isomorphic to  its commutan t .  
Since H ~ ( ~ ,  ~2() is independen t  of  the  representa t ion  of  ~ as a yon  N e u m a n n  
algebra, we m a y  assume t h a t  ~?( is represented  in this s t anda rd  form. Then  ~ '  
is hyperf in i te ;  and, f rom the  preceding, H : ' ( ~ ,  ~ )  = 0. 

R e m a r k  3.2. There  are o ther  routes  we could take  to  a p roof  of  the  preceding 
theorem which would avoid  [6]; bu t  t hey  refer  to the  )>internal)> proper t ies  of the  
hyper f in i t e  ~ and  have  to  be argued more closely. The  use of zr gives some 
informat ion  not  no ted  in the  s t a t emen t  of Theorem 3.1; viz. H:(C?~, ~() = 0 if  
~ '  is hyperf in i te .  I t  is quite possible, though,  t h a t  this occurs only  when ~ is 
hyperf in i te .  

In  the  nex t  result,  the  dual  module  might  be, for example,  the  yon  N e u m a n n  
algebra closure of  the  C*-algebra in a given representa t ion.  

THEOREM 3.3. I f  a C*-algebra 91 is 

subgroup cg of  its un i tary  group, and 

//2(91, ~ )  = 0. 

the norm closed l inear span  of  an  amenable  
cH~ is a two-sided dual  91-module, then 

Proof.  From,  [1; L e m m a  3.3], there  is a mean  fi f rom I~(~V, c)~'l) into c}11. 

With  ~ in Z2(91, cff~), Ax . . . . .  An_ 1 in 9I and  V in q/,  define $(A1 . . . . .  A,_I)  
to be fi(~), where ~(V) = V * ~ ( V ,  A 1 . . . .  , An_l) .  Since ~ depends mul t i l inear ly  
on the  paramete rs  A 1 , . . . ,  A ,_  1 and fi is linear, ~ is mult i l inear.  Moreover  

I I ~ ( A 1 , - . . ,  An_0][ = ])~(~)1[ --< I!~[I --< Ii~l]" HAIII . . .  IIAn-l[I ; 

so t h a t  ll~Ii --< I[~1], and  ~ e C2-1(91, off/). 
We  prove  t h a t  Q = A ~ .  Wi th  W in ~V, since ( A Q ) ( V ,  W , A  1 , . . . , A n . 1 ) - ~  0 

(in the  no ta t ion  of  [1; L e m m a  3.3]), 

~w(V)  = ( V W ) % ( V W  , A ,  , . . . ,  & - O  

= W * V * [ V ~ ( W ,  A 1 . . . . .  A~_I) @ ~(V,  W A  1 , A 2 . . . . .  A~_I)  

- -  ~ ( V  , W , A IA2  , Aa . . . . .  A , _ I )  - /  . . . 

@ (--  1) 'e (V,  W ,  A m . . . . .  A , _ 3 ,  A n _ 2 A , _ i )  @ ( - -  1)~+I~(V, W ,A~, . . . ,A~_2)An_I]  �9 

Thus,  f rom the propert ies  of  fi [1; L e m m a  3.3], 

~(A 1 . . . . .  A~_I) = / i ( ~ )  = fi(~w) = W*[~(W, A 1 , . . . ,  An_l) -~- ~e(WA1, A 2 , . . . ,  A~_I) 

- -  $ (W,  A 1 A 2 ,  A 3 ,  �9 . . ,  A~ 1) + �9 �9 �9 -~ ( - -  1)~( W , A~ . . . .  , A , _ 3 ,  A , - 2 A n  1) 

@ (--  I ) "+ I~(w,  A 1 , . . .  , An_2)A._I] 

= W*[~(W,  A 1 . . . .  , An_l) @ W ~ ( A  1 . . . .  , An_i) - -  ( A ~ ) ( W ,  A 1 ,  . . . ,  An_l) ] ; 



OOHOMOLOGY OF O P E R & T O ~  A L G E B R A S  II. 63 

and e(W, At,  . . . ,  A,_I) = (A~)(W, A I , . . . ,  A , _ 0 ,  (10) 

for W in D/. As 9~ is the  n o r m  closed l inear  span  of  ~V and  b o t h  e and  A~ 
are mul t i l inear  and  bounded;  it follows f rom (10) t h a t  e ~ ~ .  Thus  H ~ ( ~ ,  ct]~) = 0. 

COROLLARY 3.4. I f  9~ is an abelian or a u.h.f. C*-algebra, Hy(9~, c)/]/) _-- 0 for 
each two-sided dual ~l-module c~?. 
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