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1. Introduction 

In previous work [18], [19], [20], one of the authors introduced a generalized 
modulus of continuity of a function f E L p. Like the usual I2' modulus of con- 
t inuity it is a function of a positive variable a, but depends also upon a measure 
a. By suitable specialization of a this generalized modulus (written mo,p(f; a)) 
can serve as a measure either of the smoothness of a function or of the degree to 
which the function is approximable in L p norm by its convolution with (1/a)k(t/a), 
k being a given integrable function. Comparison theorems were proved enabling the 

modulus to be estimated in terms of the ~ modulus under certain conditions, 
and this enabled several questions concerning so-called direct and inverse theorems 
of approximation theory to be studied from a unified viewpoint. 

The main reason for writing a new paper on the subject is as follows. In the 
cited work, only sup norm estimates (i.e. p = oe) were treated in detail, apart 
from a remark in [20] tha t  identical inequalities were valid when M1 norms were 
interpreted in the L ~ sense. While this is correct, examination showed tha t  the 
results so obtained were unsharp for values of p other than 1 and o% in many 
typical cases where one would like to apply the method. Thus, for example, although 
the theory yielded the sharp Marchaud estimates (see [13], p. 48) for the (sup norm) 
modulus of continuity in terms of the second order modulus of smoothness, it 
yielded the identical estimate for all values of p. But it is known from work of 
A. F. Timan (p = 2) and Zygmund (general p) tha t  sharper estimates are valid 
when 1 < p < oo (more details below in w 6, see also [26], p. 121 and [30]). 

The clue to overcoming the difficulty was provided by Zygmund's paper [30]. 
In this paper (seldom quoted in the literature, although it pioneered a technique 
which has since found wide application) Zygmund employed a characteristic method 
based upon the decomposition of the Fourier series into blocks of the type ~ cke ikt, 
the summation being from 2" to 2 "+1 -- 1, to which he then applied a rather deep 
inequality due to Littlewood and PMey. 
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In order to apply the Zygmund method to our problems, however, some technical 
difficulties had to be overcome, since a version of the Littlewood-Paley theorem 
valid for non-periodic functions, and in many variables, was needed. This material 
is found in Section 3 of the present paper (with some historical comments in 3.7). 
Although the results there are not really new, we could not find just the versions 
which we needed, with complete proofs, in the literature. Therefore, after some 
hesitation, we decided (in view of the decisive importance of these results for our 
work) tha t  we had no choice but to include complete proofs, which explains the 
length of that  preparatory section. The variation we have selected, based upon a 
parti t ion of unity,  was suggested to us by J. Peetre's t reatment  [14] of Besov spaces. 

The (sharp) generalizations to L P of the two basic comparison theorems of 
[20] are given in w 4. The proofs are arranged so as to obtain the results of [20] 
too, somewhat more easily than in the former paper. 

In w 5 a result of somewhat different character is l~roved (and this is another 
reason for the present paper), most nearly related to ~>embedding theorems>> of 
Sobolev and others. Actually, our interest in these questions was part ly inspired 
by a paper of ~[. Weiss and Zygmund [28] dealing with conditions on the second 
order modulus of smoothness sufficient to force absolute continuity of a function. 
The technique employed there is nearly identical to tha t  of [30]. Our Theorem 5.3 
yields the theorem of Weiss and Zygmund, as well as its higher-dimensional generali- 
zation due to John and Nirenberg [6]. The latter is, by the way, also a special case 
of the embedding theorem for Besov spaces (see further discussion in w 5, also [25]). 

In w 6, we discuss applications and several counterexamples. We have not striven 
for completeness, and have concentrated on applications which specifically require 
the theorems of this paper (i.e. are not obtainable from [20]). We also remark 
here that ,  although we work in LP(Rm), all theorems of this paper remain valid 
(mutatis mutandis) in the corresponding spaces of functions periodic in each variable. 

2. Definitions and notation 

2.1. By Rm(m ~ 1) we denote real Euclidean m-space. We shall always use 
the letters t ~ ( t l , . . . ,  tin) and u ~ (u 1 . . . .  , u,n ) to denote points of R ~. In 
the context of Fourier analysis we shall sometimes prefer, for conceptual clarity, 
to speak of another copy Rm of Euclidean m-space, thought of as the dual group 
of / ~ .  We shall use the letters x ,  y to denote points of /~m. We write tu for 
~i'=1 tjuj (similarly tx, etc.), tltl] ~ (#)1t2, and dt (similarly du, dx, etc.)denotes 
m-dimensional Lebesgue measure. 

2.2. By p we mean a positive number (or -~ m), where always 1 ~ 1o ~ ~ .  
L P =  Le(R m) shall have its customary meaning, and ]]file denotes the L e norm 
of f. By 1~ we always mean the number 
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25= m i n ( p , 2 ) ,  if 1 < p  < oo,  

2 5 = 1 ,  if p =  oo. 

2.3. M = 2~(R m) denotes the set of bounded complex measures on the Lebesgue 
measurable sets of R ~. We use Greek letters (especially 2 ,  # ,  ~, ~o, o ,  ~) to 
denotes elements of M, and V(o) denotes the total variation of o. As usual, 
we use ~ to denote the Fourier (- Stieltjes) transform of o, defined by 

~(x) = f e - ~ d o , .  

W =- W(-~ m) denotes the Banach algebra of Fourier transforms of elements of M, 
where II~I[rz = V(o) and >>multiplications> is ordinary (pointwise) multiplication, 
corresponding to the convolution ~)product>> (written ,) in the isomorphic ring M. 

By abuse of language we also write, for f E L 1, f to denote the usual Fourier trans- 
form (i.e. the Fourier transform of the measure f dt). We also write f ,  o, where 
f E L p and o E M, to denote the function whose value at t is f f ( t  - u)do=. I t  
is defined a.e. and satisfies 

[lf * ~ <_ V(~)llfllp. 

Occasionally, tempered distributions will enter into the discussion, and we follow 
the standard notational conventions of the L. Schwartz theory (i.e. , denotes 

convolution and T the Fourier transform of T). 

2.4. For o C M and a > 0, O(a ) denotes the measure defined by o(a)(E)= 
o(a-iE) for all measurable sets E. This is equivalent to ffdo<o)= f (sof)do for 
all bounded continuous f, where (Saf)(t) = f ( a t ) ,  and also to ~(a)(x)= ~(ax). 
For a function f we shall also write f(,) to denote the function whose value at 
t is a-"f(t/a).  This is in conformity with the preceding definition, since for f E L 1 

we have ~,)(x) ~--~ax). For a distribution T, T(~) is defined in the same way, 
i.e. T(a ) ~ TS , .  

2.5. For f E L p, o E M and a > 0 we define 

D~,p(f ; a) = 1If* o(o)1[ (the o ,p  deviation) 

~%,p(f ; a) ~- sup D,.1,(f ; b) (the o ,p  modulus) . 
O<b<_a 

I t  is not hard to prove tha t  for fixed o ,  p and f, with 1 _< p < ~ ,  o~.p(f ; a) 
is a non-decreasing and uniformly continuous function of a, bounded by V(o)I]fi]v. 
In most cases of interest o(R ") ~ 0, and then c%.v( f ; a) -+ 0 as a --> 0. These 
conclusions are valid also for p = ~ ,  provided f is uniformly continuous on / ~ .  
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3. Inequalities-of Littlewood-Paley type~ 

3.1. A special partition of unity. 
LEMMA. There exists a function q~ on ~"  which is infinitely differentiable at 

all points, and such that further 
(i) ~b(x) > 0 for 1/2 < Ix I < 2, and q5 vanishes elsewhere, 

(ii) ~ qs (2Jx)=  1 i f  x # 0 .  

Proof. Let  h(a) denote  a funct ion  def ined for 0 _< a < ~ and  equal  to  one 
for 0 < a < 1, to  zero for a > 2, s t r ic t ly  decreasing on [1, 2], and inf in i te ly  
differentiable.  Then  q~(x) -~ h(Ixi) --  h(21xl) satisfies the  requirements .  Observe 
t h a t  in the  series (ii) a t  most  two te rms  are different  f rom zero, for  each x v~ 0. 

~b is the  Four ie r  t r ans fo rm of  a cer ta in  funct ion  ~0 which is inf ini te ly  differen- 
t iable,  and  ~ and  all its par t ia l  der ivat ives  t en d  to zero at  inf in i ty  more rap id ly  
t h a n  a ny  negat ive  power  of  It l. 

We shall, t h r o u g h o u t  this paper ,  wri te  ~s to  denote  ~(2J), i.e. 

q~j(t) = ~(2i)(t) = 2--'nJq~(2--Jt), j = 0 ,  -4- 1 , . . .  (1) 

Observe t h a t  

~j(x) = ~b(2ix) , j ~- 0 ,  ~ 1 . . . .  (2) 

We shall also require  the  relat ion,  for  posi t ive integral  r, 

~b(2ix) ~- 1 for  2 -r  < Ix I _<2 r ,  (3) 
j = - - r  

which follows f rom (ii), since for  x in this range,  and  IJl > r, ~(2Sx) = 0. 
In  the  analysis which follows, we shall a lways suppose the  dimension m and  

the  choice of  a par t icu la r  q~ wi th  the  proper t ies  enumera t ed  in the  lemma to  have  
been fixed,  and  t r e a t  as >)constants~) numbers  which depend only  on m and  ~.  

The  reader  wishing to  move  on to  w 4 need only  consult  sections 3.2 and  3.3.4 
for the  essential p r e p a r a t o r y  mater ia l .  

3.2. T~EOI~EM. Let T be a tempered distribution in _R m, and let qJj be the functions 
defined in 3.1. Suppose moreover, for some p (1 _< p < o o ) T .  ~oj belongs to L P for 
each j and 

(1) 

where ~ is defined by 

= l i t  �9 = < 
j ~ - - o o  

#=rain(p,2) ,  i f  1 ~ p < ~ , (2) 

~ = 1 ,  i f p = o o .  
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Then T is a function, which is representable in the form f ~- P, where P is a poly- 
nomial and f eLP ,  moreover I]fll~ ~ CzB, where Cp depends only on p. 

t~emarks. 1. No te  tha t  T �9 ~j is meaningful,  and is a funct ion of  class C ~, 
because ~i is the  Fourier  t ransform of an infinitely differentiable funct ion wi th  
compact  support .  

2. Observe tha t  any  polynomial  P satisfies P �9 ~i ~- 0 for all j .  
The proof  of  the  above theorem is ra ther  long, and  will occupy  most  of  this 

section. The essential s tep is the  following inequali ty.  

3.3. LEMMA. Let  f e//(R~), where 1 < p < ~ and suppose moreover that the 
spectrum of f (i.e. the support of its distributional Fourier transform) is compact 
and does not contain the origin. Then, i f  ~1 denote the functions defined in 3.1, 

[fiPdt < A~ ( ~  l(f * ~j)(t)12F/2dt , (1) 
- - o o  

where Ap is a constant depending only on p. 
Xt is somet imes convenient  to write the  inequal i ty  in the  form 

]]flip < ApIIFIle, (2) 

where 

F(t) = ( ~ I(f * ~)(t){2) ~/2 , (3) 
--oo 

We emphasize tha t ,  in contradis t inct ion to Theorem 3.2, in the present  lemma 
we presuppose  l < p <  ~ .  

3.3.1. Le t  us define 
c~ 

= 2 , x e 

Then, for x # O, G(x) > b ~ where b is the  ( p o s i t i v e ) m i n i m u m  of ~(x) for 
3/4 ~ I x] < 3/2. Hence  ~/G vanishes outside the  ~)spherical shell>) {1/2 < Ix[ < 2} 
and is infinitely dffferentiable on / ~ ,  therefore it is the  Four ier  t ransform of  a 
certain funct ion F e LI(R"~). One readily verifies, using the fact  t ha t  G(2Jx) = G(x) 
for all integers j ,  

~v(2Jx)~v(21x) = 1 , x =fi O. (1) 
j = - - o 0  

I t  is easily seen from (1) t ha t  if r is a posi t ive integer 

~(2Jx)~(21x) ~- 1 , for 2 -r  < Ixl < 2 r . (2) 
j = - - r  

We shall consistent ly wri te  ~j to  denote  the  funct ion ~v(2J). 



96 Am~IV l~61z MATE]VIATIK. Vol. 9 No. 1 

3.3.2. F ix  a positive integer r, and  let E = E r denote the (2r + 1)-dimensional 
Hilbert  space of complex sequences c = (c_r, c_~+1 . . . .  G) wi th  the  usual 12 norm 

IIe]l~ = ( ~  lcjI=) ~/= �9 
- - r  

By LV(R ~, E) we denote the Banach  space of (vector-valued) functions F ,  defined 
in R ~, taking values in E, measurable,  and  such tha t  

,'F,,=,IF,[Lp(R,~,E)=(fI[F(t)II~dt) ~/" 
.R m 

is finite. We denote by  ~'j(t) the jth component  of F(t). 
We now define a funct ion K whose domain is R "~ and  whose value at  the  

point  t is the linear map  (functional) f rom E to the  complex numbers  defined by  

K(t)c -~ ~ ~fj(t)ej , c E E .  
j ~ - - r  

Consider now, for F E LP(R '~ , E) the map 

F -+ / K(t -- u)F(u)du. 
, 2  

t {  m 

We propose to show t h a t  this is a bounded map from 
1 < 2 9 <  0% i.e. 

(1) 

(2) 

( /  / Ip \i~p 
K(t -- u)F(u)du dt) ~ AJIFliLp(,m ~), (3) 

where Ap depends on 29, bu t  not  on F nor  r. To establish this  i t  is enough, by  
vir tue of Theorem 2 of [1], to verify: (i) t h a t  (3) holds for some 29articular choice 
of 29 > 1 (we shall make the choice 29 = 2, as is usual when employing this method),  
and  (ii) the es t imate  

]lK(t -- u) -- K(t)flt  ~ C (4) 

l t l  _ 4 , u l  

for all u E R m. ~Iere II']l denotes the  operator  norm, and  C mus t  be independent  
of u. The constant  Ap in (3) can be determined in terms of C, A 2, and p. As 
for (i): for 29 = 2, the  left side of (3) is 

{ /  / [jff~ ~fj(t -- u)Fj(u)]du 2dt}1/2, 

and by  ~'arseval's iden t i ty  the  square of  this expression equals (we assume here 
the Fourier  t ransform sui tably normalized, so we m a y  suppress factors of (2~)m): 

L~'(R'~,E) to LP(R m) if 
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I ~ (2Jx)_~j.(x)[2 dx <_ ( ~ l~(2ix)i~)( 
j ~ - - r  - - r  

< 2M 2 lFj(x)l 2) dx = 2 M  2 t)l 2 dt 
- - r  - - r  

I i(x)l dx < 
- - r  

= 2 M  Y(t)ll  d r ,  

97 

Therefore, wri t ing 

Q(~) < C~x - ( m + 2 )  , or > 1 . 

R(t)  = { ~ 2 -2('~+1)i Q(2-J]t[)2) 1/2 (6) 

the  series on the  right converges for Itl =~ o. Now, in order to prove (4) we have 
only, in view of (5), to establish, for a > 0 

R(t)  <_ (7) dt Ca -1 

itj >_ a 

with C independent  of  a. Now, replacing t b y  2t in (6) and making the change 
of  variable  j - + j +  1 we see tha t  

R(2t) = 2-(m+~)R(t), 0 # t E R  "~, 

so tha t  S ( t ) =  [t lm§ satisfies S ( t ) =  S(2t) and since S(t)  is bounded  on 
1 < It[ _ 2  it is bounded  on it] > 0, in other  words 

R(t) < C2Itl , 0 # t R . 

This implies (7), and thus  we can now assert  t ha t  (3) holds. 

3.3.3. We can now easily prove  L e m m a  3.3. Indeed,  suppose f E LP(R m) and 
the spec t rum of f omits  neighborhoods of  zero and infinity.  Fix an integer r so 
large tha t  the  spec t rum lies in the open set  {2-" < Ix[ < 2"}. We now app ly  the 
result  of  the  previous paragraph to  the  (vector valued) funct ion F whose value 

where M = max  I~ (x)[, since for any  x there  a re  a t  most  two  values of  j such 
tha t  ~(2Jx) # 0. Taking square  roots  gives (3), wi th  p = 2. As for (ii) (i.e. the  
proof  of  (4)) this is harder.  We have 

IIK(t - -  u) - -  K(t)ll z = ~ J~vj(t - -  u) - -  y)j(t)l 2 < (5) 
j ~ - - r  

< ~ 2--2mjlv(2--J(t - -  U) --  V(2--it)l 2 < ~ 2 -zmj" 2--2Jlul2Q(2--J[tl) 2 
j - -  - - c o  j - -  - - c o  

if' ]t I > 4]ul, where Q(a) denotes  the  ma x imum of Igrad~v(t)[ in the  spherical 
shell {3a/4 _< ]t] < 5~/4}. Since yJ and all its par t ia l  derivat ives vanish at  infini ty 
faster  than any  negat ive power  of  rt I, Q is bounded  and, for a suitable constant  C1 
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at the point t E R ~ is { ( f ,  ~/)(t)}~=_,. Observe that  fK(t -- u)F(u)du is just  
the convolution of f with ~ _ ,  ~vj, ~i, whose Fourier transform is 

j=--r  

and this equals 1 for 2 -~ < Ix I < 2 ", as remarked in 3.3.1. Since the spectrum 
of f is contained in the interior of this set, we conclude that  

f K(t -- n)F(u)du =f(t) a.e. 

Applying 3.3.2(3) we get 

completing the proof of Lemma 3.3. (It is essential to observe here that  the bound 
Ap obtained in the previous paragraph did not depend upon the choice of the integer 
r). 

3.3.4. Actually we require not Lemma 3.3 but  a corollary of it, as follows: 
Under the hypotheses of Lemma 3.3, we have 

f ,f[rdt < A~ { ~ (/'](f , q~j)(t),'dt))~/P} pI~ (1) 

where A r depends only on p. 
Indeed, writing fj for f ,  ~i, we observe, using the elementary inequality 

( xjp<_Sx;, xj>O, 
that  (~  Ifj(t)]2) p/2 < ~ ]fi(t)] p for p ~ 2. Therefore, the right side of (1) majorizes 
that  of 3.3(1) when p ~ 2. 

On the other hand, when p >_ 2 we have, applying Minkowski's inequality 
with exponent p/2 

\ 21i, \ 21p \ 21p 

( f  (~,fj.]2)P/2dt) ~ ( f  ([fj.,2)P/2dt) =-~( f  ]f~l pdt) 

so that,  also in the case p >_ 2, (1) is a consequence of 3.3(1). 
Observe that  any choice of Ap which works in 3.3(1) also renders (1) valid. 

Also, (1) can be writ ten more compactly as 

[lfH~ -< Ap ~ l[f * ~jll~ �9 (2) 
~ o o  

So far, (2) is established only under the restriction 1 < p < ~ .  However,  
since f = ~, f ,  ?j (the series containing only finitely many non-zero terms, under 
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r s ta ted  hypotheses  about  f), (2) is valid t r ivial ly for p = 1 and  p = ~ (recall 
t h a t  we interpret  /5 as 1 in the  la t ter  case). More generally, Minkowski 's  inequal i ty  
gives 

II/llp < 
--C(3 

I t  is wor th  while to compare (2) and  
is the  key  to the  ~)sharp~) results  which we 
an  analogous use of  (3) would lead only 

[If * ~jllp �9 (3) 

(3): for 1 < p < ~ ,  (2) is stronger, and  
shall obtain  in the present  paper, whereas 
to the results in [20] (see w 4.3.1 below). 

3.4. We can now complete the proof  of Theorem 3.2. By  hypothesis ,  we have 
T , ~ i C L  ~ for each j .  We claim t h a t  for a rb i t ra ry  k and  n, k < n ,  

n - k l  

II ~ T �9 ~jl]~ ~ Ap ~ lIT �9 ~j]]~. (1) 
k k - - 1  

To prove (1), let g = ~j~=k T �9 ~j, and  note  t h a t  g E L ~ and  t h a t  the spectrum 
of  9 is compact  and  does not  contain the origin. Hence we can apply  3.3.4 (2) 
to  g and  obtain 

n + l  

IJgH~ < % ~ IIg �9 ~,11~ = % Y Ilg * ~,EI~ �9 (2) 
- - ~  k - - 1  

The last equal i ty  holds because ~ �9 ~i = 0 for ]i -- Jl > 1. Similarly, for each, 
i the  sum 

j--k 

can contain a t  most  three non-vanishing terms. Hence 

lip * ~,11~ _< 3c  lIT �9 ~,11,, i = o ,  • 1 . . . .  , (3~ 

where C = I1~1I~. Combinat ion of (2) and  (3) gives (1) (with a new constant  Ap). 
Using (1) we see t h a t  

n 

- - n  

is a Cauchy sequence in L p if the hypothesis  of Theorem 3.2 is fulfilled. Le t  f E L p 
be the  limit of this sequence. Clearly 

Irfl[~ _< % ~ lIT �9 ~jll~ �9 
- -oo  

From the definit ion of f it  follows tha t  (T - - f )  �9 qj = 0 for all j .  This shows 
t h a t  the (distributional) Fourier  t ransform of T -  f is supported at  the  origin. 
Bu t  a distr ibution with support  a t  the origin must  be a finite linear combinat ion o f  
the Dirae functional  and  its derivatives ([16], p. 100), hence T --  f is a polynomial .  
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_Remark. I t  is evident tha t  T cannot have two distinct representations of the 
form f q- P,  except in the case p ~ ~ when the representation is unique only 
modulo an additive constant. 

3.5. We wish here to make an observation tha t  is important  for applications 
later. The constant A s in Lemma 3.3 and C s in Theorem 3.2 depend upon the 
initial choice of ~b (and so of the ~0i). However i f  we replace Oh(x) by r (where 
a > 0), so that the system {~(26} becomes replaced by {~o(,2j')} , Lemma 3.3 and Theorem 
3.2 remain valid, with the same constants. This is seen by simply replacing f by 
f(1/,) (resp. T by TO~a) ) and making the change of variable t--+ t/a. 

3.6. In the case 1 _< p < 2 one could prove 3.3.4(2) using the Riesz-Thorin 
interpolation theorem instead of the Marcinkiewicz interpolation theorem on which 
the proof above is based (see below). The l~iesz-Thorin theorem ([31], p. 95) 
implies tha t  the set of values of p for which a linear operator is continuous from 
LP(X) to LP(Y) (X and Y are arbitrary measure spaces) is an interval. To deduce 
3.3.4(2) from this theorem we observe tha t  

( ~ [[f * (pjl]pP) 1/P 

is the LS-norm of the function 

F ( j  , t) = f �9 q)j(t) 

defined in Z • R ~, where Z denotes the set of integers. Now it has been proved 
above tha t  the operator U defined by 

U(f) ---- f �9 q~j(t) 

is a bounded operator from LS(R m) to Ls(Z  • R m) for p ~ 1 and 2. Hence, by the 
Riesz-Thorin theorem, 3.3.4(2) holds for 1 _< p < 2, and in fact with a constant 
Ap independent of p. On the other hand, the proof given above, based on the 
Marcinkiewicz interpolation theorem shows only tha t  A s is bounded in each 
compact subinterval of 1 < p < oo. 

3.7. Historical comments concerning Theorem 3.2. The prototype of Theorem 
3.2 (or Lemma 3.3), as well as their converses, is found in Littlewood and Paley 
[10], and is in terms of Fourier series rather than integrals. The original proof 
utilized analytic functions in a way tha t  made extensions to several variables 
seem quite difficult. 

The first to prove an inequality of this type by real variable methods was E. M. 
Stein [23]. A simplification and extension of Stein's result was later given by 
I-I5rmander [5]. H5rmander's method was based on a combination of the Calder6n- 
Zygmund technique for estimating singular integrals and the  ~arcinkiewicz inter- 
polation theorem. I t  would have been possible for us to deduce Theorem 3.2 from 
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Theorem 3.5 of HSrmander's paper dealing with so-called ~)mixed L 2 estimates~ 
(he employs a continuous, rather than a discrete parameter), or else to paraphrase 
the proof of the latter theorem in our context. However, we followed a somewhat 
different path. Namely, as remarked by J. Schwartz [17], and independently 
Benedek, Calder6n and Panzone [1], (L p , L 2) mixed norm estimates involving a 
parameter can often be most conveniently dealt with by proving an L p estimate 
for vector-valued functions (with values in a suitable L 2 space), acted on by con- 
volution with operator-valued kernels. They observed tha t  the theorems of Marcin- 
kiewicz and Calder6n-Zygmund, the basis of HSrmander's method, extend to 
this more general context. Our Theorem 3.2 is essentially taken from Peetre's lecture 
notes [14]. Peetre based his proof on an operator-valued ~)l~ihlin-type theorem~ 
which we could not locate in the literature; its verification would involve an analysis 
similar to tha t  given above. 

There is by now a rather considerable literature dealing with extensions of the 
Littlewood-Paley theorem, and the interested reader is referred to [9], [11], 
[14] where also further references may be found. 

4. Comparison theorems 

4.1. We begin by recapitulating and extending some basic lemmas from [20], 
contenting ourselves in part  with references to tha t  paper and others for proofs. 

4.1.1. We recall that  if ~ C M(Rm), then the map f - +  a , f  from L p to L p 
is continuous, with bound not exceeding V(a). 

4.1.2. I f  we consider a tempered distribution a which is not necessarily a 
bounded measure, the inequality []0 *flip --~ A][flfp with A = Ap independent of 
f,  may hold for all functions f e L e. For a discussion of such distributions see 
HSrmander [5]. The Fourier transform ~(x) is then necessarily a bounded 
measurable function, called a Fourier multiplier (associated with the exponent p). 
I t  is known (see [5]) tha t  the class Mp of Fourier multipliers associated with the 
exponent p is identical with M f ( p '  = p / ( p -  1)), moreover Mp c Mq for 
1 ~ p ~ q _~ 2. The remark in the preceding paragraph implies W c M s for all 
p ~ 1. I t  is known, moreover, tha t  M1 = M~ = W, and M2 = L ~. I t  is the fact 
tha t  the elements of W are in all the M e tha t  explains the important  role which 
bounded measures and their Fourier transforms play in the present investigation, 
as well as in studies of L p inequalities relating differential operators ([3], [4], [12]). 
The function sgn x on /~1 is the classic example of a function not in W which is 
nevertheless in M s for 1 < p < co, the corresponding convolution operator 
being the Hilbert transform. 
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4.1.3. I f  a , ~ E M ( R  m) and ~ divides ~ in W, then for 1 _<p_< 

D,,p(f  ; a) <_ CD~,p(f ; a) (1) 

%,p(f ; a) < C%,p( f  ; a) (2) 

for all f E L p. Here C can be taken as the W-norm of any element F C W such 
tha t  ~----~F (F is not always uniquely determined). These inequalities follow 
easily from 4.1.1 (cf. [20]). In view of the discussion in 4.1.2 they remain valid 
even if 5 divides ~ in M~. In this case C must be taken to be the M / n o r m  
(see [5]) of the function F.  We remark, too, tha t  if a is a tempered distribution 
such tha t  ~ e M  e , then also ~(ax) eMp,  and so D p( f ;a)  and o~o,p(f;a) can 
still be defined in the obvious way for f belonging to LP; likewise for T, and 
(1), (2)are  then valid providing ~ divides ~ in Mp. 

For conciseness we shall state our theorems below in terms of elements of W 
rather than Mp, but shall indicate some results which are valid in the wider context, 
as these are useful in some applications to approximation theory. 

n ~ A  Finally, the analogues of (1), (2) hold when T has a representation ~,=1 ~a: 
where ~ are elements of W (or, more generally, of M~); in this case one has n 
summands on the right side of the inequality (cf. [20], p. 286). 

4.1.4. A continuous function F on / ~  is said to satisfy the Tauberian condition 
if, for every x with Ix I = 1, there exists c > 0 such tha t  F(cx) ~= O, in other 
words, if 2' takes a non-zero value on every closed half-ray. (If, in particular, 
/v(0) # 0, F satisfies the Tauberian condition trivially.) By way of orientation 

A 

we may remark that ,  for f e L 1, the Tauberian condition on f(x) is necessary and 
sufficient tha t  every g E L  1 with 9(0)=-0 be approximable (in L 1 n o r m ) b y  
finite linear combinations of the functions f(ct -~ u), where c > 0 and u E R ~. 
(This is a simple consequence of Wiener's Theorem.) 

4.1.5. L]~MMA. I f  F is continuous on R"  and satisfies the Tauberian condition, 
6 > 0 i s  arbitrary, there exist positive numbers dl < d2 �9 �9 �9 < dr such that 

IF(d~.x)i > 0 ,  ~_< jx I _ 1/~. 
j = l  

Proof. Let S denote ( x : ] x  I-~ 1} and F~, for c >  0, the function on S 
defined by Fc(x ) = F(cx). The hypotheses imply (F~}~ > 0 have no common zero 
on S, i.e. the closed subsets E~ of S defined by E~----{xIF~(x ) ----O} have an 
empty intersection. Therefore, since S is compact, there is some finite subset 
Eel . . . . .  Ecr of t h e  E~ whose intersection is empty. This means tha t  G(x) = 

~.~=1 ]F(cix)[ is positive on S, and hence by continuity remains positive in the 
spherical shell b < Ix[ ~ 1/b if b is chosen sufficiently close to 1. Therefore, if 
]c is chosen large enough, ~ =  kG(bix) is positive for ~ _< Ix I _< l/S, which 
implies the assertion in the lemma. 
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4.1.6. LEMMA. I f  a ,  ~ C M(Rm), ~ satisfies the Tauberian condition and 
vanishes in neighborhoods of the origin and infinity, then for f ~ L p (1 < p < ~)  
and a > O, 

%,p(f ; a) < A%,p ( f  ; Ba) (1) 

where A , B  depend only on a and ~. 
Proof. By Lemma 4.1.5, there exist positive dj such that  ~ = ~  l~(djx)l is positive 

on the (compact) support of ~, therefore (cf. [20], p. 282) ~ belongs to the ideal 
in M generated by a(d~) , . - . ,  a(d,). Therefore 

D~,,(f ; a) < ~ AjD~,,( f  ; dfi) < ~ Aj%,p( f  ; dja) < A % , , ( f  ; Ba) , 
j = l  j = l  

where B -= max d/ 
we have, therefore, 

which implies (1). 

and A = ~ A j  depend only on a and 

D~,v(f ; b) < A % , p ( f  ; Bb) <_ Ac%,p(f ; Ba) 

T. For O < b < a  

4.2. As in [20], we wish now to remove the restriction that  ~ in Lemma 4.1.6 
vanishes in a neighborhood of infinity. The method used in [20] leads to an estimate 
of the form 

Ba 

w~,~(f ; a) < A w,,p(f ; v) ~-  . (1) 
0 

(The formulation in [20] was in terms of D rather than w, and infinite sums 
rather than integrals were employed, but  these differences are not essential.) 

The essential novelty of the present paper, the technical backbone of which is 
the following lemma, is to replace (1) by a finer estimate which takes better account 
of the concrete choice of p. 

LEMMA. I f  a ,  �9 E M(Rm), ~ satisfies the Tauberian condition, and "~ vanishes 
in a neighborhood of the origin, then for f E L p ( l < _ p  < ~)  and a > O 

Ba 

%,p(f ; a) ~ _< A o" , , ( f  ; v)~ -V- ' (2) 
0 

where A , B  depend only on a ,  z and p. 
Proof. Observe that  f ,  z(,) is in L p. By 3.3.4(2) in conjunction with the 

remark in w 3.5, we have, for any b > 0 

llf * T(,)iI~ --< Ap ~ Ilf * z(,) �9 V(2Jb)I]~ , (3) 
j = - - o o  
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where Ap depends on p only (we emphasize the fact that  it does not depend on 
b). Now, the Fourier transform of ~(2i~) is supported in 2-J'-lb -1 < Ix[ < 2-i+Ib -~. 
By hypothesis ~ vanishes in a neighborhood of the origin, say for ]x[ _< c, hence 
v(a ) vanishes for Ix] < c/a and so ~(a)* ~(2Jb) = 0 if 2-i+1b -1 <_ c/a. Let us 
make the choice b ~ 2a/c, so that  the latter condition is fulfilled for j _> 0. Then, 
on the right side of (3) we need consider only negative values of j ,  and the sum 
becomes 

- - 1  - - 1  

�9 ~ . P [If* v(,) * ~(:~b)Hp ~< V(v) v ~ It f ,  ~(2Jb)l]p. (4) 
j = - - ~  j = - - o o  

Now, the summands on the right can be estimated by  Lemma 4.1.6, since the 
measure q~dt (which here plays the role of ~ in Lemma 4.1.6) has a Fourier trans- 
form which vanishes in neighborhoods of the origin and infinity. We get 

Ilf * ~v(~Jollp _< A~%,p(f; B2Jb) (5) 

where A , B depend only on ~ (~ being considered fixed once for all). Finally, 
from (3), (4), (5), and recalling that  b = 2a/c, 

Ilf * ~(a)[]~ ~ A ,  V(~) p ~ AVo~ , , ( f  ; Bc-12-=+1a) ? = C 1 ~%,~,(f ; C22-~a) T" , 
n = l  n = l  

where CI and C2 depend only on a ,  ~ and p. This completes the proof, once we 
take account of the elementary inequality 

yJ(n) < f y~(t)dt 

for functions y~ continuous and decreasing for 0 _< 2 < oo, and apply it to 

~(Z) = ~ o , ~ ( f ;  r 
Remark. Observe that,  using 3.3.4(3) in the above argument in place of 3.3.4(2), 

we obtain the weaker estimate (1) instead of (2). This remark has some methodo- 
logical interest, since (1) is for many purposes as useful as (5), but  does not require 
for its proof the deep inequality 3.3.4(2). Moreover, the same method of proof 
establishes (1) not only for L~(R"), but  for a large class of Banach spaces with 
translation-invariant norm (cf. Shapiro [22], Chapter 9). 

4.3. T~nOR~M. Suppose a,  ~: C M(Rm), ~ satisfies the Tauberian condition, and 
there exists F E W such that ~ (x) = ~(x)F(x) for x in some neighborhood of the 
origin. Then for f C L v (1 < p < ~)  and a > O 

B a  

/ % , y  ; a)~ < A o~,~(f  " v)~ dv 
- -  ' T ( 1 )  

0 

where A and B depend only on a, "v, and p. 
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Proof. By hypothesis ~ ---- ~ ~- ~ where # ,  v C M and ~ vanishes in a neigh- 
borhood of the origin. Then for f E L  p and a > O  

D~.p(f ; a) <_ D. . . .e( f  ; a) § D~,p(f ; a) <_ V(#)Do.p(f ; a) § D~,p(f ; a) <_ 

_< V(/~)o.,p(f ; a) + %.p(f  ; a ) .  

Estimating co~,p(f; a) by the previous lemma, and observing that  

e a  

f ~oo,,(f ; a) <_ co~,p(f ; v) ~-  
a 

the proof is complete. (Note tha t  B is actually independent of p.) 
_Remarks. Since the restriction to any compact set of a Fourier-Stieltjes 

transform coincides with the restriction to tha t  set of the Fourier transform of an 
integrable function, it would involve no loss of generality in Theorem 4.3 to require 
F to be a function of the latter type. On the other hand, as an examination of the 
proof shows, Theorem 4.3 remains valid if we only require tha t  F be an element 
of Mp (see 4.1.2). We will use this in 6.4. 

4.3.1. In view of the remark at the end of 4.2, a correct theorem is obtained 
when the exponent p is dropped on both sides of 4.3(1). This is the comparison 
theorem of [20]; its proof along the lines of the present paper (i.e. based upon 
partition of unity) is perhaps simpler, or at least more instructive. 

To see tha t  the present theorem is stronger we observe that  for r > 1 (write 

~(a) = ~ , p ( f ;  a)) 
a 

0 

and since co(a) 

Hence 

is increasing 

_<_ o~(a) ~'-'~/~( ~(v) , 
0 

2a 2a 

/ (o(a) log 2 _< w(v) v -< co(v) ~-- 
a 0 

a 2a 

v) r -  <_(log2) " re(v) v '  
0 0 

which, with r = 15, proves the assertion. I t  is easy to see by examples tha t  except 
for 15 --~ 1 (i.e. p = 1 or ~ )  an inequality in the reverse direction cannot hold, 
so that  Theorem 4.3 is stronger than the comparison theorem in [20]. 
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4.3.2. Jus t  as in [20], we m a y  state  in place of 4.3 a more general theorem 
in which the role of  a is t aken  over by  a set a~ . . . .  , a~ of measures such t h a t  

]~i(x) l satisfies the  Tauberian condition, and  ~ agrees in a neighborhood of the  
origin wi th  an element of the ideal in W generated by  81 . . . . .  ~,. On the r ight  
side of 4.3(1) we then  get an es t imate  wi th  ~ $=~ ~o,i,p(f ; v) ~ in place of r v) ~. 

We suppress the details, as the  necessary modifications in the above a rgument  
are similar to wha t  was done in [20]. This k ind  of generalization, impor tan t  for 
certain applications, applies equal ly well to the remaining theorems in this paper,  
and  shall henceforth be t aken  for granted.  

4.4. THEOREM. Suppose ~ , • E M ( R  "~) and ~ satisfies the Tauberian condition. 
Let P be a function which is positive-homogeneous of degree r > 0 (i.e. P(bx) 
brP(x) for b >_ 0), and suppose there exist F,  G C W such that F(x) ~ P(x) and 
G(x)P(x) ~ ~ (x) for all x in some neighborhood of the origin. Then, for f E L p 
( l < p _ < ~ )  and a > O  

oo 

o~,~(f " a) ~ < A :/" [min (1 , (a/v) r) (%,p(f ; v)] F 
dv 

, _ ~ -  ( 1 )  

0 

where A depends only on (~, T and p. 
Proof. Write z -~ # + v and  /~(x) -~ P(x)O(x), where ix, v, 0 C M(R=), and  

and  0 vanish in neighborhoods of the origin and  inf ini ty  respectively. According 
to L e m m a  4.2, r a) can be es t imated by  the integral in (1) t aken  only from 
0 to Ba. To es t imate  r a) we use Theorem 3.2 and  obtain 

llf */~(a) l l~  --< Ap ~ I[f */~(,) * V(2.ca)]]p , i  -~ (2) 
--oo 

where c is a t  our disposal. Since /~ (x) --~ 0 for large x, we m a y  choose c such t h a t  

�9 = ; (ax) (2Jcax) 

is identical ly zero for j _< 0. This choice of e depends (ult imately) only on the  
measure ~. For  j > 0 we rewrite the last  expression as follows: 

/~(,)(x) ~(2j~,)(x) ---- P(ax) O(ax) ~(21cax) ~- C1 2 -i~ O(ax) ~(21cax) , 

where g ~ LI(R m) is defined by  

(x) = ~(x)P(x) . 

Hence 

Ilf */~(a) * qP(2J~a)lIp <-- C1 2-J~lIf * 0(,) * g(2Jca)Hp <-- C1 V(O) 2-i~lif �9 g(2Jca)lip <-- 

C 2 V(O) 2 -jr w.,e(f ; 2JC3 a )  , 
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by Lemma 4.1.6, since ~ vanishes in neighborhoods of zero and infinity (here and 
in the following all constants depend (ultimately) only on a, z and p). Using 
this estimate in (2) we get 

IIf */~(=)ll~ --< C4 ~ 2 -~+~ ~. ,p(f  ; 2iCza) p �9 (3) 
j=l 

To estimate the last sum by an integral we use the fact tha t  for any increasing 
function w(v) and A > 0 

2 j + l  

/ 2 -jA w(2 i) < (log 2) -1 2 A w(v) v -A-1 dr ,  

2J 
and hence 

co 

~ 2-JA w(2J) < C6 / w(v) v -A- l  dv . 
i = 1  

2 

@ply ing  this to the right side of (3), with A = rp and w(v) = ~%,p(f ; C3av) 7' gives 
co oo 

f f / a V  ~ dv }if*/~(o)11~ ~ C7 v - rp-1%,?(f  ; C3av) p dv = C a J [v )  %'p(f  ; v)~ v -< 
2 C~a 

<C,of[min(1,(a) ')o' . ,~(f;v)lV~. 
0 

Since the last expression is increasing in a, it majorizes % . p ( f ;  a) v. Combining 
the estimates of %,p(f ;  a) and ~ , p ( f ; a )  gives the result, since 

~ ,~( f  ; a) _< %,p(f  ; a) § co.,p(f ; a) .  

Remark. In applications, it is often convenient to write the estimate for o)~,p 
in the more extended form 

a ~3 

__ ~-  + Aa "v c%,p(f "~ V )  ~ V - r - D - 1  d v  , ( 4 )  

o a 

Observe that,  since ~%,v(f; v) is bounded, the upper limit m in the last integral 
can be replaced by 1 if we add on a term Ca "~ -- here C will depend of course 
on f (more precisely, on IIflIp) but this is of little consequence in most applications. 

I t  is instructive to compare (4) and 4.3(1). The first term on the right of (4) is 
(apart from a constant factor) identical with the right side of 4.3(1), so tha t  in a 
situation where Theorems 4.3 and 4.4 are both applicable, the latter can never yield 
a better estimate for (o,,p than the former. Of the two terms on the right of (4), 
either one may (under appropriate circumstances) have a larger order of magnitude 
than the other as a--> 0. 
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5. An ~embedding theorems) for distributions 

5.1. In  order  to  s ta te  our  nex t  theorem we in t roduce  some fu r the r  no ta t ion .  
Le t  ~ = ( ~  , . . . , am) denote  a mul t i - index  whose coordinates  ~ are non-nega t ive  
integers, and  write 1r for  ~ I~l. B y  D ~ we mean  the  differential  ope ra to r  
(0/~tl) ~1 . . .  (a/atm)~?. We recall t h a t  the  Sobolev space W(v~)(R m) is the  set of  func t ions  
f in LP(R m) such t h a t  all the  der ivat ives  D~f with la[ ~ s (unders tood in t h e  
dis t r ibut ion sense) are funct ions  of  class L p. I f  1 ~ p ~ ~ ,  W (~) can also be, 
charac ter ized  as the  Banach  space ob ta ined  b y  forming the  complet ion of  the  set~ 
of  funct ions  g which are inf in i te ly  different iable and  have  compact  support ,  wi th  
respect  to  the  norm 

(see, for  example ,  [8] or [29]). 
The  p ro to typ ica l  )>embedding theorems), due to  Sobolev, s tates  t h a t  W(p ~) is 

conta ined  in W~ 0, the  inject ion map  being continuous,  providing 

1 1 s - - r  

q p m 

(the r ight  side being assumed positive).  An im p o r t an t  corollary is t h a t  an element. 
of  W (~), a f te r  correct ion on a set of  measure  zero, has r cont inuous der iva t ives  
in the  o rd inary  sense, provid ing  r ~ s -- m / p .  Resul ts  of this k ind  are i m p o r t a n t  
in apply ing  the  methods  of  funct ional  analysis to  the solution of e.g. elliptic b o u n d a r y  
va lue  problems.  A vas t  l i te ra ture  has sprung up generalizing in numerous  ways  
Sobolev's  results; for  our  purposes here the  most  re levant  work is t h a t  of  Besov [2]~ 
in which par t ia l  der iva t ives  are replaced b y  finite differences, and  Pee t re  [15]. 

5.2. F r o m  the  poin t  of view of this l i terature ,  our  two theorems in w 4 are o f  
the  na tu re  of  >)embedding theorems~) in the  sense t h a t  for  measures a,~ wi th  
0(0) ~- 7(0) ---- 0 the  a,p modulus  and  the  T,p modulus  of  a funct ion are (as 
ref lec ted  in the i r  behavior  for  small values of  the  p a r am e te r  a) in some genera~ 
sense measures of  the  ~)smoothness~> of  a funct ion  f in L s. 

a E M(Rm), ~ satisfies the Tauberian condition anc~ 5.3. T~ORnM.  Suppose 
s is a positive integer. Let 1 ~_ p ~_ so, and suppose f C L P and 

1 

/ da 
[a-~o~,.(f; a)F ~- < oo. (1) 

0 

Then the distribution D~f is a function of class L P for each ~ such that I~l < s. 
I n  other words, f belongs to the Sobolev space W~ ~). 
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Remarks. This t heo rem is v e r y  similar to  a case of  the  ~>embedding theorems> for  
:Besov spaces, name ly  in the  usual no ta t ion  B~,~ c W (~). In  fac t  the  l a t t e r  resul t  
is a consequence of our  theorem,  provid ing  we use measures  al . . . . .  am in place 
o f  a, as discussed in 4.3.2. The  embedding  theo rem for Besov spaces is p roved  in 
Besov 's  paper  [2] as well as in [14], [15], [25]. Pee t re ' s  p roof  in [14] has served 
as our  model  in the  following proof  of  Theo rem  5.3. We r em ark  t h a t  i t  would be 
easy  to  ex t end  the  formula t ion  and proof  to  cover  non- integral  values of  s; in 
th is  respect  we do no t  s t r ive for m a x i m u m  general i ty .  

Proof of Theorem 5.3. Let  K(x)  be inf ini te ly  different iable on /~m, equal  to  

one for Ix] _< 3 and  zero outside a compac t  set. Define k E LI(R "~) b y  ]~----- K,  
so t h a t  k has integrable  der ivat ives  of  all orders. Th en  f * k E C ~ and  D~(f �9 k) = 
f �9 (D~k) E LP(R ") for  all a. Therefore ,  i t  is sufficient  to  p rove  t h a t  the  der iva t ives  
u p t o o r d e r  s of  g = f - - ( f * k )  are in L P. Now, g is in L P and  the  suppor t  of  
its (distr ibutional)  Four ie r  t r ans fo rm lies in lxl > 2. Le t  now ]~] < s, a n d  wri te  
T = D~g. We propose to  app ly  Theorem 3.2, and  to this end wish to  show 

l i T ,  ~vil]~ < ~ .  (2) 
j = - - c c  

Now, T * ~j ~- g * (D~vj), and 

where  0 = D ~ .  Therefore  

I] T * ~i[Ip ~-- 2-Jl~lllg * O(:i)]]p ~ A2-JI~I o)~,p(g ; 2iB) 

b y  L e m m a  4.1.6, since the  Four ie r  t r ans fo rm of the  measure  dv ~ O(t)dt vanishes  
in neighborhoods  of  zero and  inf ini ty.  ~ o r e o v e r ,  the  Four ie r  t r ans fo rm of  0(2i) 
vanishes  for  Ix I > 2 when j = 0 , 1  . . . .  and  so g �9 0(2i) is zero for these values  
of  j .  Hence  

l i t  * ~jll~ < A P ~  2~t~l ~,p(g ; 2-'B) ~. (3) 
j = - - ~  i = 1  

Using the  e l emen ta ry  inequal i ty  

2--i-t- 1 

2 ir W ( 2  - i )  < W(V)V -r-1 dv ,  i = 1 , 2 ,  . . . , 

val id  for an increasing func t ion  w, and  r > 0, and  recalling t h a t  [~I ~< s, we 
see t h a t  the  r ight  hand  side of  (3) is bou n d ed  b y  a cons tant  t imes 

1 

/ %,r (g  ; Bv)~ " v-~S-1 dv 

0 
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Final ly,  since g = f --  ( f  �9 k), we have 

a)(,,p(g ; a) <_ %,e(f ; a)(1 + l]kII1) . 

Thus, in view of the hypothesis  (1), (2) holds. 
Therefore, by  Theorem 3.2, T = D~g E L P (observe t ha t  the polynomial  par t  

of D~g must  be zero, since ~(x) = 0 in a neighborhood of the  origin). This implies 
the conclusion of Theorem 5.3. 

6. Examples, applications and remarks 

6.1. To simplify the  computa t ion  of the  Fourier  t ransforms involved, we i l lustrate 
our theorems (4.3, 4.4 and  5.3) main ly  in R I and  for measures of very  simple 
structure.  Our emphasis will be on clarification of the previous theorems, ra ther  
t h a n  nove l ty  as such. The measures we shall principally employ are the following. 

(a) ~k, where k E L 1 and  f k(t)dt = 1, is defined by  dc~ k =- ~ --  k(t)dt 
where ~ is the >>Dirac measure>). The ak ,p  deviat ion of f C L P is then  the  L P 
norm of  

:+-  f :('- :+-  f :<'- 
where 2 : -  1/a is a >)large>) parameter .  Hence the ~k,P modulus of f measures 
the  error of approximat ion  to f by  a s tandard  type  of convolution integral wi th  
~)kerneb) It, depending on a parameter  k. I t  will be convenient  below to write 
k~(t) for ~k(~t). 

(b) fin, where n is a positive integer, is the  purely atomic >>binomial measure>), 
/ \ 

~>mass~) ( - - 1 ) J ( ~ . ) a t  the  point  j ( j = - 0 , 1 , . . . , n ) .  The f in ,P  wi th  modulus  

of f E L p is then  the  )>modulus of smoothness>) of f of  order n, re la t ive to the  L p 
metric. I n  part icular,  the fil ,  P modulus  is the usual L P modulus of cont inui ty ,  
and  shall be denoted in this  section simply by  ~%(f ; a), whereas the  fi2, P modulus  
shall be denoted by  co*(f; a). Final ly ,  observe t h a t  all the measures ak and  fl~ 
sat isfy the  Tauber ian  condition. 

We tu rn  first  to the deduct ion of the  results ment ioned in w 1. 

6.2. Estimation of ~% from o~*. We apply Theorem 4.4 wi th  a = fi2, ~ = ill- 
Here ~(x) ---- 1 -- e -~  and  the  theorem is applicable wi th  P(x) = x, r ---- 1. F r o m  
4.4(4) we get 

/ ' c o * ( f ;  dv / e ( f ,  v)Pv-p-ldv -~- Aza~ c%(f; a) p S A1 v)~ v + A:a~ w* �9 
0 a 
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where the various constants A i are independent of a. In particular, if (o*(f; a) ----- 
O(a) as a - > 0 ,  we see that  mv(f ;a  ) = O(a(log 1/a)llP). This is the theorem of 
Zygmund referred to in the introduction. Zygmund [30] constructed examples to 
show that  the exponent 1/i~ of the logarithmic factor cannot here be replaced by  
any smaller number. Thus, indirectly, we have evidence of the ~)sharpness~> of Theorem 
4.4, and of Theorem 4.3 upon which it is based. 

6.3. Relation of (o* to the derivative. 
Let us apply Theorem 5.3 with a ----/?2 and s ---- 1. 

some f C L v, 
1 

f a-p-lo~*v(f;a)~da< ~ ,  (1) 
0 

then f has a distributional derivative which is a function of class L p. Since this 
in turn implies that  f is (after correction on a set of measure zero) absolutely con- 
tinuous and f '  belongs to L p, we have obtained the theorem of M. Weiss and 
Zygmund [28] referred to in the introduction. Counter-examples in [28] show that  
for each p, (1) is essentially the weakest hypothesis which will force this con- 
clusion. For example, consider the case 2 _~ p ~ ~ ,  so that  15 --~ 2. Then one 
can construct (modifying slightly the Weiss-Zygmund construction, since those 
authors work with periodic functions) a continuous function f of compact support  
such that  its uniform (and afortiori its L P) second order modulus of smoothness 
is O(a(log 1/a)-I/2), so that  the integral in (1) ~)just barely>> diverges, yet  f fails to 
be absolutely continuous. In the Weiss-Zygmund example, f is a.e. non-dif- 
ferentiable. (Other counter-examples in which f has bounded variation, but  is 
purely singular, follow from constructions in [7], [21].) Further  examples constructed 

O )  $ �9 in [28] show that  for 1 ~ p ~ 2, v (f, a) may be O(a(log 1/a)-l/v), with f 
absolutely continuous and yet  not locally in L p. Here again, the integral in (1) 
~>just barely>) diverges (now ~ ~ p). These examples support the view that  Theorem 
5.3 is ~>sharp~). The John-Nirenberg generalisation [6] to several variables of the 
Weiss-Zygmund theorem also follows from an earlier mentioned generalisation 
of Theorem 5.3, taking in place of ~ an m-tuple ~1 . . . .  , ~ of measures, each 
of the type of f12 with respect to a different coordinate, so that  ~ T  [~j(x)l satisfies 
the Tanberian condition on / ~ .  

We conclude that  if, for 

6.4. Approximation generated by a Fejdr kernel. Let /c(t) denote the function 
sin s t/(z~t2), the so-called >>Fej6r-de la Vall~e Poussin kerneb> (the entire discussion 
in the present paragraph applies equally well to the ~>Cauehy kernel>> (1/~)(1 ~- t2) -1, 
in which case the results may be interpreted in terms of the boundary behaviour 
of a harmonic function in a half-plane, cf. [18], Chapter 5). Let us first apply Theorem 
4.3 with ~(x) = 1 e= i~, and ~(x) = 1 - -  ~(x) which equals [x I for Ix] _~ 1. 
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In  this case ~/~ does no t  coincide wi th  an e lement  of  W near  x : 0 ,  in fac t  this  
ra t io  has a j ump  d iscont inui ty  a t  x ~- 0. I t  does, however ,  coincide wi th  a Four ie r  
mul t ipl ier  of  class Mp, if  I ~ p ~ ~ (cf. 4.1.2). We get  therefore ,  set t ing kz(t ) ~-- 
2k(2t): 

B/Z 

Ill - ( f*  k~)ll~ < A~ % ( f ;  v)~ (1) 
0 

This holds for all f e L P, p rov ided  1 < p < ~ .  Here  B is an absolute constant ,  
and  A e depends on p only. (1) is a so-called ~)direct~) theorem of  approx imat ion  
theory ,  being of  the  form ))smoothness implies approximability~>. F o r  example,  if  
~%(f; v) ~ O(v) as v --> 0, (1) says t h a t  the  ))approximation error)) represented  b y  
the  expression on the  left  mus t  be 0(1/4) as ~--> ~ .  Observe t h a t  we get  non-  
t r ivial  in format ion  f rom (1) in case c%(f;  v) is 0((log l/v) -~) wi th  c > l /p ,  wha t  
we might  call a ~)threshhold)) phenomenon.  

The  above  analysis is ent i re ly  symmetr ica l  so far  as a and  z are concerned,  
and  therefore  we also have  the  Mnverse~) theorem:  

Ba 

(/ % ( f ;  a) ~ A,  T(v) ~ (2) 

valid for 1 < p  < ~ ,  where 

T(v) = sup IIf - -  ( f  * k~)llp �9 
X> l/v 

The  above results are false in the  l imiting cases p = 1 and p---- ~ ,  as is 
known  e.g. f rom the  ))saturation theory,) of  the  kernel  k. We can get  val id  analogues 
o f  (1) and  (2) in this case b y  apply ing  Theorem 4.4. F o r  instance,  applying Theorem 
4.4 wi th  p =  ~ ,  r =  1, P ( x ) ~  Ix] and ~ and ~ as above gives the  following 
es t imate  in place of  (1}: 

co 

f l]f - -  ( f  * k~)II~ _< A min (1 , (Xv) -r) ~ ( f ,  v) v "  (3) 
0 

I f  ~ ( f ,  v) = O(v~), where 0 ~ ~ ~ 1, t hen  the  r ight  hand  side of  (3) is 0(~-~),  
so in this  case (3) gives the  same resul t  as (1). However ,  if a%(f,v) ---- O(v), (3) gives 
something weaker  t h a n  (1), i.e. the  well known es t imate  

1If - -  ( f  * k~.)J1~ = 0 (~--1 log ~) as  ~ --~ (30, 

which cannot  be s t reng thened  (see [26]). 

6.5. ))Inverses) theorems for trigonometric approximation. As r emarked  in the  
in t roduct ion ,  t he  results of  this  pape r  app ly  mutatis mutandis to  periodic functions,  
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and in this section we shall mean by L p the space of measurable 2z-periodic functions,  
with 

2 z  

0 

Let  us consider the  sequence 

E . , , ( f )  = i n f { l l f -  T]lp ; T e %n-1} 

measuring the goodness of  approximat ion  to f C L P b y  elements of  %.-1 (trigono- 
metric  polynomials  of  degree at  most  n - -  1.) I t  is easy to show (cf. [19], p. 504) 
tha t  if a is any  measure  such tha t  ~(x) vanishes for Ix I ~ 1, then  

r a) ~ V(~) En,e(f) , (1) 

where n is the  smallest integer such tha t  na ~ 1. This inequal i ty  enables us to 
app ly  theorems 4.4 and 5.3 to the  ~)inverse)> problem of t r igonometr ic  approximat ion.  
For  example,  suppose 

En,p(f) < ~(1/n) ,  (2) 

where ~0(v) is a cont inuous  increasing funct ion defined for v ~_ 0, and y~(0) ~ 0. 
Note  tha t ,  b y  (1), c%.F(f; a) is bounded  b y  a constant  t imes ~o(a). I f  now a 
satisfies the  Tauber ian  condition, we get f rom 4.4(4) (with ~ --~ ill, r ~ 1, P(x)  -~ x) 

dv 
% ( f  ; a) ~ ~ Ap ~o(v) ~ - ~  -t- a ~ ~o(v) r~ v -~-1 dv , (3) 

0 a 

where A~ depends  on p only. For  example,  if ~(v) = O(v), we get  (assuming, 
as we may,  ~o bounded)  

% ( f  ; a) = 0 a log 

The est imate  (3) gives non-trivial  information for ~(v) ---- ]log v I-~ when c ) l/p, 
bu t  gives no informat ion when c ~ 1/p. On the other  hand,  f rom a theorem of  
A. F. and M. F. T iman (cf. Timan [26], p. 331), it is known tha t  (2) implies 

oo 

me(f ; a) ~_ Ca f ~p(v) v -2 dv . (4) 
a 

(Of course, (4) gives non-tr ivial  informat ion for a rb i t ra ry  yJ(v) tending to zero as 
v--> 0. Comparing (3) and (4) makes  it na tura l  to expect  t ha t  an es t imate  

oo 

me(f; a) ~ < Ca r /~o(v)  P v -~-1 dv (5) 
a 
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should hold. I t  is clear tha t  (5) cannot be deduced from any of the comparison 
theorems of this paper. However, one of the authors (J. B.) has recently proved 
that  Theorems 4.3 and 4.4 can be sharpened to yield estimates like (5) for a large 
class of measures a, including, in particular, any measure tha t  is the sum of a 
discrete and an absolutely continuous measure. The sharpening consists in replacing 
the integral 

B a  

/ w~,p(f ; v)~ v -1 dv 

o 

by w,,p(f ; Ba) ~. I t  can also be proved tha t  this stronger conclusion is not valid 
for arbitrary measures a satisfying the Tauberian condition.) 

Similarly, applying Theorem 5.3 with s ----1, we get: i f  (2) holds, where 
1 

/ a -p-1 y~(a) ~ da 

0 

then f is equal a.e. to an absolutely continuous function, having a derivative of class L p . 

6.6. COROLLARY TO THEOREM 4.4. I f ,  under the hypotheses of  Theorem 4.4 the 
integral 

oo 

f % , p ( f  ; v) ~ v -'~-1 dv (1) 
0 

is finite, then %.z(f ;  a) = O(a'). 
Indeed, this is an immediate consequence of 4.4(4). 
Observe tha t  the finiteness of (1) is implied by 

1 

/ (Da,p(f* ~ V)PV -r~-I dv < ~ (2) 

0 

which is precisely the ~hypothesis of Theorem 5.3. 

6.7. Mixed  (L e , L q) estimates. The ~>classical~) embedding theorems (of Sobolev, 
Besov, etc.) are always carried out in the generality of mixed (L p , L q) estimates, 
whereas in each of our the0rems-the same value of p appears in both hypothesis 
and conclusion. By way of contrast, consider the following known results ([27], 
p. 677) valid for functions on [0,~ 1]. 

(i) For 1 <_ p ~ q ~ oo, i f  f E L p and 

• ( f ; a ) = 0  a ~ -  ~ l o g a  

where c > 1/q, then f e L q. 
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(ii) For 1 < p < m, i f  f E L P and 

~here c > 1, then f coincides a.e. with a continuous function. 
Using general embedding  theorems,  e.g. as given by  Peetre  in [15], it is no t  

ha rd  to  ex tend our  theorems so as to encompass  results like the ci ted theorem of 
Ulyanov .  As an  example we ment ion  the following theorem. 

THEOREM 6.1. Suppose o, ~: C M(Rm), ~ satisfies the Tauberian condition, and 
there exists F E W such that ~ (x) ~- ~(x)F(x) for x in  some neighborhood of the 
origin. Let l < p < q < oo, s = m(1/p - -  1/q), and l < r < q. Assume that 
f E L~'(R =) and that the integral in the right hand side of (1) converges. Then f e Lq(R m) 
and 

B a  
/ ,  

%.~(f , a)" < C J [~.,p(f v) v-"J" 
dv 

- -  ' T " ( 1 ) ,  

0 

For  the p roof  of  this theorem one needs the inequal i ty  

Ilfll; < C ~ (2-J'llf , q~j[Ip)" (2} 
j=--r 

in place of 3.3.4(2). The inequality (2) is re]ated to the embedding theorem (cf. [15]} 

W.2" c L~ (3> 
jus t  as 3.3.4(2) is re la ted to  

1~o,~ C L P �9 

I n  fact,  t ak ing  into account  the  definit ion of  the spaces I~V~'" and  L P one observes 

t h a t  (2) is just  another  way  of  s ta t ing (3). Using (2) one can prove Theorem 6.1 
in the same way  as Theorem 4.3. 
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