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O. Introduction 

Le t  A be a classical scalar pseudo-different ial  opera to r  of  order  m (cf. K o h n  --  
~qirenberg [7]) in an open subset  f2 of  R". We are in teres ted  in es t imates  of  A 
f rom below of  the  form 

Re (Au ,  u) ~ CluJ~,) , u e C~(K) (0.1) 

where K is a compact  subset  of  f2 and ]u](s) is the  no rm of  u in the  space 
H(s ) of funct ions wi th  der ivat ives  of  order  s in L 2 and (v,  u ) =  f vadx. I f  
s ~ m/2 the  es t imate  is always t rue  for some C since (Au ,  u) is cont inuous 
in H(,,/2). On the  other  hand,  if  s < m/2 it  is easy to  see t h a t  (0.1) implies 

Re am(x, ~) >_ 0 (0.2) 

where a m is the principal  symbol  of  A. In  the  opposi te  direct ion GSrding [3] 
p roved  t ha t  if  (0.2) is valid, t hen  we can for eve ry  e > 0 and  every  s f ind  a cons tan t  
C - - - - C ( K , e , s )  such t h a t  

Re  (Au , u) + elu]~,) ~ Clu](:,) , u e C~(K) (0.3) 

i f  tt = m/2. A simple modif ica t ion of  the  proof  gives the  same resul t  for an y  
# >  ( m - -  1)/2. In  fac t  if A satisfies (0.2) and  m / 2 > t t >  ( m - -  1)/2 then  we 
can write 

(A -4- A*)/2 + e(1 + [D[2) ~ = P*P  + Q 

where P and Q are pseudo-different ial  opera tors  in K2 and  the  order  of Q does 
no t  exceed m - -  1. 

Howeve r  the  s i tua t ion becomes more  complex when # - ~  ( m -  1)/2. I t  was 
p roved  by  HOrmander  [5] t h a t  (0.2) does imply  t h a t  (0.3) is val id  for some e > 0, 
bu t  to  have  (0.3) for eve ry  e > 0 we must  clearly in addi t ion to  (0.2) place a 
restr ic t ion on the terms in A of  order  m - -  1. In  this paper  we shall s t u d y  necessary 
and  sufficient conditions on A for (0.3) to  be val id  for  eve ry  e > 0 when 
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# = ( m -  1)/2. The proof depends on the  localization technique int roduced in 
HSrmander  [5, 6] bu t  requires more careful estimates of remainder  terms. In  addi t ion 
we have to make a complete s tudy  of inequalities of  the  following kind, 

f v(y) ~ (1/~x!fl!)a~y~D ~ v(y)dy > O, v 6 C~(R") (0.4) Re 
J I~+~l _<2 

where a~ are complex numbers~ 
This will be done in section 2 and the s tudy  of (0.3) when # = (m -- 1)/2 will 

be carried out  in section 3. In  section 4 we shall use our results to prove a theorem 
due to Radkevi5 [10] about  hypoell ipt ici ty for a certain class of classical pseudo- 
differential operators with non-negative principal symbol. We also ment ion t h a t  
the inequal i ty  (0.3) wi th  # = ( m -  1)/2 has been t rea ted  in the vector valued 
case by  Lax-Nirenberg [9J. (See also [2] and  [11].) 

F inal ly  I wan t  to t h a n k  my  teacher  prof. L. HSrmander  for his k ind interes t  
in this work and m a n y  suggestions for improvements.  

1. Notat ion and prel iminaries  

We shall make use of the familiar nota t ion  D i = -- i ~/axi, where i = % / - -  1 
a n d  if  D ~ (D 1 . . . .  , Dn) is the gradient  vector and  a ---- (a 1 . . . . .  an) is a multi-  
:index with  the a i non-negative integers then  D ~ denotes the differential operator  
D ~ I . . . D ~ n .  We set [al ~--~aj" and a! = a l ! . . . a n ! .  I f  y~-- ( Y l , " - , Y n )  we 
define y~ in a similar way. By  S or 5(R n) we denote the set of  all functions 

E C ~(R ~) such t h a t  

sup lx~D~r < ~ (1.1) 
x 

for all multi-indices a and  ft. H(~) is the completetion of 3 in the norm 

= (2=)-n f (1 ~- I~[2)~1~(~)12 d~ (1.2) luJ~,) 

where 4 denotes the Fourier  t ransform of u 

~(~) = f e -~<~' ~>u(x) dx. 

I f  X is an open subset of R" and a belongs to C ~ (X • R") and satisfies the  
inequal i ty  

]D~D~a(x, ~)] < C~,~,K(1 -}- 1~[) m-l"l , x E K ,  ~ C R n (1.3) 

when K is a compact  subset of X, then  a(x,  D) will denote the corresponding 
pseudo-differential operator  (of order m) 
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f 
a(x , D)u(x) = (2~) -" t e~<"'~>a(x ' ~)4(~)d~ , u E C~(R") . 

I 

In particular, ff ~ and u belong to 3 then ~p(D)u will denote the function whose 
Fourier transform equals ~ .  

I f  A is a classical pseudo-differential operator of order m with symbol a, 
then a i (with j = m, m -- 1 . . . .  ) will denote the part  of a tha t  is homogeneous 
of degree j with respect to ~. Finally with a as in (1.3) we shall use the notat ion 
a s~ = (iD,,)~(in~)~ a. 

2. A study of the inequality (0.4) 

Let a~ denote complex numbers and consider the inequali ty 

Re f v(y) ~ (1/cdfl!)a~y~D%(y)dy > 0 ,  v e C~(R n) (2.1) 
J 

where k is a non-negative integer. Of course the form defined in (2.1) does not 
determine the coefficients a~ uniquely, but  we claim that  there exist uniquely 
determined real coefficients by such that  

l~e /v (y l~+~t  <_l,(1/cdfl!)b~y~D%(y)dy ' v E C;(R n) (2.2) 

defines the same form. For the existence of such b E it is enough to prove tha t  

Im / v(y)y~D~v(y)dy = Re / v(y){ (y~D~ -- D~y~)/2i} v(y)dy 

can be written in this form, but this follows easily from the fact that  

yjD k -- Dky i -~ i~jk (2.3) 

To prove the uniqueness when the coefficients are real we replace v(y) in (2.1) 
by q(y -- tx)e ~'<y'~> where f I~(y)[2dy = 1 and get the expression 

Re f qv(y) ~ (1/~!fl!)a~(y + tx)~(D + t~)~'q~(y)dy 
J la+~l -< k 

which is a polynomial in t with the leading coefficient 

la+~l =k 

Hence by letting t tend to infinity we can conclude tha t  two sets of real coefficients 
defining the same form must coincide and tha t  the validity of (2.1) implies tha t  
the form h is positive semi-definite. When k -~ 2 and there are no lower terms 
the converse statement is valid for by formula (2.3) 
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v(y)yiDkv(y)dy / + J [v(y)]~dy , e C~(R") (2.5) 
f f 

v(y)nkyiv(y)dy iSik v 

so when taking real parts in (2.1) y and D can be treated as commutating operators. 
In particular, if h (x ,  ~) is a real quadratic form on R n �9 R", then we have a 
well defined form 

/ v(y) h ( y ,  D)v(y )dy ,  v Re E C~(R") 

and by a diagonalization of h one immediately sees tha t  the expression is non- 
negative if h is positive semi-definite. Also, when k ~- 2, 

When ]c ~- 2 we get the correspondence between the coefficients in (2.1) and (2.2) 
by the equations 

= 0 a /2. (2 .7)  b~ ~ R e a ~  if a~- f l=f i  0 ,  b~--~Rea 0 -  ~ Im 
l~l =1 

We shall now confine ourselves to the case when ]c equals 2 in formula (2.1) and 
let h and f denote the quadratic respectively the linear part  of the corresponding 
polynomial with real coefficients on R " |  R n. I f  ( u ,  v) denotes the standard 
Euclidean scalar product on R" O R n, then there is a unique symmetric trans- 
formation H such tha t  

h(u) = ( H u  , u )  , u C R" | R" . 

By i we shall also denote multiplication by the imaginary unit in R" @ R" when 
this space is identified with C" as a real vector space under the isomorphism 

.R" @ R" ~ (x , ~ ) --> x -+ i ~ e C" . 

We shall examine the invariance of (2.1) when the symbol (y,  D) is transformed 
as a vector in R" @ R" and find tha t  our inequality is invariant under the 
symplectic group of /~n �9 R n. 

Definition 2.1. We define the sympleetic bilinear form a on R" �9 R" by the 
equation 

a ( u , v ) = I m ( u , v ) = ( - - i u , v ~ -  (u  , iv~ , u , v e R" O R~ (2.8) 

where (u,  v) denotes the Hermitian scalar product on C n. The corresponding 
linear transformations on R " Q  R" under which a(u ,  v) remains unaltered are 
called canonical transformations. They form the symplectic group S p ( R  ~ �9 R"). 

I f  H is strictly positive, then ( H u ,  v} defines a scalar product b on R" | R" 
and since 

( H i H u  , v}  -~ ( H u  , ( - -  iH)v}  , u , v e R" O R" 
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iH is skew-symmetr ic  wi th  respect  to  b and  it  follows t h a t  the  spec t rum of  iH 
is s i tua ted  on the  imaginary  axis, symmetr ica l ly  a round  the  origin. The last s t a t emen t  
is clearly val id even if H is only posi t ive semi-definite since the  eigenvalues of  
a l inear t r ans fo rmat ion  depend cont inuously  on the  t r ans fo rmat ion  and  H = 
lim~_~0 H + eI, where I is the  iden t i ty  t ransformat ion .  

Definition 2.2. B y  Tr  H (Tr h) we shall mean  the  sum of  the  posi t ive elements  
in i .  Spec t rum (ill) where each eigenvalue is counted  wi th  its mult ipl ici ty .  

I t  follows f rom the  a rgumen t  above t h a t  Tr  H depends cont inuously  on H.  

Remark 2.3. In  order  to i l lustrate  the  na tura l  role of  Tr  H we shall p rove  
t ha t  i t  is invar ian t  under  symplect ic  t ransformat ions .  I f  Z E Sp(R" | R") t hen  
the  polynomial  h(zu ) corresponds to the  symmetr ic  t r ans format ion  g 'Hz ,  where 
Z ~ is the  adjoint  of X wi th  respect  to  the  s t andard  Eucl idean s t ruc ture  of  / P  | R", 
so we have  to show tha t  

Tr  Z' H ~  = Tr  H .  (2.9) 

Now by  the  defini t ion of  Sp(RnQ R") 

i X t = Z - 1  i 

hence 

i Z ~ H Z = 2 -1 i H g 

which implies t h a t  iz 'H Z and  iH have  the  same character is t ic  polynomial .  
THEOREM 2.4. The inequality (2.1) with k = 2 is valid i f  and only i f  

(i) h(x , = -  a J  / !flt >_ 0 
(ii) f ( x ,  ~) = ~. [~+~1 =1 Re a~x~ ~ 

vanishes in the null space of h, and 
(iii) R e a o  ~ - -~ . l~ l=  ~ I m  a~/2 --  (H-~f , f ) /4  + T~rH >_ O. 
Remark 2.5. Although H -1 does no t  have to  exist  the  expression (H-i f ,  f }  

is well def ined b y  (ii) and  as is easily seen 

(H-~ f , f }  = sup (u  , f }2 .  (2.11) 
h(~) < 1 

In  view of  (2.7) we m a y  assume t h a t  the  coefficients a~ are real  in the  p roof  of  
Theorem 2.4. Of course we shall m~ke use of  the  tr ivial  fac t  t h a t  we could as well 
let  v run  th rough  3 in (2.1). 

Definition 2.6. We shall say  t ha t  two polynomials  p~ and  P2 on R n G  R" 
are symplect ical ly  equivalent  if  there  is a canonical  t r ans format ion  Z such t h a t  

p l ( Z ( V ) )  = p2 (V)  , V e R n @ R a . 

B y  a symplect ic  basis for R" | R" we shall mean  a basis {e 1 . . . .  , e , ,  f l  . . . . .  f ,}  
wi th  the  p rope r ty  

~ ( e j , e ~ ) = ~ ( % . , h ) = 0 ,  ~ ( e ~ , A ) = - -  ~j~. 
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LEMMA 2.7. Let  Pl  and p~ be symplectically equivalent po lynomia l s  of  the second 

degree with real co.efficients. Then  the inequal i ty  

Re / v(y)pl(y  , D) v(y) dy  >_ 0 ,  v e ~ (2.12) 

is valid for  Pl  i f  and only i f  it is valid for  p~. 
We have already proved the necessity of condition (i) in Theorem 2.4. Using 

Lemma 2.7 it will be easy to finish the proof of Theorem 2.4 in the case where 
h is positive definite. We observe that  

~(u , v) = ( H S u  , v> = b ( S u ,  v) 

where S = ( i l l )  -1 is skew-symmetric with respect to b. By a standard result 
concerning normal transformations on a Hilbert space we shall be able to reduce 
our problem to the case n = 1. In fact, we have the following 

I~EMMA 2.8. Let  { ~1 . . . .  , 2n} be the positive elements (counted with mul t ip l ic i ty )  
in  i .  Spec t rum (S). Then  R n 0 R n can be writ ten as a direct sum  

R o + R o = 2 +  5 

which is orthogonal wi th  respect to b and where V~ has an orthonormal basis {e i , f i} 
i n  the same sense such that 

Sej -= - -  ~ J i ,  Sfi  = Xiei , J  = 1 . . . . .  n .  (2.13) 

Notice that  this condition implies tha t  {El . . . . .  En,  F 1 , . . . ,  Fn} with 
Ej  = ~T1/2ej, ~j  ~ - -  ~j--1/2fj is a symplectic basis for R n | R". I f  {E ~ . . . .  , E ~ is 
the standard orthonormal basis for C', then {E ~ . . . . .  E ~ F ~ , . . . ,  F ~ with 
~F ] = i E  ~ is a symplectic basis for R" O R n. Let Z denote the canonical trans- 
formation which maps E ] on Ej and F ~ on Fj for j = 1 , . . . , n .  I f  

H - i f  = t iE  1 ~- . . .  -~ t ,E~ Jr "~1F1 -+- . . .  -+- ~,F~ 

and 

v = x~E ~ ~ - . . .  + Xn E~ -~- ~1 F~ ~ - . . .  -~ ~ F  ~ 

then an easy computation yields 

a~ -[- <f , zv> + h(xv) = a~ ~- ~ ).7'(tjxj -]- Tj~j -4- X2 -~ ~2) . (2.14) 
j = l  

According to Lemma 2.7 we have to s tudy the inequality 

Re / v(y){a ~ 

Replacing v by 

+  ;l(tjyj +  jnj + y} + n})} v(y) dy >_ 0, v e S .  (2.15) 
j = 1  

e i(z~JYJ)/2v(y) 
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in (2.15) and repeating the same argument after a Fourier transformation we get 
~he equivalent inequality, 

s 
(a~ ( H - i f , f > ~ 4 ) J  lv+)l,dy + iv+)  ~j--l(y2 + n2>v(y)dy ~ O, 

Here we have used the equation 

Let  u E C~(R). 

~j (tj q- T~) b(n-~f, H-~f)---- (H-~ f , f } .  

By expanding the right-hand side of the inequality 

0 < f I(O -- 2iy)ul 2 dy 
, ]  

v e 3 .  (2.16) 

we get for real 2 

f (t(D 2 + ).2y2)u dy ~ ). / lul  ~ dy.  
s 

(This is essentially the proof of the uncertainty relation.) tIence we obtain by 
choosing 2 ~- 1 

f + > iv+l= 
and choosing v(y) ~-- e -lyl'12 we see tha t  the inequality cannot be improved. 

Since Tr H ~ ~ 27 a this will complete the proof of Theorem 2.4 in case H -1 
exists. The general case follows from a continuity argument. We replace the coeffi- 
cients a~ by a~(e) in such a way that  H will be replaced by H ---- H ~- sI while 

0 are conserved. From (2.6) we get (for s ~ 0) f and a 0 

f v(y) X (~l~)~y~D~v(y) ~y < Re f v(y) t~e (1/~!fl!)a~ (e)y~D~ v(y) dy 
Y 

and since g(s) = a~ -- (H~-l f , f} /4  -~- Tr(H~) tends to g(0) when e tends to zero 
the necessity of (ii) and (iii) follows. 

Conversely, if (ii) and (iii) are fulfilled we can choose a function ~(s) tending 
to zero when s tends to zero such tha t  

_ _  H - 1  a~ q- cp(e) ( ~ f , f } / 4  q- Tr (H ) ~ 0  

and then the sufficiency of our conditions follows since for fixed v the left hand 
side of (2.1) depends continuously on the coefficients a~. 

Proof of Lemma 2.7. The idea is to subject v in formula (2.12) to isomorphisms 
of S which lead to linear transformations of (y,  D) generating Sp ~ Sp(R ~ �9 R~). 
We shall introduce three subsets G1; G 2 and G 3 of Sp: 

G 1 is the group of all transformations of the form T -1 G T' where T is an 
isomorphism in R ~ and T' denotes the adjoint transformation. This is the group 
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of  linear t ransformat ions  in R" | R n obtained by  regarding the second copy as 
the  dual  space of the first. 

G~ is the  set of all e lementary  canonical t ransformations,  i.e. t ransformat ions  
o f  the form 

C n ~ ( z  I . . . . .  Zn) --->- (iw(1)Z 1 . . . . .  iU'('OZ,,) (2.18) 

where ~ is the characteristic funct ion of a subset of { 1 , . . . ,  n}. 
G a is the group of t ransformat ions  

- R~ �9 R ~ D ( x ,  ~) --> ( x ,  ~ - -  Sx)  (2.19) 

where S is a symmetr ic  linear t ransformat ion  on the Eucl idean space B n. 
I f  the va l id i ty  of (2.12) for Pl implies the same for p~ ---- Pl ~ Z when Z C G i, 

then  we shall say t h a t  (2.12) is Gi-invariant. 
To prove t h a t  (2.12) is G 1 --  invar iant  we replace v(y) in (2.12) by  vT(y) 

v(Ty) where T is an isomorphism in /~=. By  the chain rule 

/)a(VT ) __-- ((TtD)av) w 

where (T'D~)e i<x" ~> = (T'~)e ~<~' ~>. A subst i tut ion of y by  T - %  in the integral 
yields us the equat ion 

/ / Re vr(y)lh(y,  D)vr(y) dy = Idet T 1-1 Re v(x)pl(T-ix,  T'D~)v(x) dx 

from which the G~-invariance follows. 
When  proving the G~dnvariance we shall construct  the part ial  Fourier  t ransform 

t h a t  corresponds to ~ in (2.18), 

w,(j)= 1 

where 

= 

Replacing v in 

/ e - i < x j ' - v J > U ( ~ l , .  � 9  ~ j ~ l ,  x j ,  ~ j + l  , �9 �9 �9 , Sn)dxj, 

(2.12) by  ~w(v) and using the formulas 

Y S ~  ---- ~,,YJ, D J ~ , ,  : ~ D i  if ~v(j) = 0 

f %  v(y) v dy = ] v(y)u(y) dy ,  

we see t h a t  (2.12) is also G2-invariant. 
In  the  proof  of the Ga-invariance we replace v in (2.12) by  

with  S as in (2.19). Now 

D.(e-i < sy, Y >/:v(y) ) = e - i  < Sy~ y > / 2 ( D i  _ Si(y) )v(y ) 

u E 3 .  

(2:20) 

e-i<sy'Y>/2 v(y) 



LOWER BOUNDS FOR PSEUDO-DIFFERENTIAL OPERATORS 125 

where Sj(y) is the  j t h  coordinate  of  S(y)  and  since y and  D commute  in (2.1) 
when /c = 2 and  the coefficients are real  we get  

Re  / e-~<sx'y>/2v(y)D~(e-~<SY'Y>/2v(y)) dy = (2.22) 

/ = Re v(y)(D - -  S (y ) )~v(y )dy ,  [~1 ~ 2 .  

The  Ga-invariance now follows immedia te ly  f rom (2.21) and (2.22). In  order  to  
complete  the  p roof  of L e m m a  2,7 we have  to show 

LEMMA 2.9. The  sets G1, G~ and  G a generate together the symplectic group 
S p ( R  n + Rn). 

We shall use the  symbol  A(n)  to denote  the  set of  all subspaces 2 of  R n G R" 
which are isotropic in the  symplect ic  geomet ry  and of  maximal  dimension, i.e. 
2 E A ( n )  if  and o n l y i f  dim ( 2 ) = n  and  

a ( u , v )  = 0  when u , v C 2 .  (2.23) 

R n = [ E  ~ . . . .  , E  ~ and i R n :  [El ~ . . . .  , F  ~ belong to  A(n) .  I t  is easy to  see 
t h a t  if  20 E A(n)  is t ransversa l  to i R  ~, t h a t  is, the  projec t ion  ~o--> R" along 
i R  n is surjeetive,  t hen  there  is a symmetr ic  l inear t r ans format ion  S on R" such 
t h a t  

~o = { (x  , S x )  ; x e R n }  . 

L e t  2 o E A(n) .  By looking at  the  image of  the  project ion 

20D (x ,  ~)-->x E R  ~ 

we realize t ha t  there  exists an e l ementa ry  canonical t r ans fo rmat ion  Z such t h a t  
Z(~o) is t ransversa l  to  i R  ~. (Cf. [1, w 96]). 

Proo f  of  L e m m a  2.9. Le t  Z E Sp.  B y  the  r emark  above there  is a Z1 in G 2 
and  a symmetr ic  l inear t r ans format ion  S such t h a t  

~1 o y,(iR ~) = { (x , Sx )  ; x e R~} . 

Choosing :~2 as in (2.19) we get 

iy,2 o Zl o z ( i R  ~) = i R  ~ . 

Since R ~ is t ransversal  to  i R  ~ it  follows t h a t  x ' R  ~ is t ransversal  to g ' i R  ~ for  
an y  linear bi ject ive Z'. Hence  there  is a symmetr ic  l inear t r ans fo rmat ion  S 1 such 
t h a t  

iZ2 o )~1  o z ( R  n) : {(x ,  S i x  ) ; x ~ .Rn} .  

I f  Xa denotes  the  corresponding map  def ined in (2.19) and Za = Xa ~ i o X2 ~ Zl o g 
we have 

z , ( - R  ~) = R ~ , z ~ ( i R " )  = i R  ~ . 
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Thus  Z4 ~ A �9 B where  A and  B are l inear  t r an s fo rma t ions  on R n. Since 

Z4 E Sp  we m u s t  have  Z4 E G 1 and  we conclude t h a t  Z be longs  to  the  g roup  
genera ted  b y  Gx, G 2 and  G 3. 

Remark 2.10. I t  is easy  to describe those  pos i t ive  semi-def in i te  l inear  t r ans -  

fo rmat ions  H of  R ' O  R" for which Tr  vanish.  The  following s t a t e m e n t s  are  
equiva len t  

1 ~ T r H - ~ 0  
2 ~ H(R n |  n) C 2  for  some 2 C A ( n )  
3 ~ H - I ( 0 ) ~  for some 2 C A ( n ) .  

The  equivalence  be tween  2 ~ and  3 ~ follows f rom the  fac t  t h a t  2 z ---- i2, where  4 • 
denotes  the  or thogona l  c o m p l e m e n t  of  2 wi th  respec t  to  the  s t a n d a r d  Euc l idean  
s t ruc ture .  Le t  G denote  the  pos i t ive  square  roo t  of  H.  Since GiG is skew- 
s y m m e t r i c  the  equivalence  be tween  1 ~ and  2 ~ will follow f rom the  following chain  
of  implicat ions:  

1 ~ <:>i l l  is n i lpo ten t  ~ GiG is n i lpo ten t  ~ G i G =  O ~ H i H =  0 r  ~ . 
We  shall end  this  section wi th  an  appl ica t ion  of our  resul ts  to  the  inequa l i ty  

[ A~y~v(y) + ~ Bfl)~v(y)l ~ dy ~ c Iv(y) l 2 dy ,  v E C~(Rn). (2.24) 
1 1 

Here  A~ and  B~ are vec tors  in a (complex) Hi lbe r t  space 9 (  and  since the re  
is no a m b i g u i t y  we use the  symbols  (A , B) for the  scalar  p roduc t  and  [A[ for  
the  n o r m  in 9(.  

B y  using (2.5) we get  

I A,y,v(y) + ~ B~D~v(y)12 dy ~- (2.25) 
1 1 

+ 2 ~. Re  ( A , ,  B~)y~,D~v(y) + ~ Re ( B , ,  B~)D,D~v(y)} dy .  

We now in t roduce  the  G r a m i a n  of  h~ . . . . .  h ,  C c)d as the  m a t r i x  

V(h~ . h~) = ((hi, h ~ 

Not ice  t h a t  Re  G(h 1 . . . . .  h~) is a real  posi t ive  semi-def ini te  m a t r i x  since 
Re  (g ,  h) is an  Euc l idean  scalar  p roduc t  in the  real  subspace  of c)d spanned  b y  
{h 1 . . . . .  h~} over  R. L e t  H = R e G ( A ~  . . . . .  A n , B ~ , . .  ,B , ) ,  t h e n  b y  {2.25) 
the  inequa l i ty  (2.24) is equ iva len t  wi th  

f Iv(y)l 'dy, v e C~(R') .  > 
J 
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Theorem 2.4 then gives us 
PROPOSITION 2.11. The inequality (2.24) is valid i f  and only i f  

c _< Re (-- i (A,,  B~)) + Tr Re G(A1 . . . .  , A n ,  B~ . . . . .  B~).  
1 

(2.27) 

I n  particular, the best constant in (2.24) is a continuous function of the vectors A v 
and B~. 

_Remark 2.12. H6rmander [5] has given necessary and sufficient conditions for 
(2.24) to hold with a positive constant c. We have however not managed to derive 
an easy criterion for this directly from (2.27). 

Remark  2.13. The validity of the inequality (2.1) when k ---- 2 and conditions 
(i) and (iii) of Theorem 2.4 are fulfilled (with h positive definite) can also be proved 
in the following more general way. For the sake of simplicity we assume that  the 
coefficients are real. Let X~ (i = 1 , . . . ,  2n) be symmetric linear operators 
defined in a dense set F of a complex Hilbert space c)~ and suppose tha t  X~(F) 
is contained in F for all X/ and tha t  the following relations hold (eft (2.3)), 

X j X  k - -  XkXj  = [Xj ,  Xk] -=- - -  %, / - -  1Jjk l .  (2.28) 

Here J = (Jjk) denotes the matrix for i, the multiplication by the imaginary 
unit in R n @ R n, and I is the identity transformation in 9(. We shall prove the 
inequality 

Re  (p(X)v  , v) > 0 ,  v E_F , (2.29) 

where X = (X 1 . . . .  , X2n) and p(u)  = ( H u ,  u}  -~- ( f ,  u> ~- a~ is defined as in 
Theorem 2.4. I t  follows from (2.28) tha t  the left hand side of (2.29) is well defined. 

By the computations after Lemma 2.8 we can find a symplectic matrix Z such 
that  

2 �84 ( H z  - lu  , Z-lu> = 2/(u 2 -F- %+i) ; 25 = Tr H .  
i = l  i ~ l  

We now introduce new operators X/ by the equations 

2 n  

X i =  E xi~X~ + gj I ,  

where g = 1 / 2 z H -  % I t  is then easy to verify that  the operators X/ will satisfy 
(2.28). Since we have 

p ( X )  = ~ 2~(X~ q- X2,+,) - -  ~ ( H - l f ,  f > I  § a~ 
i = l  

the inequality (2.29) will follow from the uncertainty relation. 
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3.  L o c a l i z a t i o n  of l o w e r  bounds  for pseudo-d i f ferent ia l  operators  

We shall now apply  the  results of  section 2 to a localization of  the  inequal i ty  
(0.3). Le t  ~ be a twice cont inuously  differentiable funct ion  def ined in an  open 
set in R M. We then  define the  Hessian of ~ as the  ma t r ix  

H ~(x) ---- ((iDj)(ink)~(x))~,k=l . (3.1) 

THEOREM 3.1. As s ume  that a,~ >_ O. Then the inequality (0.3) with # ~-- (m - -  1)/2 
holds for every s ~ 0 and every s with suitable C when K is any  compact set in 

~2 i f  and only i f  

Re am_l ~- 1/2 Tr  Ham > 0 

at the zeros of am in 12•  n-1. 
Remark  3.2. The  condit ion am >~ 0 is a consequence of  (0.3) if  we assume 

t ha t  A is self-adjoint,  which is no restr ict ion.  I f  we do not  in t roduce an y  nor- 
mal izat ion our  conditions are: 

]~e am >__ 0 (3.2) 
n r ~  

and Re a~_ 1 -[- (1/2) I m . ~  a~lj) ~- (1/2) Tr  HRoa~ > 0 (3.3) 
j - - ~  - _ 

at  the  zeros of  l~ea~ in ~2•  n-~. 
Remark  3.3. F r o m  (2.9) and the  iden t i ty  

r m-1 t H ~x H . m ( X  , r~) = Z ~ ' ~ )Z  r > O , 

where Z = r~/2E �9 r -1/2 E and  E is the uni t  ma t r ix  of  order  n, we conclude 
r ~ J  

t h a t  T r  H,~  in Theorem 3.1 is homogeneous  of  degree ( m -  1) in ~. 

I n  the  proof  of  Theorem 3.1 we shall reduce ourselves to  the  case m ---- 1. Le t  
R e denote  proper ly  suppor ted  pseudo-different ial  operators  in f2 wi th  symbol  
(1 ~ 1512)e/2 and  set A e -~ R - o A R  -e. Recall  t h a t  a pseudo-differential  opera tor  
A in f2 is called proper ly  suppor ted  if  bo th  project ions supp K A --> ~2 are proper ,  
where K A is the  dis t r ibut ion kernel of  A. See also [6], p. 148. Then  A satisfies 
(0.3) wi th  # - - - - ( m - - 1 ) / 2  for  every  e > 0  and  every  s when C is sui tably  
chosen if  and  only  if  the  same holds for A o wi th  /~ = (m - -  2~o - -  1)/2. Since 
a,,,(x, ~ ) -~  0 implies grad(~,~) a,n(x, ~) -~ 0 we also f ind t h a t  the  condit ions in 
Theorem 3.1 are left  invar ian t  if  we replace A b y  A~. Hence fo r th  we shall therefore  
assume t h a t  m = 1. 

Proof  that the condition in Theorem 3.1 is necessary 

Assume t h a t  a l ( x ~  ~ ----0 with  ( x ~  ~ in / 2 X S  n-1. Choose any  E >  0 
and  let  K be a compact  set in ~2 containing x ~ as an inter ior  point .  We want  to  
show t h a t  (0.3) implies 
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Re ao(x ~ , ~o) @ 1/2 Tr H,~(x ~ , o)  > O . (3.4) 

In  order to get  (3.4) we shall construct  a class of  functions with suppor t  near  
x ~ and with Fourier  t ransform concent ra ted  close to the  half-ray genera ted  b y  
~0 in R". For  the  sake of  simplici ty we assume tha t  x ~  0. Le t  rECk(R")  
and set 

u~(x) = 4"/2v(~x)e ~<~' 'r  

Then ]uz[(0 ) = Ivl(o) and uxEC~(K) for large 4. A simple calculation yields 

(Au~.,ux) = ( 2 ~ )  -'~ ff+<.,,>a(x/4, 42~~ + (3.5) 

Since the  first-order derivat ives of  a I a t  (0 ,  Vo) vanish and since 

([42~ ~ @ 4~:[ @ 1) -1 = 0(1)4-1(1 + I~l) 

a Taylor  expansion of  a abou t  (0 ,  ~o) will give 

a(x/4, 42~ ~ -~ 4~) = ~ a~a(O , V~163 + ao(O , ~o) ~_ 0(1)4_1(1 @ [~1)4 . (3.6) 
la+~l=2 

Then applying the Fourier  inversion formula and using (0.3) with s = - -  1 

we get  wi th  some constant  C tha t  does no t  depend on 4 

Re  f v(x) ~ (l/~!fi!)a~(0, V~ § 
J la+~ 1=2 

(~ + l~e ado, ~ 0 ) ) j  Iv(x)? dx + 4=100) >_ ~lu~l~_x) �9 + 

N o w  2 Iu~, ](_l) -+ 0 when 2 - +  oo. Hence  b y  first  let t ing 2 t end  to inf ini ty and 
then  let t ing e t end  to zero we arrive at  the  inequal i ty  

l~e f v(x) ~. (1/~,fl,)a~(0, ~~ @ Re ao(O, ~o) f [v(x)l~ dx ~ 0  (3.7) 
]aA-fl[=2 

when v belongs to C~(R"). The inequal i ty  (3.4) now follows b y  Theorem 2.4. 

Proof that the condition in Theorem 3.1. is sufficient 

Following HSrmander  [5] we shall make  a localization of  the  es t imates  b y  
means of  par t i t ions  of  un i ty  in the  var iables  x and  $. There exist sequences 
(%)if=0 and (~vk)ff= 0 of  non-negat ive funct ions belonging to C~(R n) such tha t  the 
following conditions are fulfilled (See [5], p. 141--142): 

= . %(x) = ~vk(~ ) = 1 (3.8) 
0 0 
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(and at  most  

and  f inal ly 

2" supports overlap) 

I x - - y ]  ~<C if  x , y e s u p p ( ~ k )  (3.9) 

l D ~ ( x ) l  ~ < C~ (3.10) 
0 

]$ - -  ~1 ~ C[~1112 if  ~,  V e supp (~p~) and  k ~= 0 (3.11) 

(~j (} )  - ~(v))" _< c 1 }  - -  vl" I}1-1 i f  It - v l  _< 1}1/2 �9 ( 3 . 1 2 )  

When proving this par t  of Theorem 3.1 we make the  convention t h a t  constants  
depending only on A and  the chosen part i t ions of un i ty  are to be denoted by  
the same symbol C. Of course, we m a y  restrict ourselves to the case s = --  1/4 
in (0.3), so we have to show t h a t  if  e > 0 is given, and  K is a compact  set in /2 
then  there exists a constant  C such t h a t  

ge (Au, u) § ~lul~0) >_ Clul~_l~), u r C?(K).  (3.13) 

Fur thermore ,  since the contr ibut ion to Re (Au ,  u) t h a t  comes from Im a 0 and  
terms of negat ive degree is continuous in H(_1/2), we m a y  also assume t h a t  
A = a ( x , D )  with  a = a  l §  o and  a o real valued.  

Final ly  we notice t h a t  the val id i ty  of (3.13) is no t  affected if  the symbol 
of A is changed outside a neighbourhood of K.  Hence replacing a by  
( 1  - -  9)(1 § [~21)1/2 § Fa(x, ~), where ~o belongs to C~(/2) and  0 ~ F(x) < 1 
wi th  equal i ty  to the  r ight  in a neighbourhood of K,  we m a y  assume t h a t  A is 
defined in /2 = R" and  t h a t  the symbol of A equals r ( ~ ) =  (1-}-I~]2) 112 outside 
a compact  set in R". We shall prove (3.13) wi th  K replaced by  1~. 

To begin wi th  we shall split up u by  its spectrum and make the  corresponding 
approximations of the operator.  Le t  0 4= ~i belong to the support  of ~v i and  let 

be a number  wi th  0 < 8 < 1. We introduce the differential operators 

A]v(x) = y~ ( l f~ ! )~ (x ,  ~Jla)(D --  ~t~)~v(x) , v e C~(R~ . 
lal < 2 

We shall prove the  inequal i ty  

, g 2  I(Au u) -- ~, (Ay~vj(cSD)u, Wj(~D)u)I < Cdlul~0) § Cal 1(-114) for u e Cg(Rn). (3.14) 

Of course (3.14) is valid if  it  holds for A = (1 § IDI2) 112 and when A is replaced 
by  B = b(x ,D)  where B satisfies (1 .3 )wi th  m = 1 and  vanishes when x is 
outside a compact  subset of /~" .  When  A = (1 § iDIP) ~/2 we get b y u s i n g  Parseval 's  
formula and  (3.8) 

(Au ,  u) -- ~ (A]~vj(aD)u, ~j(c~D)u) = ( 2 a ) - " / -  

where wi th  r(~) ~- (1 § I~12) I/~ 
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g(~) : ~ ~(c~)(r(~) - -  ~ (1/~!)r(~)(~i/6)(~ --  ~J/(~)~). 
J I~1 <- 2 

From (3.11) and Taylor 's  formula we deduce the  existence of a constant  C such tha t  

[q(~)l --< C~-3/~1~1-'/2 if  1~t >-- C/O 

and  using this inequal i ty  we easily prove (3.14) in this ease. 

We shall now prove (3.14) for B. I f  b(~, ~) denotes the  Fourier  t ransform 
of b wi th  respect  to the  variables x then  

// (Bu , u) - -  ~ (B~fj(~SD)u , Wi(SD)u) ~- (2n) -2" H~(~, V)4(~)E(v)d~dv 

where 

H,~($, V) = 1/2 ~ (Vj(6~ e) - -  Vj(6V)) 2 b(v - -  ~ ,  ~) + (3.15) 
J 

+ ~ Vj(~)Vj(~v){b(,7 - -  ~ ,  ~) - -  ~ (1/o,!)b(~)(V - -  ~ ,  ~/~)(~ - -  ~/~)=} �9 

Our approximat ion will be good for small 6 since we have 
L E ~  3.4. For large N there are constants C N inde2oendent of 6 and funct ions  

%,N  ~ C~(R  ~) such that 

I/L~(#, n)l ~< c ~ ( 1  + I# - n]) - ~  + ~ . ~ ( ~ ) ~ , ~ ( n )  �9 (3.16) 

Proof. By carrying out part ial  integrations one obtains 

ID~-b(v, ~)l --< C~,~(1 + tVl)-u(1 -~- I~l) ~-l~l (3.17) 

and Taylor 's  formula then  gives us an es t imate  for the  second t e rm in the  expression 
for H~ when ~([~1 + IV]) is large by  

C~(1 -[- IV - -  ~ I) -~-~ ~ Y~j((5~)Wj(~SV)]~ - -  ~J/O]3qj, ~(~) (3.18) 
j~0  

where 

qj,~(#) = sup (1 + [~ § t ( ~ i / ~  - # ) E )  - ~  . 
O < t < l  

From (3.11) we obtain 

1~ --  Vl ~ C6-1/2[VI~/2 ~ ]Vl/2 if j~0j(O~)~oj.(6V) # 0 and IV[ > 4C26-1, 

so if j~j(8~)Fj(@) @ 0 and  [~1 -4- IV! > 12CZ6-1 then  we must  have ]~1 > 4C26-a. 
By replacing ~ by  ~i/~ and ~ by ~ in the inequal i ty  above we get 

I~ --  ~J/6] <_ Cb-1/2[~I~/2 <_ I$1/2 if [~] + ]~[ > 12C26 -1 and  j~)j((5~)y)j(eSV) =~ O . 

Then the  sum in (3.18) can be es t imated by  

{c~-,~-~/~( 1 + Iv - ~!)-~]~1-'/~}( 1 + Iv - ~[) -~  
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if 6([~/] § I~t) is large enough, and since the first factor tends to zero when 
([~l § [V]) -~ ~ we realize tha t  the second sum in (3.15) can be estimated by the 
right hand side of (3.16). 

I t  remains to estimate the first sum in (3.15). Now (3.12) together with (3.17) 
gives us 

(~ j (~)  - ~(~))21/~(~ - ~ ,  ~)l _< c ~ ( 1  § I~ - ~l) -N  

if 1 2 - - V l <  1~1/2 (and [~ I§  IT] is large). Finally if [~--~11 ~ I~]/2 and N ~ 2  
then 

lb(~ - -  ~ ,  ~)l ~ C~(1 § I~I)(i § I~ - -  ~I) =2~ ~ 8(1 § 17 - -  ~I) -N 

if [~l § l~l is large enough. This completes the proof of the lemma. 
The validity of (3.14) for B now follows from Lemma 3.4 and the inequality 

We shM1 also carry out a partition of u in the variables x. I f  ~ = ~(x) is a 
real valued function in C~(R") then 

ge ( /  cy(A~v)cy~dx-- / A~(q~v)cp~dx)= 

=- Re / ~ ~ (1/~!)aa(x, ~1/6){~(D -- ~s16)% -- (D -- ~s/~)~(q~v)}dx . 
..I Io~1 =2 

We shall replace ~ by cyk(xI~Jl 1/2) and v by yJi(~D)u(x). In doing so we note 
tha t  when the differentiations on the right hand side are carried out we obtain in 
addition to the term 

- ~Ivl. ~ ~(~ ,  ~/~)D~/~! 1~1=2 

only terms containing a factor ~D~0. Since ~ ~ D ~ - - - - 0  these will drop out 
when we sum over ]c which gives 

~ e  {(Ay~j(~D)u ~j (~D). )  - -  E @ o / ~  , , ~=~  , ~ ) }  = ( 3 . 1 9 )  
k 

= - 

Here we have introduced 

u{~(x) = ~ ( x  I~ s l~/2)~s( ~D)u (x  ) . 

We shall use the symbol 0(1) to denote functions tha t  can be estimated uni 
formly when it and ~ vary. Summing over j in (3.19) and using (3.14) we get 
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l~e (A~ ,  ,~) = Z l~e (A]~{ ~ , , ~ )  --  (3.20) 
j , k  

- ~ ~ , ~/a)l$Jl(~kn%)(xl~J1112) + j ,  k I~I=2 f (1/a!)a~(x IWJ(aD)ul~dx 

+ aO(1)lul~o) + CoO(1)[ul~_114), u r C:(Rn) .  

The fact tha t  a satisfies (1.3) with m = 1 uniformly when x E R ~ and tha t  

~ f [v,i(~D)updx=f Iu(x)pdx 

implies tha t  the second sum in (3.20) can be written as O(1)alul~o). Hence 

U 2 ~ e  (A~ ,  ~) = ~ ~ e  ( ~ u ~  ~ , ~ )  + a0(1)[~l~o) + 0,0(1)1 I(-1~,) (3.21) 
j , k  

We shall now make a change of variables and introduce the functions v~ ~ by 
the equations 

~(x) = ~ ' < "  ~Jl~>v{~((x - x ~) t~ 11/2) 

where 

and 

xJk= I~J]-ll2x k 

x k = ~ 1 ~ 1 - 1 / 2  e s u p p  (~k) �9 

The last relation follows from the definition of ~k and since 

lv~k(y)l = ~k(z k + y)ly~i((~D)u((x k -t- y)1~i]-112)i 

we also have by (3.9) 

supp(v{ k) c { y e R  n; ly]  ~ C } .  

This fact together with a change of variables in the integrals (A~u{ k , u•) and a 
Taylor expansion of a at (xik, ~i/(~) with respect to the variable x gives us 

I~ j In/2(A~u~ ~ , u~  k) = ( 3 . 2 2 )  

: ~, f (X/a!)a~(x jk -}- yI~J[ -1/~ , ~i/5)I~'liall2(D~ : 
[otl <__ 2 J 

= ~, (1/~x!fl!)a~(xik, ~i/,~)i~Jl(l~l-l~l)/2 f v~k(y)y~D~v~k(y)dy + 
la+~l < 2 J 

-4- o(1)a-ll~Y1-11~ Z / ID%~(y) 12dy . 
lal < 2 J 

In order to estimate the remainder in (3.22) we introduce the functions v~ by 
the equations, 

y,J( aD)u(x) = e i <0'' ~J/~ >vg(xI~i] '12) . 
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By (3.11) there is a constant C such that  

[ ~  - -  ~J[ ~ CIVil 112 if ~ e Spectrum (~i(~D)u) 

and hence 

l~] <-- C/~ if $ e Spectrum (v~). (3.23) 

Now v~ ~ differs from %v j,~ only by  a translation and using (3.10) and (3.23) together 
with Parseval's formula we get since the v/~ ~ have their supports in a fixed compact 
set in / P  

[By first summing over all indices j with 18Ji > d-12 we get 

(~-5 f 2 lcn - ~  IWj(dD)ul:dx ~-- O(1)(~]U](0) @ O(1)Cd]U]~-xI4 ) 

and using this together with (3.21), (3.22) and (3.24) (with N = 2) we get 

I~e (Au, u) = (3.25) 

= ~. l~JI - ~  ~ e  ~ (1/~!~!)a$(x ~ , ~J/o)I~Jl (~I-B~I)/'~ [ ~(y)y~D~v~(y)dy + 
j ,  k [a+~l -< 2 d 

§ DO(1)lul~0) + QO(1)lul~_~/4), u ~ C~(R"). 

We have now reduced our problem to an estimate of the individual terms in 
(3.25). In the rest of the proof d will be kept fixed so that  the remainder term 
~O(1)]ul~0) in (3.25) is greater than --(e/a)lu](2o). In order to complete the proof 
it is enough to find a sequence 5i tending to zero when j tends to infinity such that  

l~e ~ (1/~!fi!)a~(x ~ , ~J/~)l~il ([~I-I~1)/2 f vJ~(y)y~D%~(y)dy -~ (3.26) 
d 

-~ (e/2),flv~k(Y)12dy >-ejf 
For multiplying both sides of (3.26) by  
using (3.24) and the  equality 

~, ID%J~k(y)12dy. 

]$il-n/2 after a summation over k and 

we realize that  (3.13) follows from (3.25) if the resulting terms are summed over j .  
Remark 3.5. Since 

~o~ (ojk , $1/(~)[$J i(l~E-l~l)/2 f vJk(y)y~D%Jk(y)dy 

can be estimated by  a constant times 
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lr I lD v  (y) I dY 

when [~ + fil--< 2, and since I~[ tends  to inf ini ty when j tends to infini ty 
we m a y  replace a~ in (3.26) b y  a ~  if we add  the t e rm 

a0(x  , f iv  (y)I:dy 
to the  left hand  side of  the  formula.  
All t ha t  we need is furnished b y  the  following lemma. 

L ~ A  3.6. Let K o be a compact subset of R"~{0} ,  let y be a real valued 
continuous function on 1 ~ •  Ko, such that 'y  is constant when x is outside some 
compact set in t~ ~, let C be a fixed positive number and suppose that 

implies 
(x , 7) E R ~ • Ko , a~(x , 7) = O 

1/2 Tr Hal(X, 7) ~- ~(x ,  7) > 0 .  (3.27) 

Then there is a function ~(~)--~ 0 when 2--> ~ such that 

l~e ~. (1/~!fl!)a~(x, V)22-1~+~l f v(y)y~D~v(y)dy ~- (3.28) 
la+~[ <- 2 Y 

+ y(x ,  7) f lv(Y)E2dY + ~(~) f ~ ID~v(Y)I2dY ~ 0  
J J lal < 4 

for every (x ,7 )  C R " •  o and every v in C~(R n) with support in {y;  [y] < C}. 
In  order 4o see t ha t  L e m m a  3.6 implies the  existence of a sequence ~j 

tending to zero in (3.26) we change (3.26) in accordance with R e m a r k  3.5 and  set 
K0 = ( ~ - - I s n - - i '  ~ --~ Jr1 : ]~Ji 1/2, ej ~- e()'j), (X, 7) = ( xjk ' ~J~--ll~ji--1)' T --~ 

@ / 2 ) + a 0  and v = - v {  k. 
Proof of Lemma 3.6. Our proof  will be indirect.  We shall assume tha t  it is not  

possible to choose e(~) in such a w a y  tha t  (3.28) holds and  e(X) ~ 0 when ;t -+  
and see tha t  this leads to a contradiction.  Our assumpt ion means precisely tha t  
there exist  a e > 0 ,  sequences X j ~  when j - - ~  and (xj ,v j )  E / ~ " X K 0 ,  
and functions vj belonging to C~(R ~) with supports  in {y ; ]y[ < C} such tha t  

]vj(y)l:dy : 1 

and 

(1/~!fi[)a~(xj, ni)~]-g~+~t f vj(y)y~D~vj(y)dy + (3.29) Re  
la+BI -< 2 J 

+ Y ( x i , , i ) /  ]vi(Y)'2dY ~-0/,~1<_ 4 [D~vj(y)]~dY < 0 .  
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We shall use some convexi ty  properties for the derivatives of a positive function.  
I f  g is a non-negat ive funct ion in C~(R  n) t hen  there is a constant  Cg such t h a t  

[gradx g(y)]2 < Cgg(y). 

I t  follows t h a t  

Igrad,.,~ a~(x , ri)] 2 <_ Cgoa~(x , ,q) , (x , V) q. R" X Ko , (3.30) 

since the  inequal i ty  is t r ivial ly fulfilled when al(x , ~ ) =  l~]l. 
Hence we get for [c~[ = ]fi] : 1 

[a~(xi , Vy)Aj . / v j (y )D%j(y )dy]  < Ay]a~(xj , "qi)] [vjI(o)lvi[(1) < (3.31a) 

, 2 < (1/3n)a~(xi , "qj)).~ + C ]vj](~) 

la~(xj , Vj)Aj f y~[vj(y)i2dyl <_ C,~j]a~(xj , Vj)I ~< (1/3n)a~(xj , rli))~ ~ ,+- C' (3.31b) 

where C' is a constant  independent  of j .  
Using (3.29) and  (3.31) together  wi th  the facts t h a t  ~ is a bounded funct ion 

and  tha t  for some constant  C ~ 

] ~ (1/~!fl!)a~(xj, "r vi(y)y~Davj(y)dy] < C"lvjl~2 ) (3.32) 
l a + ~  I = 2 

we obtain the inequal i ty  

where C is a new constant .  
F r o m  the  inequal i ty  

we conclude t h a t  the  sequence 

V 2 I j[(~) ~< Clvjl~)/~ (3.33) 

[vi~z) ~< Ivl(0)Ivl(4) 
(vi) is bounded in the  Hd-topology. B y  passing 

to a subsequence i f  necessary we m a y  therefore assume t h a t  (vi) converges to 
a funct ion v0 in the H3-topology. 

Using (3.31), (3.32) and  the  boundedness of the sequence [vj](2) we realize t ha t  
the  sequence 22al(xi, ~i) must  be bounded (and by  (3.30) the same s ta tement  is 
val id for the  sequence ~j grad al(xj ,  Vi)). Hence al(x j ,  Vj) tends  to zero when j 
tends  to inf ini ty  and  since al(xj ,  Vi) is greater t han  some positive constant  when 
x is outside some compact  set in R n we conclude t h a t  it  is no restriction to 
assume t h a t  there is a (xo, %) E R n X K0 such t h a t  

(xj, ~i) --> (x0, %) when j - -> oo , al(xo , %) = O . 

B y  choosing p smaller in (3.29) we m a y  replace v i by  v0 (for large j).  Then 
approximat ing v0 by  a funct ion in C~(R  n) and using the cont inui ty  of  ~ we get 
the existence of a funct ion v in C~(R  n) and a small positive number  a such tha t  
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f lv(y)lUdy 1 

and 

l~,e ~ (1/~!fl!)a~(xi, .rljJ,~ j y~n~v(y)dy -]- (3.34) 
Y 

§ (42) ]v(y) L2dy < o .  
j ~ l  J J 

To simplify notations we introduce 

f~ = grad(~.,)al(xj, ~i) , Hj = H,~(xj , Vj) , HI  ---- Hj + (~E 

where E denotes the unit  matrix. Since HI tends to the positive definite matrix 
H~ we may  assume that  HI is positive definite for all j.  Then an application of 
Theorem 2.4 to (3.34) gives us 

~ 2 { a l ( x j ,  1~j) - -  <(H;)-lfj ,fj>/2} -~- ~,(xo, ~]0) -]- e/2 ~- 1/2 T r H ;  < 0 .  (3.35) 

The proof will be finished if we can prove that  (3.35) is in contradiction with (3.27). 
A Taylor expansion gives us 

a l ( ( x j  , T]j) -31- h)  -~. al (Xj  , T]j) + <fj  , h> .2[_ <Hjh , h>l  2 § O(1)lh] 3 

when h e R 2" and Ihl _ c.  Since f / :  0(1)Z71 and H i < H;  we get 

0 ~_~ al((Xj~, T]j) - -  ( H ; ) - l f $ . )  = al(xj,  T]j) - -  <f j ,  (H/)-l.f/> -~- 

-Jr- <Hi(H;)-lf  j , (H;)-Ifj>/2 @" o(1);.7~ < 

al(x 1 , ~]j) - -  <fj , (H;)-lfj>/2 ~- O(1)/~j -3 . 

Hence 

0 <_ ~.(al(xj, ~j) - -  <fj, (H~)-lfj>12) + 0/4 

for large j .  Then it follows from (3.35) that  

y(x0, ~0) + QI4 ~- 1/2 Tr H i ~ 0 

and by letting j tend to infinity and a tend to zero we get using the continuity 

of Tr 

gx0, + 014 + 112 Tr Ha,(Xo, <-- 0 

which is in contradiction with our assumptions. This completes the proof of the 
lemma. 

4. Applications of the results to hypoellipticity 

Let to be an open set in R n. We shall consider the class of classical pseudo- 
differential operators A in tO satisfying the following conditions: 



138 AI~I~IV r61~ MATEMATIK. Vo]. 9 :No. 1 

a~(x ,~ )  > 0  when (x,~)  E f 2 X S  "-1 (4.1) 

a ~ _ l ( x  , ~) = - a , ~ _ l ( x ,  ~) when am(x ,  ~) = O . (4.2) 

Here m denotes the order of A. On the set N of zeros for am in ~Q• we 
can define the function 

I ( x  ~) -~ I ~ a(J) (~ ~) - -  2Jam ,(X ~)l + (1/2) T~ H,, ,(x ~) , m ( j ) ~ ,  - , , �9 

j~ l  

The following result, due to l~adkevi5 [10], gives a sufficient condition for A 
to be hypoelliptic in zQ. 

TtI~OREM 4.1. I f  A is properly supported and satisfies (4.1) and (4.2) and i f  
I ( x  , ~) > 0 on N,  then for every compact set K in ~2 and every real number m'  
there exists a constant C such that the following estimate is valid 

U 2 --(s) 2 2 [ + { + _< c{ lU1 m')} U A U (1]2) IA(8)ul(-lp)} IAul~o) ~- , r C ~ ( K ) .  (4.3) 
s=l 

Here A (s) and A(~) denote properly supported pseudo-differential operators 
in ~ with symbols a (~) respectively a(,). 

~emark  4.2. By using the results of l~emark 2.10 we can easily get equivalent 
formulations of the condition I ( x ,  ~) > 0 on N. 

Proof  of Theorem 4.1. Let /~  denote properly supported (self-adjoint) pseudo- 
differential operators in Q with the symbols 

a,~(x, ~) = (1 -~- ]~12) #2 . 

We shall apply Theorem 3.1 to the pseudo-differentiM operator 

T~ : ~ m - l j  - -  (~ ~ (R1/2A(S))*(R'/2A(s)) - -  ~ ~ (R-1/2A(s))*(R-1/2A(s)) ~- 
s~l s~l 

+ (A* - -  A ) * ( A *  --  A)  + 4(A*A --  A A * )  - -  ~R 2m-~ 

where ~ is a small positive number. 
We have to examine the symbol aT~ of T,. We shall make use of the following 

formulas (see [6], p. 147 and p. 149.) where A and B denote properly supported 
pseudo-differentiM operators in ~:  

a , . ( x ,  ~) ~ ~ (iD~)an~(~z(x , ~)/fi! . 

Then we see that  the principal symbol of A * A  --  A A *  is homogeneous of degree 
2m --  2 in ~ and vanishes on N. The principal symbol of (A* -- A ) * ( A *  --  A)  
is homogeneous of the same degree and equals 

[2 I m  am_ , --~ 2 a~'~J) [2 
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on N. The symbol of (RI/2A('))*(R1/2A (')) can be writ ten as 

(Oh(ms))2(1 ~_ ]~[2)112 _~ 2a~)_la~)( 1 -4- 1~12) 1]2 - ~  ib 

where the leading part  of b is homogeneous of degree 2 m -  2 in ~ and real 
valued. Of course the symbol of 

(R-1/2A(~))*(R-1]2A(8)) 

can be written in a similar way with a (') rep lacedby a(~) and (1-4- ]~[2)1]2 replaced 
by  (1 + ]~12) -1t2 . 

Let  K be a compact set in ~2. Then for some constant C o 

[grad(x,~ ) an(x ,  ~)12 < Coa~(x , ~) , (x , ~) e K • S "-1 , 

(Cf. (3.30)), and it follows from the homogeneity of am, that  if 8 is chosen small 
enough then the principal symbol of T~ is non-negative and has the same zeros 
as am when x belongs to a neighbourhood of K. 

I f  the symbol of T~ is written 

O'T~ ~ t2m_l "~- t2m_ 2 -~  . . . .  

then by  our assumptions and computations above 

~ e  t2m_2(X , ~) "J- 1/2 Tr Htzm_l(X , ~) = (4.4) 

~ ] ~ a(i),n(j)t Ix , ~) - -  2iam_l(x , ~)12 -4- 1/2 T r  Ht2m_l(X , ~) -- 8 when (x , ~) e N . 

Since Tr H~2,~_1(x, ~) tends to Tr H ~ ( x ,  ~) when 8 tends to zero (with uniform 

convergence on every compact subset of N) the expression above in (4.4) is non- 
negative for small 8 on the zeros of t2m--X in Y20 • S ~-1, where ~20 is some neigh- 
bourhood of K. Hence by  choosing 8 small and applying Theorem 3.1 with 
s ~  8/2 we get 

~ e  (T~u,  u) + (8/2)]U]~m_l) > Q]UI(~,) , U C C ~ ( K )  . (4.5) 

By expanding the left hand side of (4.5) and using the inequalities: 

IAv - -  A*vl  2 < 2(IA*v! 2 -4- ]Avl 2) , v e C ~ ( ~ )  

~:~e (~m-lay ' v )  = ]:~e (Av, .~m--lV) ~ 4 8 _  I I A v  I~o) + 84-~ Iv l~-~) + 8C' i v I~,), v e C~ (K) 

we get with some constant C the following inequality 

~t 2 I I(~-1) + z,  2 2 21 U (112) -~- ~ ]A(s)Ul2(1]2) -~ IA*ui~0) _ C(iAul(o) § lUl~m')), (4.6) 
s = l  s : l  

u e C ~ ( K ) .  

This completes the proof of the theorem. 
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