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1. Introduction 

In [5], p. 116, L. HSrmander proves the linear Cauchy-Kovalevsky theorem 
by a method of successive approximations. The main lemma used by  HSrmander 
in that  proof is also found in ~ .  Nagumo [6]. Nagumo uses the lemma and Sehauder's 
fixed poin~ theorem to prove the Cauchy-Kovalevsky theorem. L. V. 0vsjannikov 
[7] has used the ideas in the lemma to prove a theorem that  could be called an 
abstract Cauchy-Kovalevsky theorem. We shall call it the Ovsjannikov theorem. 
The ~heorem treats a Cauchy problem for an ordinary differential equation for 
functions with values in certain Banach spaces that  form a scale of Banach spaces. 
See also F. Treves [22] and [23]. The Ovsjannikov theorem can be used to prove 
the linear Cauchy-Kovalevsky theorem as is done in [7], [22], and [23]. 

In  [23], p. 24, Treves proves the dual Ovsjannikov theorem taking as scale of 
Banach spaces the duals of the spaces in the original scale. Then on pp. 53--58 
[23] Treves takes the dual of the scale used by  Ovsjannikov to prove the linear 
Cauchy-Kovalevsky theorem and applies the dual Ovsjannikov theorem. This 
gives the dual Cauchy-Kovalevsky theorem. Here the coefficients are analytic 
functions just as in the ordinary theorem but  the solution is a function of the time 
variable with values in the space of analytic functionals on the space of analytic 
functions of the space variables. 

The purpose of this paper is the following. We shall give another proof of the 
dual Cauchy-Kovalevsky theorem, Theorem 1. We shall also prove a global 
version of tha t  theorem, Theorem 2, together with a global version of the ordinary 
Cauchy-Kovalevsky theorem, Theorem 3. In the proofs of the dual theorems 
we shall use the Fourier-Borel transformation of analytic functionals. Then the 
dual theorems are transformed into theorems for partial differential equations of 
infinite order in the space variables. The solutions of the transformed problems 
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are holomorphic functions tha t  are entire functions of exponential order one in 
the space variables. The coefficients are polynomials in the space variables. We 
have treated problems of this kind for equations of finite order in [11] and [14]. 
See also S. Steinberg and F. Treves [19]. In [14] we use a higher order version of 
the Ovsjannikov theorem which was proved in [13]. The methods in [14] are applied 
directly in the proof of the dual Cauchy-Kovalevsky theorem here called Theorem 1. 

Looking at HSrmander's proof in [5], p. 116, one notes tha t  the radius of con- 
vergence of the solution is proportional to the sum of the absolute values of the 
coefficients. This is very disturbing when one wants to prove global theorems for 
equations with variable coefficients. We have earlier used other methods to over- 
come this difficulty, see [8], [9], and [10]. In the proofs of Theorem 2 and Theorem 
3 we shall modify the Ovsjannikov technique in such a way tha t  the radius of 
convergence of the solution has a lower bound that  is proportional to the sum of 
the absolute values of the coefficients in the principal part. 

A comparison with the results in [8], [9], and [10] specialized to the situation 
in Theorem 3 and this theorem shows that  Theorem 3 is more general. But it should 
be stressed that  the Ovsjannikov theorem is not applicable to general Goursat 
problems in its present form. 

We use the higher order version of the Ovsjannikov theorem [13] in the present 
paper. This is simple. But  some information is lost. For technical reasons the dual 
theorems Theorem 1 and Theorem 2 are given as the Fourier-Borel transformation 
of the dual problem. The original dual problem can be rewritten as a problem for 
a first order system. Then the original first order Ovsjannikov theorem can be 
applied to the Fourier Borel transform of the system. In this way one proves that  
in Theorem 1 ~(t) and 4(t) belong to H G ( O , s , e ( s ' - -  s)/2a, 0) and not only 
to HG(O, s, e ( ( s ' - - s ) / 2 a ) " ,  0). We have used this fact in [15] to prove local 
and global uniqueness theorems of Holmgren type. 

I t  would also be interesting to study other dual problems suggested by the 
results in [11] and [14]. S. Steinberg and F. Treves have already studied a special 
case in [19]. 

Below we use various ideas from papers by F. Treves, S. Steinberg and F. Treves, 
L. V. Ovsjannikov, and by ourselves. See the reference list. As to the content we 
give the preliminaries in Section 2. In Section 3 we prove our theorems on the 
Fourier-Borel side of the problem. Section 4 contains a discussion on the dual 
Cauchy-Kovalevsky theorem. The ordinary global theorem is treated in Section 5. 

2. Preliminaries 

By x =  @1 . . . .  ,x,)  we denote a point in C" and by y~--(yl  . . . . .  Y,) 
we denote a point in the dual of C". The scalar product is denoted by x y  = 

x l y  1 -}- . . .  ~ x,y,,. We use standard multi-index notation. So a ~ (a 1 . . . . .  a,) 
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is a mul t i - index wi th  nonnega t ive  integers as components .  We write  ]~] = 
a 1 + . . . + c % , ~ ! = ~ 1 !  c~! ,x  ~ = x ~ l  ~ I f  < < j _ ~ n ,  we . . . . . .  x~ . a i _ flj, 1 __ then  
denote  this b y  a < f t .  We also wri te  D t =  0/0t, D ~ - ( D  1 . . . . .  D~) -~  

(~/ax z . . . . .  O/Ox~) and  D~-=  D ~ I . . .  D ~ .  Different ia t ion m a y  denote  real or 
complex different ia t ion or dif ferent ia t ion in the  na tu ra l  way  in formal  power  series. 
A formal  power  series u is also wr i t t en  as 

u = ~ ,  D ~ u ( o ) ( ~ , ! ) - ~ x  ~ . 
ot 

Le t  s > 0. I f  

IIUllo,8 = sup ID~u(0)ls'~l < ~ o  (2.1) 

t hen  u is said to  belong to  the  space G(O, s). See [14]. I f  u is in G(0, a) and 
if  we look a t  u as a holomorphic  funct ion then  

u ( x )  = ~ D ~ u ( o ) ( ~ ! ) - l x  ~ , 
o~ 

is an  ent i re  funct ion  of  exponent ia l  t ype  such t h a t  for some C > 0 

iu(x)I _< C e x p  (s- l ( Ixl l  + . . .  [xol)), x r C ~ . (2.2) 

This follows di rec t ly  f rom (2.1). I f  (2.2) is t rue  t h en  it  follows f rom the  Cauchy 
formula  t h a t  u E G(0, s") for eve ry  s", 0 < s" < s. 

Le t  H be the  space of  ent ire  funct ions in 13 ~ wi th  the  topology  of  convergence 
on compact  sets in C". Le t  H '  be the  topologicM dual  of  H.  I f  u C H '  and  
h E H we define different ia t ion on H '  b y  

(Dgu)(h) = u ( - -  Dsh ) . 

The  Fourier-Borel  t r ans format ion  of  u is def ined b y  

4(y) = u(e~Y). 

I t  is well known  t h a t  

H' ~ u --> 4 e U G(0, s ) ,  
s > 0  

is a bijection,  see [20], p. 474, and  the  a rgument  above.  As usual  we have  
/ x ,  / N  

D~u(y) ---- - -  y d ( y ) ,  and x u ( y )  = D ~ 4 ( y )  . 

The following lemma is crucial. I t s  p roof  is con ta ined  in a careful reading of  
the  proof  of  L e m m a  4.1 in [14]. 

L ~ M ~ x  1. Let  O ~ a ~ s ~ s" ~ 2a and let u E G(O, s'). Le t  fur ther  fl and 
be mult i - indices.  Then  yPD~u belongs to G(O , s) and there exists a constant C' > 0 

independent  of  a, s, s', u, fi, and y such that 

Ily~D~uXlo,8 <_ C'( lg] /e) t~Is ' l~t - l~l ( (s '  - -  s)/2a)-I~'ilUllo,  s, �9 (2.3) 
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The function ~(t) is a function of the complex variable t with values in G(0, s). 
I f  for some ~ > 0 and for some complex number t' it is holomorphic in some 
neighbourhood of It --  t'] < ~ then we say that  ~(t) belongs to the function class 
HG(O, s, ~, t'). See also [14]. 

3. The Fourier-Borel  transformat ion  of the Cauchy problem 

We start  by  formulating the local version of the Fourier-Borel transform of the 
dual Cauchy-Kovalevsky theorem. Here local means local in the time direction. 

THEO~E~ 1. Let ai~(t, x) ~- ~ aizr(t)x~, 1~i ~ J, 1 ~ j ~ m, be complex valued 

functions that are analytic in some neighbourhood of the origin in C ~+1. Here m is 
a fixed integer and fl and y are multi-indices. There exist further numbers a, s', 
O < a < s' < 2a, Q > O, and a function ~(t) E HG(O, s', Q, O). There also exists 
a constant C > 0 such that 

~ ]ayzr(t)]a-Irl ~ C, 1 ~ j  ~ m, Itl _< ~. (3.1) 
I~1-<J 

The operator D7 i denotes iterated integration j times radially from the origin in 
the complex plane. I t  follows that there exists an s, 0 < e < ~ such that to every s 
in a < s < s' there exists a unique function ~(t) in HG(O, s, s((s' --  s)/2a) '~, 0) 
that satisfies 

= aj~(t)D~Dt v + ~(t). (3.2) 
j=l I~l -<J r 

Let 

~ ( t )  - ~  . = D ,  v ( t )  

Then 4(t) E HG(O, s, s((s' --  s)/2a) ~, 0). From (3.2) it follows that 4 is the unique 
solution of this kind of the Cauchy problem 

D~4(t) = ~ Z Y~ ~ " D~'*-i2' ~" D/4(0) ~ j . (3.3) ~j~ y~'t ~ -~ g(t), = 0, 0 < m 
j = l  Ifll <~J 

Proof. Let u E G(O, s"), a < s < s" < s' < 2a. I t  follows from Lemma 1 and 
from (3.1) tha t  for some new C > 0 depending on a, C', j and the old C 

I[ ~ Y~ ~ ai~(t)D~u]]o.s <~ C'(j/e)J((s " -- s) /2a) '  i ~ ~ [aj~y(t)la-H]]ullo, s. <~ 
I/~l <i v 181<i v 

~(  (s" - s)/2a)-illUIIo,,. . 

With this estimate we apply Theorem 1' in [14]. The proof is completed. 
We now prove a global version of Theorem 1. ]{ere we use the modified 

Ovsjannikov technique mentioned in the introduction. 
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THEOREM 2. Let aid(t, x) -~ ~ ai~(t)x~ , ]/5[ -< j ,  1 -< j <_ m, be entire functions 

in C n+l. They are restricted by 

]/5[ --- j ~ %(t, x) -= ZrI <-~j %~(t)x~ " (3.4) 

The real valued function s"(r) is decreasing for r > 0 and 0 < s"(r) < 1. The 
function ~(t) belongs to HG(O, s"(r), r, O) for all r > O. The operator D~ -i denotes 
iterated integration j times radially from the origin in the complex plane. I t  follows 
that there exist a decreasing function s(r), 0 < s(r) < s"(r), r > O, and a unique 
function ~(t) E HG(O, s(r), r, 0), r > O, that satisfies (3.2). Let 

4(0  ~-- Di-m~(t). 

Then 4(t) E HG(0, s(r), r, 0), r > O, and 4(t) satisfies (3.3) for all t in C 1. 

Proof. We take  an a rb i t ra ry  r > 0. We  want  to show tha t  a solution of  (3.2) 
exists for ]tl _< r and t ha t  it belongs to HG(O, s'(r), r, 0) for some number  s'(r). 
We note  t ha t  there  exists a constant  C such t ha t  

~ ~ [ai~(t)] -< C, It] < r q- 1 .  (3.5) 
i=1 181 ==j , / 

L e m m a  1 then  says tha t  for u E G ( 0 ,  s'), O < a < s < s ' < _ 2 a <  1, 

1[ ~. ~ y~aja~(t)D~uIIo,, <-- CC'(j/e)J(( s' -- s)/2a)-Jllullo,,,, Itl _< r, 1 --<3" -< m .  (3.6) 
I/~t=J r 

We also have  tha t  for some C(a), 0 < a < 2 -1, 

~. ~ [%~(t)Ia-I~t < C(a), [tl -< r, 1 - < j  -< m .  ( 3 . 7 )  
It~I <1 v 

F rom L e m m a  1 it follows tha t  

1[ ~ ~ Ya%~(t)Offull0,, --< C(a)C'(j/e)~(( s' -- s)/2a)l-JIlull0.,,, Itl -<r, 1 < j  < m .  (3.8) 
I/~l <J r 

We now define ~o(t) ~-~ 0 and ~k(t), k > 1~ b y  

~+~(t) = ~ ~ y~( ~ aj~(t)D;Dj~(t)/ + g(t), ~ = 0, 1, 2 , . . .  (3.91 
j = l  [,~l < j  ? 

We shall show tha t  there  exist  constants  M and K such tha t  for 2a -< s"(r) and 
a - < s < s ' - < 2 a  with 

d = ( s '  - -  s ) / 2 a  

[[9~+~(t) - -  9k(t)][0,, -< -M(Kltl)kd -'~k, Itl _< 1, k = 0, 1, 2 , . . . .  (3.10) 

For  k -~ 0 r exists an M since we m a y  choose 

"*t M ---- sup llg( )lI0, =o, Itl < r 
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We now assume t h a t  (3.10) is t rue for all k < k'. We choose s" ~- s A- 2ad/(k '  ~- 1). 
Then we have (s" - -  s) /2a = d/(k '  -4- 1) and  (s' - -  s")/2a ~-- k 'd / (k '  -t- 1). F rom 
(3.6)--(3.10) we get wi th  s' replaced b y  8" in (3.6) and  (3.8) 

A = []@k,+2(t) - -  ~k,+l(t)l[0., ~< 

< ~ M K V ( d k ' / ( k  ' + 1))-~V(d/(k" + 1))-J(Di-J[ttv)C'(j/e)g(C -4- C(a)(d / (k '  -4- 1))). 
j = l  

For  a f ixed a i t  is obvious t h a t  there  exists a k" such t h a t  

So we let 

and  

r + C(a)d/(k' + 1) < 2 0 ,  k' > ~". 

k n 

M = sup Ilg(t)Ho, 2~ ~ (1 + C(a)(C(k -i- 1)) -1) 
{ti < r  k = l  

K = 2C'mm+lCe '~ . 

[k' > k" Then we have for L --  
t t t  

A < ~, MKVd- '~v- i (me")- l_Krt lk '+Je"(k  ' A- 1)i((k ' ~- 1 ) . . .  (k' + j ) ) - I  < 
j = l  

[< M(K[tI)V+ld-m(k'+l) [ _ _  

For  k'  < k" in the  definition of M we replace k" by  k'  and call this new number  
2g v. Then it  is obvious from above tha t  for 0 < k < k" (3.10) is t rue  with M 
replaced by  M k. Since 21/k _< M we have now shown tha t  (3.10) is t rue for all k. 
The me thod  of proof  is the  modified Osvjannikov technique ment ioned in the 
introduction.  

We now note t ha t  the successive approximations converge in HG(0, a, /~-1,  0). 
We also note t h a t  K only depends on C and is independent  of a. I f  we now let 
D/-1 denote integrat ion radial ly from a f ixed arb i t ra ry  t' in the  complex plane, 
It'[ <~ r, in (3.9) we get a solution of (3 .2 )wi th  this D; -1. The solution is in 
H G ( O , a ' , K  -1 , t ' )  for some a ' <  1. We note t ha t  _K -1 is independent  of  a '  
and t'. 

We now assume t h a t  we have a solution of (3 .3 ) in  HG(0, s(r"), r", 0) for 
r" < r' < r, i.e. there exists a funct ion s(r"), r" < r' such t h a t  this is true. I f  
now r '  is chosen maximal  and if  r ' <  r then  take  a t', It'l = r'. Let  

m - - 1  

u o -~ ~. ( t -  t ' )J ( j l ) - lDl( t ( t ' ) ,  
j=O 

and look a t  the  equat ion 

Dyu(t) = ~ ~. ye ~ a~(t)D~Dy-J(u(t) + Uo(t)) + ~(t), D[u(t') = O, (3.11) 
j=l [t~l <j 

O < _ j < m .  
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We realize t h a t  u = 4 - -  u0 solves this  equa t ion  in {t ; ]tl _< r ' ,  }t - -  t'I < K-i}.  
We now choose 2a' = s(r') and  we f ind t h a t  u(t) exists and is in HG(O, a', K -~, t'). 
:But t' is a rb i t r a ry  so we can choose s(r") = 2-1s(r'), r '  < r" _< r '  + K -1. 
Therefore  r '  is no t  maximal  and  we have  a contradic t ion.  Note  t h a t  
Uo(t) E HG(O, s(r'), r, 0). Theorem 2 is proved.  

t~emark 1. I t  is obvious f rom Theorem 1 in [14] t h a t  we can give a ~)continuous~) 
version of each of  the  ~)holomorphic>> theorems above.  The proofs are even simpler. 

Remark 2. There  is also an ~>integrable~) version of  the  theorems above.  A look 
at  (3.2) shows t h a t  in tegrabi l i ty  of ~(t) in t is the  weakest  and  also most  na tura l  
condit ion we can pu t  on ~(t). This is a general  fact  for all Cauchy problems in the  
(3.2) fo rm.  :But we have  not  worked  out  the  details here  so the  precise formula t ion  
is open. See [13] and [14]. 

4. The dual Cauchy-Kovalevsky theorem 

We assume now t h a t  the  hypothes is  of  Theorem 1 is satisfied. Then  we apply  
the  inverse Four ier -Borel  t r ans format ion  to  the  equa t ion  in (3.3). We get  

Dyu(t) = ~ ~ ( - -  1)[~lD~(ajz(t, x)DT'-Ju(t)) A- g(t), D]u(O) = 0, 0 < j  < m .  (4.1) 
j=l I~1 --<J 

~Iere g(t) and u(t) are funct ions of  the  complex var iable  t wi th  values in H ' .  
The  regula r i ty  in t of  these funct ions is given via the  Fourier-Borel  t r ans form 
and  Theorem 1. We n o t e t h a t  u(t) is ea r r i ed in  {x ; m a x  [xil <_ s -1} if  4(t) E G(0, s). 

i 
See Section 2 and [21], p. 474. See also the  in t roduc t ion  where it  is po in ted  out  
t h a t  the conclusion of Theorem 1 can be given in a s t ronger  form. No te  t h a t  if 
(3.1) is t rue  for a certain a t h e n  we can choose the  same e in Theorem 1 for all 
bigger a. This fact  is also used in [15]. 

In  some way  the  results here are more special t h an  those given b y  F. Treves  
in [23], pp. 53--58.  Bu t  the  comput ing  charac ter  of our  resul t  is v e r y  a t t r ac t ive  
for some applications.  See [15]. 

We now use the  inverse Fourier-Borel  t r ans format ion  on (3.3) under  the  hypo-  
thesis o f  Theorem 2. Then  u(t) is carried in m a x  [xil < (s(lt])) -1 for all t. This 

J 
is the  global dual  Cauehy-Kova levsky  theorem.  

There  are some indications t ha t  (3.4) is essential ly necessary in the  hypothes is  
of  Theorem 2. The  analyt ic  solution of  

D,4 = yD24, 4(0, y) = e y , 

is 4(t, y) -~ ~ ti(jl)-'Qj(y). 
1=o 
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= y n r  t Iere  the functions Qj are defined recursively by  Qo(y)= eY, Qj+I 2 
j >__ 0. I t  follows t h a t  Qj(y) = (yD~)ie y. We now assert tlhat 

Qj(1) >__ e(j!), j = 0, 1 . . . . .  (4.2) 

The following proof  of (4.2) is due to N. O. Wallin. We get 

Qj(y) = ~ (]c!)-l(yD~)iy k = ~ (]c!)-lIc(]c --  1 ) 2 . . .  (It - - j  @ 1)2(/c - - j ) y k - i .  
k=0 k=j+l 

I t  follows tha t  (4.2) is true. F rom this we conclude t h a t  our solution of the Cauchy 
problem is divergent  in ( t ,  x) ---- (2, 1). Tha t  it  converges for sufficiently small t 
follows from Theorem 3 in [14]. 

5. The global Cauehy-Kovalevsky theorem 

We shall now prove the global Cauchy-Kovalevsky theorem for entire 
functions. A formal power series u is said to belong to the class G(1, s) ff 

IlU[ll., = sup ID~u(O)i(a!)-lsl=l< oo. 

A careful reading of the proof  of L e m m a  4.1 in [14] gives the  following lemma. 

L~MMA 2. Let O < a < s < s' < 2a and let u E G(1, s'). Let further fl and 
7 be multi-indices such that ]71 ~ m for some fixed integer m. I t  follows that there 
exists a constant C > 0 independent of a, s, s', u, fl and 7 such that 

Ilxr <~ Cs'l~l-EVl(e-ilTl)lvl((s ' _ s)/2a)-HNulll,,,. 

Le t  u(x) be an entire function in C n. I f  we look upon it as a formal power series 
then  i t  is obvious t ha t  u C ['i G(1, s) = G. I t  is also obvious t h a t  the converse 

s > 0  

is true.  I f  f ( t ,x )  is entire in C ~+1 then g(t) = f ( t , x )  is a funct ion of t wi th  
values in G. I t  is easy to show from the Cauchy inequal i ty  t h a t  for every s > 0, 
g(t) is holomorphic in t for all t wi th  values in G(1,  s). The converse is still 
simpler. Now we state  the  theorem. 

T]tEO~E~ 3. Let the functions ai,(t , x) = ~ aiy~(t)x~, 

f(t, x) be entire functions in C n+l. We have the following restrictions. 

171 = J  ~ air(t,x) = ~ ai~(t)x~, 1 ~ j  < m ,  (5.1) 
181 <-j 

It  follows that there exists a unique entire func t ion  u(t, x) that satisfies 

DT'u = ~ ~ ajy(t, x)n~D'~-iu(t, x) -k f(t, x), D/u(O, x) = O, 0 <_ j < m . (5.2) 
j=l Ivl <J  

[7[ <--j, 1 ~ j  ~ m ,  and 
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Proof. We shall only  sketch the  p roof  since it  is no t  so different  f rom the  p roof  
of  Theorem 2. Le t  r > 0 be a f ixed  a rb i t r a ry  n u m b e r  and let  t', It'[ <_ r, be a 
complex number .  Fo r  a > 1 wi th  an  obvious analogue to  the  no ta t ion  in Sect ion 
2 we note  t h a t  f ( t ,x)  eHG(1,2a ,  l , t ' ) .  I f  u E G ( 1 ,  s') and  if  a < s < s ' _ < 2 a  
then  i t  follows f rom L e m m a  2 t h a t  

A = l[ I~< ~ a#a(t)xaD~Ul]l'* <- Cram( ~ ~ Iaira(t)l(2a)lal)((8' - -  s)/Ba)-i+Xl[ul[~'"' 

l<_j<_m. 
We also get  

B = II ~ ~l< a#z(t)x~D:u]h., <-- Cmm(( s' -- s)/2a)-i[iu]lx,, " ~ [a#~(t)l, 
Irl=J [ J [t~l < Irl=./ 

l < j  <_m. 

So there  is a C 1 depending on a and  r and a C 2 depending  on r only  such t h a t  

A < C~((8' - -  s)/Ba)-J+~llull,,.,, Itl <_ r ,  
and 

B <_ C:((~' - s)/2a)-Jllu[Ii,,,, Itl <_ r .  

We now compare  A and B wi th  (3.8) and  (3.6). Then  we f ind t h a t  the  radius of  
convergence in t for  the  successive approximat ions  is independen t  of  a. So we 
f ind as in the  p roof  of Theorem 2 t ha t  the  solution of (5.2) exists for Itl < r. The  
solution is also ent ire  in x. Bu t  r is a rb i t ra ry .  The  theorem is proved.  

Since the equa t ion  D,u ~ x~D~u + tx 2 has no ent i re  solution, see [12], we 
conclude t ha t  (5.1) is essentially necessary.  

We note  t ha t  Theorem 3 is more general t h an  Theorem 2 in [10]. In  the  reference 
list the  reader  will f ind o ther  aspects on global and local Cauchy  problems and  on 
the  re la ted  Goursa t  problems.  

Added in proof: The ~>Ovsjannikov theorem)> was p ro v ed  a l ready  in 1960 b y  
T. Yamanaka ,  Comment. Math. Univ. St. Paul., 9- -10  (1960--1961),  7--10.  
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