The center and the commutator subgroup in hopfian groups

R. Hirshon
Polytechnic Institute of Brooklyn, Brooklyn, N.Y., U.S.A.

1. Abstract

We continue our investigation of the direct product of hopfian groups. Throughout this paper A will designate a hopfian group and B will designate (unless we specify otherwise) a group with finitely many normal subgroups. For the most part we will investigate the role of $Z(A)$, the center of A (and to a lesser degree also the role of the commutator subgroup of A) in relation to the hopficity of $A \times B$. Sections 2.1 and 2.2 contain some general results independent of any restrictions on A. We show here
(a) If $A \times B$ is not hopfian for some B, there exists a finite abelian group F such that if k is any positive integer a homomorphism θ_{k} of $A \times F$ onto A can be found such that θ_{k} has more than k elements in its kernel.
(b) If A is fixed, a necessary and sufficient condition that $A \times B$ be hopfian for all B is that if θ is a surjective endomorphism of $A \times B$ then there exists a subgroup B_{*} of B such that $A \theta B=A \theta \times B_{*} 0$.

In Section 3.1 we use (a) to establish our main result which is
(c) If all of the primary components of the torsion subgroup of $Z(A)$ obey the minimal condition for subgroups, then $A \times B$ is hopfian.

In Section 3.3 we obtain some results for some finite groups B. For example we show here
(d) If $|B|=p^{e} q_{1}^{e_{1}} \ldots q_{s}^{e_{s}}$ where $p, q_{1} \ldots q_{s}$ are the distinct prime divisors of $|B|$ and if $0 \leq e \leq 3,0 \leq e_{i} \leq 2$ and $Z(A)$ has finitely many elements of order p^{2} then $A \times B$ is hopfian.

Several results of the same nature as (d) are obtained here.
In Section 4 we obtain some results similar to (d) by placing some restrictions on the commutator subgroup of A. We also show here
(e) $A \times B$ is hopfian if B is a finite group whose Sylow p subgroups are cyclic.
(f) $A \times B$ is hopfian if B is a perfect group.

Our main avenue of attack on the problems to be considered may be outlined here very briefly. Namely if B has finitely many normal subgroups and $A \times B$ is not hopfian we choose a homomorphic image C of B with as few normal subgroups as possible such that $A \times C$ is not hopfian. Then as in Lemma 7 of [3], $Z(C)$, the center of C is non-trivial and there exists a surjective endomorphism α of $A \times C$ such that α is not an isomorphism on A and such that $C \alpha^{r} \cap C=1$ for all integers $r, r \neq 0$. Furthermore C does not have an abelian direct factor. Our approach in this paper is to assume $A \times B$ is not hopfian and to gather information about C. With suitable restrictions we achieve a desired contradiction. Throughout this paper C and α will be as defined here.

The existence or non existence of a hopfian group A with the properties (a) is unresolved. We show in our remarks following Theorem 1 that if $Z(A)$ has a finite torsion group and A has properties (a) then $A=A_{1} \cdot F_{1}$ for some finite central subgroup F_{1} and some subgroup A_{1} which is a non-hopfian homomorphic image of A. Conversely if A can be decomposed in the above manner then regardless of the nature of $Z(A), A$ has the properties in (a). For if $F \approx F_{1}$ one can easily obtain a homomorphism of $A \times F$ onto A with arbitrarily large kernel. Baumslag and Solitar have shown that there exists a finitely generated hopfian group with a non-hopfian group of finite index [1]. In view of this anomolous result, we do not think that it is unreasonable to suspect that a group A with properties (a) exists.

In any case our result (c) together with the results of [2] and [3] show that $A \times B$ is hopfian for a wide range of A. In general, extensions of hopfian groups by hopfian groups are studied in [2] and [3] and the latter contains a bibliography of some relevant papers on the subject.

2. Some general results

2.1. Strong hopficity

We conjecture that if B has finitely many normal subgroups $A \times B$ must be hopfian. If this conjecture is false A is in a certain sense close to being non-hopfian. For write $A \alpha \cdot C=A \alpha \cdot C_{1} \alpha=C \times A_{*}$ where $C_{1} \subset Z(C), A_{*} \subset A$. Note $C \alpha$ is in the centralizer of $A \alpha \cdot C_{1} \alpha$ so that there is a homomorphism γ of $C \times A_{*}$ onto $C \alpha \cdot A_{*}=L$ such that γ is the identity on A_{*} and such that γ agrees with α on C. Note $L \cdot C=A \times C$ so that $L / L \cap C \approx A$. Hence $\alpha \cdot \gamma$ maps $A \times C_{1}$ onto L which in turn can be mapped onto A homomorphicly. If we designate the resulting homomorphism of $A \times C_{1}$ onto A by α_{*} we see α_{*} is not an isomorphism on A and since $|A \cap \operatorname{kernel} \alpha|$ may be made as large as we please by choosing a suitable α, so may $\mid A \cap$ kernel $\alpha_{*} \mid$. Also we note α_{*} may be extended to a homomorphism of $A \times Z(C)$ onto A for in the above discussion we may replace C_{1} by $Z(C)$ and A_{*} by A^{*} where $A_{*} \subset A^{*} \subset A$. In the sequel α_{*} will be as
above. These considerations prompt the definition: Let F be an arbitrary finite abelian group. We call a group A strongly hopfian if every homomorphism of $A \times F$ onto A has kernel of bounded order $\leq N$ where N is dependent only on A and F. Clearly, a strongly hopfian group is hopfian.

We may summarize the above discussion as

Theorem 1. If A is strongly hopfian and if B has finitely many normal subgroups, then $A \times B$ is hopfian.

As an example of some conditions which imply strong hopficity suppose that the torsion subgroup of $Z(A), E$, is finite. Suppose further that normal subgroups of finite index in A which are homomorphic images of A are hopfian. Then A is strongly hopfian. For if θ is a homomorphism of $A \times F$ onto A, F a finite abelian group, we have $A \theta^{j+1} \subset A \theta^{j}, j \geq 0$ and

$$
A=A \theta^{j} \cdot F \theta \cdot F \theta^{2} \ldots F \theta^{j}, \quad j \geq 1
$$

Hence $A=A \theta^{j} \cdot E$ so that $\left[A: A \theta^{j}\right] \leq|E|$. Hence ultimately the subgroups $A \theta^{j}$ are identical, say for $j \geq k$. But then since θ maps $M=A \theta^{k}$ onto itself, θ is an isomorphism on M. Since $A=M \cdot E$, we see that kernel θ contains at most $|E|$ elements of A. It easily follows that A is strongly hopfian.

Theorem 2. If $Z(A)$ is contained in any normal subgroup of finite index in A which is a homomorphic image of A, then if L has finitely many normal subgroups or if L is finitely generated abelian group then $A \times L$ is hopfian.

Proof. The hypothesis implies that A is strongly hopfian, so that if L has finitely many normal subgroups, $A \times L$ is hopfian by Theorem 1. If L is a finitely generated abelian group, we may assume by Theorem 3 of [3] that L is an infinite cyclic group. But then if $A \times L$ is not hopfian, almost exactly as before we can obtain a homomorphism δ of $A \times L$ onto A which is not an isomorphism on A. But then $A=A \delta \cdot L \delta$. If $A \delta$ is of infinite index in A, then $A=A \delta \times L \delta$, and $L \delta$ is infinite cyclic. But then $A \times L$ is hopfian by Theorem 3 of [3]. Hence $A \delta$ is of finite index in A so $L \delta \subset A \delta$, that is $A \delta=A$. But then δ is an isomorphism on A contrary to assumption.

Theorem 1 naturally leads us to ask what we can say about homomorphisms of $A \times F$ onto A where F is a finite abelian group. In this direction we may state,

Theorem 3. If A does not have a direct factor of prime order and if F is a finite abelian group of square free exponent and if θ is an arbitrary homomorphism of $A \times F$ onto A with kernel K, then θ is an isomorphism on $A, K=F$, and K is a central subgroup of $A \times F$.

Proof. Let $A \theta \cap F \theta=F_{1} \theta, \quad F_{1} \subset F$. Hence we may find F_{2} such that $F=F_{1} \times F_{2}$ and $K \subset A \times F_{1}$. However if θ_{1} is the restriction of θ to $A \times F_{2}$, θ_{1} maps $A \times F_{2}$ onto A, so that if $A_{1}=K \cap A$, then $A_{1}=$ kernel θ_{1} so that $\left(A / A_{1}\right) \times F_{2} \approx A$. Hence $F_{2}=1$ so that $A \theta=A$. Hence θ is an isomorphism on A and $F \theta \subset A \theta$. If we write $f \theta=a_{f} \theta, f \in F \quad a_{f} \in A$, then one may show $K=\left\{f^{-1} a_{f} \mid f \in F\right\}$ and K is a central subgroup isomorphic to F.

2.2. A necessary and sufficient condition that $A \times B$ be hopfian

Theorem 4. A necessary and sufficient condition that $A \times B$ be hopfian for all B is that if θ is an arbitrary surjective endomorphism of $A \times B$ then there exists some group subgroup B_{*} of B such that $A \theta B=A \theta \times B_{*} \theta$.

Proof. The necessity is obvious. For the sufficiency suppose that our hypothesis holds for all groups B but $A \times B$ is not hopfian for some fixed B. But then by hypothesis we may write

$$
\begin{equation*}
A \alpha C=A \alpha \times C_{*} \alpha, \quad C_{*} \subset C \tag{1}
\end{equation*}
$$

Now $A \alpha C=A_{1} \times C, A_{1} \subset A$. Note C_{*} is a central subgroup of C so that C_{*} is a finite abelian group. Now since $C_{*} \propto \cap C=1$, if we project $C_{*} \propto$ into A_{1}, (by mapping C into l and A_{1} onto itself via the identity map) and if say A_{*} is this projection of C_{*}^{α} into A_{1}, then $A_{*} \approx C_{*}$. Furthermore we claim $A_{*} \cap A \alpha=1$. To see this say C_{*} is the direct product of i cyclic groups E_{1}, $E_{2} \ldots E_{i}$ generated by $e_{1}, e_{2} \ldots e_{i}$ respectively, where each E_{i} is of order a power of a prime. Then

$$
A \alpha \cdot C=\left(A \times E_{1} \times \ldots \times E_{i-1}\right) \alpha \times E_{i} \alpha
$$

Write $e_{j}=a_{j} e_{j}^{\prime}, \quad e_{j}^{\prime} \in C, a_{j} \in A_{1}$. Let $A^{k}=A \times E_{1} \times \ldots \times E_{k}, 0<k \leq i$, and let $A^{\circ}=A$. Let A_{*}^{k} be the subgroup generated by $a_{k+1}, a_{k+2}, \ldots a_{i}, k<i$, and let A_{*}^{i} be the identity group. Suppose

$$
\begin{equation*}
A \alpha C=A^{k} \alpha \times A_{*}^{k}, \quad k \leq i \tag{2}
\end{equation*}
$$

(2) is certainly true for $k=i$. But if $k>0$, we may write from (2),

$$
A \alpha \cdot C=F \times E_{k}, \quad F=A^{k-1} \alpha \times A_{*}^{k} .
$$

Since e_{k} is of prime power order, say order $e_{k}=p^{s}$, either a_{k} or e_{k}^{\prime} has order $p^{s} \bmod F$. If the order $e_{k}^{\prime} \bmod F$ is p^{s}

$$
A \alpha \cdot C=F \times\left\langle e_{k}^{\prime}\right\rangle
$$

which implies that C has a direct abelian factor which would contradict the "minimality" of C. Thus

$$
A \alpha \cdot C=F \times\left\langle a_{k}\right\rangle=A^{k-1} \alpha \times A_{*}^{k-1}
$$

so that (2) is true for $0 \leq k \leq i$.
Since $A_{*}^{0}=A_{*}$, setting $k=0$ in (2) gives us our assertion.
Now if γ is the projection of $A \alpha C$ onto $A \alpha$ which maps A_{*} into 1 and which is the identity on $A \alpha$, clearly $C \gamma \approx C$ and $C \gamma \cap A=1$. Furthermore, $C \Delta A \alpha$ so certainly $C \gamma \Delta(A \times C)$. Hence, $A \times C=A \times C \gamma$. As in Lemma 4 of [3] this implies α is an isomorphism on A contrary to assumption.

We note that we have also established the following results in the proof of the theorem:

Corollary 1. A sufficient condition that $A \times B$ be hopfian for fixed A and for fixed B is that for each homomorphic image E of B and for each surjective endomorphism γ of $A \times E$ we have $A \gamma E=A \gamma \times D \gamma$ for some $D \subset E$.

Corollary 2. If $A \times B$ is not hopfian, then it is impossible to find $C_{*} \subset C$ such that $A \alpha C=A \alpha \times C_{*} \alpha$.

3. Restrictions on $Z(A)$

3.1. $Z(A)$ with a torsion group with minimal condition for its primary subgroups

The main results of this section depend mainly on the endomorphism α_{*} of the previous section and on the following result:

Lemma 1. Suppose $A \times B$ is not hopfian. If L is a Sylow p subgroup of $Z(C)$ there exists a basis $\gamma_{1}, y_{2}, \ldots y_{e}$ for L such that if θ is an arbitrary positive power of α then for any $i, 1 \leq i \leq e$,

$$
y_{i} \theta \equiv y_{1}^{r_{1 i}} y_{2}^{r_{2 i}} \ldots y_{i i}^{r_{i i}} \ldots y_{e}^{r_{e i}} \quad \bmod A
$$

where the exponents $r_{1 i}, r_{2 i}, \ldots r_{i i}$ are all divisible by p.
Proof. Let $Z(C)=M \times L$ where L is a Sylow p subgroup of $Z(C)$. Let

$$
L=L_{1} \times L_{2} \times \ldots \times L_{s}
$$

where each L_{j} is a direct product of cyclic groups of the same order $p^{n_{j}}$ where $n_{u+1}<n_{u}, u=1,2, \ldots s-1$. Suppose $w \in L_{k}$. Let $w \theta \equiv w_{1} w_{2} w_{3} \ldots w_{s} \bmod A$ where $w_{i} \in L_{i}$. We claim $w_{1}, w_{2}, \ldots, w_{k}$ are $p^{\text {th }}$ powers in $Z(C)$. Since w is of order $p^{n_{k}}$ and each L_{i} for $i<k$ is a direct product of cyclic groups of order $p^{n_{k}}$ and $n_{i}>n_{k}$ we can easily see that w_{i} is a $p^{\text {th }}$ power in $Z(C)$ for $i<k$. It is not obvious however that w_{k} must be a $p^{\text {th }}$ power. To see this, choose a
basis $m_{1}, m_{2}, \ldots, m_{j}$ for L_{k} so that L_{k} is the direct product of the $\left\langle m_{i}\right\rangle$ and each m_{i} is of order $p^{n_{k}}$. Let $w_{k}=m_{1}^{t_{1}} m_{2}^{t_{2}} \ldots m_{j}^{t}$. To show w_{k} is a $p^{\text {th }}$ power we show p is a divisor of each t_{i}. Suppose for example p is not a divisor of t_{1}. Let F be the subgroup generated by $m_{2}, m_{3}, \ldots, m_{j}$ and let E be the subgroup generated by the $L_{i}, i \neq k$. Let $A_{1}=A \times M \times E \times F$. Hence, $A_{1} C \theta=A_{1} \times\left\langle m_{1}\right\rangle$, $C \theta \mid A_{1} \cap C \theta \sim\left\langle m_{1}\right\rangle$. But the order of $w \theta \bmod A_{1} \cap C \theta$ is $p^{n_{k}}$. Hence,

$$
C \theta=\langle w \theta\rangle \times\left(A_{1} \cap C \theta\right)
$$

Since θ is an isomorphism on C this implies that C has a cyclic direct factor of oder $p^{n_{k}}$ which is impossible. Now if $y_{1}, y_{2}, \ldots, y_{e}$ is obtained by taking the union of basis' of each L_{i} and if the y 's are indexed such that $r<t$ implies the y 's in L_{r} precede the y 's in L_{t} then the y 's have the asserted property.

Theorem 5. Let B have finitely many normal subgroups. Suppose that for each prime p, the subgroup of elements in $Z(A)$ of order a power of p satisfies the minimal condition for normal subgroups. Then $A \times B$ is hopfian.

Proof. Suppose the assertion is false. Let L_{p} be a Sylow p group of $Z(C)$ for the prime divisor p of $|Z(C)|$. Let P be the $p^{\text {th }}$ powers of the elemests of order a power of p in $Z(A) \times Z(C)$. We will show that we can find subgroups $\overline{L_{p}} \subset Z(A) \times Z(C)$ and positive integers r_{p} such that

$$
\begin{equation*}
\overline{L_{p}} \approx L_{p}, \overline{L_{p}} \cap A=1, \text { and } \overline{L_{p}} \alpha^{r_{p}} \subset P \tag{3}
\end{equation*}
$$

To obtain the desired contradiction note that (3) implies that $A \times Z(C)$ is the direct product of the groups A and $\overline{L_{p}}$ for p a prime divisor of $|Z(C)|$. Hence if r is a positive common multiple of the r_{p} and $\gamma=\alpha^{r}$, then each element of $\overrightarrow{L_{p}} \gamma$ is a $p^{\text {th }}$ power for all p and hence each element of $\overline{L_{p}} \gamma_{*}$ is a $p^{\text {th }}$ power. But note that if H is an arbitrary group with a finite central p subgroup H_{1} and if $H=H_{1} H_{2}$ for some subgroup $H_{2} \subset H$ and if δ is a homomorphism of H onto some group K such that every element in $H_{1} \delta$ is a $p^{\text {th }}$ power then $K=$ $H_{2} \delta$. Hence $A \gamma_{*}=A$, a contradiction of the hopficity of A.

We will give an inductive method for constructing the $\overline{L_{p}}$. Let p be a fixed prime divisor of $|Z(C)|$ and let $y_{1}, y_{2}, \ldots, y_{e}$ be a basis for L_{p} as in Lemma 1 . We will show that there exists $u_{1}, u_{2}, \ldots, u_{e}$ in $Z(A) \times Z(C)$ such that for $1 \leq i \leq e$

$$
\begin{align*}
& u_{i} \equiv y_{i} \bmod A \tag{4}\\
& u_{i} \text { and } y_{i} \text { have the same order, and } \tag{5}\\
& \text { some fixed power of } \alpha \text { maps } u_{i} \text { into } P \tag{6}
\end{align*}
$$

Once we do this we see that the subgroup generated by the $u_{i}, 1 \leq i \leq e$ is isomorphic to $\overline{L_{p}}$ and may be taken as L_{p}. Our method first gives u_{e}, then $u_{e \rightarrow 1}$, then u_{e-2} and so forth.

Suppose that s is an integer, $1<s \leq e$ and that we have already found $u_{s}, u_{s-1}, \ldots, u_{e}$ such that (4) and (5) hold for $s \leq i \leq e$ and that say some power θ of α maps $u_{s}, u_{s-1}, \ldots, u_{e}$ into P. We show that under this assumption we can find $u \in Z(A) \times Z(C)$ such that $u \equiv y_{s-1} \bmod A$ and u and y_{s-1} have the same order and some power of θ maps u into P. Then u may be taken as u_{s-1} and we may repeat the procedure until all the u 's are constructed. (The inductive step of finding u_{s-1} also shows how to find u_{e}.)

Write $y=y_{s-1}$. Let K be the group generated by $u_{s}, u_{s+1}, \ldots, u_{e}$. Then we can write $y \theta \equiv a_{1} y_{1}^{t_{1}} \ldots y_{s-1}^{t_{s-1}} \bmod K, \quad a_{1} \in A$ where each t_{i} above is divisible by p. Hence,

$$
\begin{equation*}
y \theta \equiv a_{1} \bmod P \cdot K \tag{7}
\end{equation*}
$$

If $a_{1} \theta \equiv a_{2} y_{1}^{q_{1}} \ldots y_{s-1}^{q_{s-1}} \bmod K, a_{2} \in A$, then $y \theta^{2} \equiv a_{2} y_{1}^{q_{1}} \ldots y_{s-1}^{q_{s-1}} \bmod P \cdot K$ from which we deduce that each of the q_{i} are divisible by p. Hence $a_{1} \theta \equiv a_{2} \bmod (K \cdot P)$. By considering $y \theta^{3}$ we see in a similar way that we may write $a_{2} \theta \equiv a_{3} \bmod (K P)$, $a_{3} \in A$ and that we can define $a_{n} \in A$ inductively so that

$$
a_{n} \theta=a_{n+1} \bmod (K P)
$$

One may verify that $a_{n} \in Z(A)$ and that the order of a_{n} is a divisor of the order of y. Furthermore, since θ maps $K \cdot P$ into P we see $a_{k} \theta^{m} \equiv a_{k+m} \bmod (K \cdot P)$ and $y \theta^{m} \equiv a_{m} \bmod (K \cdot P)$. Now the elements of order a power of p in $Z(A \times C)$ form a direct product of a divisible group and a finite group. Hence not all the a_{j} can be distinct $\bmod P$. Hence we can find positive integers k and m such that $a_{m} \equiv a_{k+m} \bmod P$. Hence, $\left(y a_{k}^{-1}\right) \theta^{m} \in K \cdot P$ and consequently, $\left(y a_{k}^{-1}\right) \theta^{m+1} \in P$. Hence, if we define $u_{s-1}=y a_{k}^{-1}$ then $u_{j} \theta^{m+1} \in P, s-1 \leq e$ so that the proof is complete.

Corollary 1. If B is a finite group such that the subgroup of $Z(A)$ consisting of elements whose orders are divisors of $|B|$ obeys the minimal condition for subgroups then $A \times B$ is hopfian.

Proof. Since C is a homomorphic image of B only prime divisors of $|B|$ come into play in the case where B is finite.

Corollary 2. If B has finitely many normal subgroups and θ is a surjective endomorphism of $A \times B$ such that

$$
\begin{equation*}
a \theta=a \theta^{2} \text { for } a \in Z(A) \tag{8}
\end{equation*}
$$

then 0 is an automorphism. If B is finite and (8) holds only for central elements of A whose orders are divisors of $|B|$ then θ is an automorphism.

Proof. Suppose the assertion false. Then in passing from θ and $A \times B$ to α and $A \times C$ we note that (4) may be preserved; that is we may assume $a x=a \alpha^{2}$
for $a \in Z(A)$ or for central elements of A whose orders divide $|B|$ in case B is finite. Now proceed exactly as in the theorem to construct the groups $\overline{L_{p}}$. Define $\theta, s, y, u_{s}, \ldots u_{e}$ as before. Now apply θ to (7) obtaining

$$
y \theta^{2} \equiv a_{1} \theta \equiv a_{1} \theta^{2} \bmod P
$$

so that u_{s-1} may be taken as $y a_{1}^{-1}$.

3.2. Finite B

We apply the results of section 2.2 in this section to finite groups with some special restricts on $|B|$. In contrast to Corollary I of Theorem 5 we show that in some cases we need not pay attention to all the elements in $Z(A)$ whose orders are divisors of $|B|$.

Lemma 2. If G is a group and if γ is an endomorphism of G and if $g \in G$ and the elements $g \gamma, g \gamma^{2}, g \gamma^{3}, \ldots$ are finite in number, we can find a positive integer r such that $g \gamma^{r}=g \gamma^{2 r}$.

Proof. Choose positive integers e and f such that $g \gamma^{2^{e}}=g \gamma^{2^{e+f}}$. Then for any $q>0, g \gamma^{2^{e}}+q=g \gamma^{e+f}+q$. Choose q so that $2^{e+f}+q=2\left(2^{e}+q\right)$ and choose $r=2^{e}+q$.

Lemma 3. Suppose B is finite and $Z(A)$ has only finitely many elements of order p^{2}. If $A \times B$ is not hopfian, then $Z(C)$ is not of the form $L \times M$ where L is cyclic of order $1, p$ or p^{2}, p a prime and where M is of square free exponent prime to p.

Proof. Suppose the assertion is false. Let

$$
A \alpha C=A \alpha \cdot C_{1} \alpha, \quad A \alpha \cap C \alpha=C_{2} \alpha \text { with } C_{2} \subset C_{1} \subset Z(C)
$$

Then we claim C_{1} is not of square free order or else $C_{1}=C_{2} \times C_{3}$ so that $A \alpha C=$ $A \alpha \times C_{3} \alpha$ contrary to Corollary 2 of Theorem 4 . Hence L is of order p^{2} and $L \subset C_{1}$. Furthermore if $L=\langle w\rangle$,

$$
\begin{equation*}
w \alpha \notin A \alpha \tag{9}
\end{equation*}
$$

or again we would obtain a contradiction of Corollary 2 of Theorem 4. Moreover, since $\quad A(C \alpha) \equiv A \bmod Z(C) \quad$ and $\quad A \alpha(C) \equiv A \alpha \bmod Z(C T)$, one sees that $C \alpha / A \cap C \alpha$ and $C / A \alpha \cap C$ are isomorphic to subgroups of $Z(C)$. Hence

$$
\begin{equation*}
E=\left\langle w^{p}\right\rangle \times M \subset A \alpha^{-1} \cap A \alpha \tag{10}
\end{equation*}
$$

or otherwise C would have a finite abelian direct factor which is impossible. Since $A \alpha \cap C \alpha \subset E \alpha$ we see $A \alpha \cap C \alpha \subset A$.

Now let $K=C \alpha \cap(C \times A \cap A \alpha)$. We claim $K=A \alpha \cap C \alpha$. We have already shown $A \alpha \cap C \alpha \subset K$. On the other hand suppose $k \in K$. Then

$$
\begin{equation*}
k=c \alpha=c_{1} a, \quad c \in Z(C), \quad C_{1} \in Z(C), \quad a \in A \cap A \alpha \tag{11}
\end{equation*}
$$

From (10) we see that if $w x \equiv w^{q} \bmod A$, then $(p, q)=p$. Hence (10) and (11) imply

$$
\begin{equation*}
c_{1} \in A \alpha \tag{12}
\end{equation*}
$$

so that $K=A \alpha \cap C \alpha$ as asserted. But then if we set $G=A \times C$ and $M=$ $(A \cap A \alpha) C \alpha$ we see

$$
G / M=[(A \alpha)(C \alpha)] / M \approx A \alpha / A \cap A \alpha \approx(A \cdot A \alpha) / A
$$

so that $[G: M] \leq|C|$. But $M \cap C=1$ so $[G: M] \geq|C|$. Hence, we conclude $A \times C=M \times C$.

Now in all of our above arguments we may replace α by $\alpha^{i}, i \geq 1$, and A by any A_{1} such that

$$
\begin{equation*}
A_{1} \times C=A \times C \tag{13}
\end{equation*}
$$

In particular as in (9)

$$
\begin{equation*}
w \alpha^{i} \notin A_{1} \alpha^{i}, \quad i \geq 1 \tag{14}
\end{equation*}
$$

for any A_{1} in (13).
In any case our hypothesis concerning $Z(A)$ guarantees that the elements $w \alpha^{i}, \quad i=1,2,3 \ldots$ are finite in number. By Lemma 2 we may choose $r>0$ such that $w \alpha^{r}=w \alpha^{2 r}$. But then if we set $A_{1}=A \cap A \alpha^{r} \cdot C \alpha^{r}$ and $a=w \alpha^{r}$ we see $a \in A_{1}$ and $w \alpha^{r}=a \alpha^{r}$, contrary to (14).

Theorem 6. If $|B|=p^{e} q_{1}^{e_{1}} \ldots q_{s}^{e_{s}}$, where p, q_{1}, \ldots, q_{s} are the distinct prime divisors of $|B|$, and $0 \leq e \leq 3,1 \leq e_{i} \leq 2$ for $1 \leq i \leq s$ and if $Z(A)$ has finitely many elements of order p^{2}, then $A \times B$ is hopfian.

Proof. Suppose the assertion is false. Then p^{3} is not a divisor of $|Z(C)|$ or else C would have a direct abelian factor of order p^{2} [4]. Similarly $q_{i}^{2}, i=i, 2 \ldots s$, is not a divisor of $|Z(C)|$ and we arrive at a contradiction of Lemma 3.

In a similar way, the next two theorems follow easily with the aid of the previous theorem, Lemma 3 and Theorems 6 and 3 of [3].

Theorem 7. If $|B|=p^{4} q_{1}^{e_{1}} q_{2}^{e_{2}} \ldots q_{s}^{e_{s}}$ where p, q_{1}, \ldots, q_{s} are the distinct prime divisor of $|B|, 1 \leq e_{i} \leq 2$ for $1 \leq i \leq s$, and if $Z(A)$ has only finitely many elemests of order p^{2}, and if a Sylow p group of B is non-abelian, then $A \times B$ is hopfian.

Theorem 8. If $Z(A)$ has only finitely many elements of order p^{2} and if $|B|=p^{4}$, p a prime, the $A \times B$ is hopfian.

Theorem 9. Let $|B|=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}, 1 \leq e_{i} \leq 3$, where the p_{i} are the distinct prime divisors of $|B|$. Let L_{i} be a Sylow p_{i} group of B and suppose that at most one of the groups L_{i} are abelian. If $Z(A)$ has finitely many elements of order p_{i}^{2}, $i=1,2, \ldots, r$, then $A \times B$ is hopfian.

Proof. Suppose the assertion false. Then $Z(C)$ is not divisible by p_{i}^{3} for any p_{i} or C has an abelian direct factor. On the other hand, $|Z(C)|$ must (by Lemma 3) be divisible by $p_{i}^{2} \cdot p_{j}^{2}, i \neq j$. Since C does not have any abelian direct factor we must have $e_{i}=e_{j}=3$. But then the Sylow p_{i} and the Sylow p_{j} groups of C are abelian and isomorphic to the Sylow p_{j} and the Sylow p_{i} groups of B, contrary to assumption.

4. Restriction on the commutator subgroup

In investigating the hopficity of $A \times B$, we can obtain some further results by considering some of the following restrictions on A^{\prime} :

$$
\begin{equation*}
A^{\prime} \subset Z(A) \tag{15}
\end{equation*}
$$

If B is finite, and p^{e} is a divisor of $|B|, p$ a prime, then A^{\prime} has only finitely many elements of order p^{e}.

If K is an arbitrary normal subgroup of a homomorphic image D of B such that $Z(D) \neq 1$, then A^{\prime} has only finitely many normal subgroups isomorphic to K.

Lemma 4. If (15), (16) or (17) hold and $A \times B$ is not hopfian, then C^{\prime} is a central subgroup of C. In any case, $C^{\prime} \subset A \propto$ and $C^{\prime} \alpha \subset A$.

Proof. As in the proof of Lemma 3, $C \alpha^{\prime} A \cap C \alpha$ and $C^{\prime} A \propto \cap C$ are abelian so that the last two assertions are evident. Hence if (15) holds our assertion is evident. If (16) holds, let y be in a Sylow p group of C^{\prime}. But then $y \alpha^{i} \subset A^{\prime}$ for $i \geq 1$. By Lemma 2 we may choose a positive integer r such that

$$
y \alpha^{r}=y \alpha^{2 r}
$$

Hence $y \alpha^{r} \subset A \alpha^{r} \cap C \alpha^{r}$ so that $y \alpha^{r}$ is a central element. If (17) holds we note that since $C^{\prime} \alpha^{i} \subset A^{\prime}$, we may choose (exactly as in Lemma 2) $r>0$ with $C^{\prime} \alpha^{r}=$ $C^{\prime} \alpha^{2 r}$. Hence $C^{\prime} \alpha^{r} \subset A \alpha^{r}$ so $C^{\prime} \alpha^{r}$ and hence C^{\prime} is central.

Now recall that for any group $G, Z(G) \cap G^{\prime} \subset \operatorname{Fr}(G)$ where $\operatorname{Fr}(G)$ is the Frattini subgroup of G, and for a finite group $G, G^{\prime} \subset \operatorname{Fr}(G)$ implies that G is nilpotent. Hence we have the following:

Lemma 5. If B is finite and $A \times B$ is not hopfian and if (15), (16) or (17) holds, then C is nilpotent.

Theorem 10. Suppose B is a finite group, $|B|=p_{1}^{e_{1}} p_{2}^{\iota_{2}} \ldots p_{r}^{\varepsilon_{r}}$, where the p_{i} are the distinct primes dividing $|B|$. Suppose one of the conditions (15), (16) or (17) holds. If $e_{i} \leq 3$ for all i, then $A \times B$ is hopfian. If $e_{i} \leq 4$ for all i and $Z(A)$ has only finitely many elements of order $p_{i}^{2}, i=1,2, \ldots r$, then $A \times B$ is hopfian.

Proof. Suppose the assertion is false. By Lemma 5, C is nilpotent and hence is a direct product of p groups for various primes p, where p divides $|B|$. However, by Theorem 6 of [3], the direct product of a hopfian group with a group of order p^{3} is hopfian. In any case with the aid of Theorem 8 and Theorem 3 of [3] we have our result.

Theorem 11. If $B=B^{\prime} \cdot L$ where L is an abelian subgroup of B and if one of the conditions (15), (16) or (17) holds, then $A \times B$ is hopfian.

Proof. Suppose the assertion is false. Note any homomorphic image of B satisfies the same hypothesis as B. Hence we may write, $C=C^{\prime} \cdot M$ where M is abelian. By Lemma $4 C^{\prime}$ is a central subgroup of C so that C is abelian and consequently finite contrary to Theorem 3 of [3].

Corollary. If B is finite and if all the Sylow p groups of B are cyclic, then $A \times B$ is hopfian.

Proof. B / B^{\prime} is cyclic. ([6] Theorem 11).
Theorem 12. If B is a perfect group then $A \times B$ is hopfian.
Proof. Suppose the assertion is false. Any homomorphic image of a perfect group is perfect. Hence C is perfect. By Lemma 4, $C \subset A \alpha$ which is contrary to Lemma 4 of [3].

References

1. Baumslag, G. and Solitar, D., Some two generator one relator non-hopfian groups. Bull. Amer. Math. Soc., 68 (1962), 199-201.
2. Hirshon, R., Some theorems on hopficity. Trans. Amer. Math. Soc., 141 (1969), 229-244.
3. -川- On hopfian groups. Pacific J. Math., 32 (1970), 753-766.
4. - - A conjecture on hopficity and related results. Arch. Math. (Basel), to appear.
5. - - Some new groups admitting essentially unique directly indecomposable decompositions. Math. Ann., to appear.
6. Zassenhaus, H., The theory of groups. Chelsea, New York 1958.

Received November 5, 1970
R. Hirshon

Polytechnic Institute of Brooklyn, 333 Jay Street,
Brooklyn, N.Y.,
U.S.A.

