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1. Abstract 

We continue our investigation of the direct product of hopfian groups. Through- 
out this paper A will designate a hopfian group and B will designate (unless we 
specify otherwise) a group with finitely many normal subgroups. For the most 
part  we will investigate the role of Z(A), the center of A (and to a lesser degree 
also the role of the commutator subgroup of A) in relation to the hopficity of 
A • B. Sections 2.1 and 2.2 contain some general results independent of any restric- 
tions on A. We show here 

(a) If A X B is not hopfian for some B, there exists a finite abelian group iv 

such tha t  if k is any positive integer a homomorphism 0k of A •  onto A 
can be found such that  Ok has more than k elements in its kernel. 

(b) I f  A is fixed, a necessary and sufficient condition tha t  A •  be hopfian 
for all B is tha t  if 0 is a surjective endomorphism of A • B then there exists a 
subgroup B .  of B such tha t  AOB-=AOxB.O. 

In Section 3.1 we use (a) to establish our main result which is 
(e) I f  all of the primary components of the torsion subgroup of Z(A) obey 

the minimal condition for subgroups, then A •  is hopfian, 
In Section 3.3 we obtain some results for some finite groups B. For  example 

we show here 
(d) I f  IB[ -~ p 'q~. . ,  q? where p, ql �9 �9 �9 q, are the distinct prime divisors 

of ]B[ and ff 0 < e < 3 ,  0 ~ e ~ 2  and Z(A) has finitely many elements of 
order p~ then A •  is hopfian. 

Several results of the same nature as (d) are obtained here. 
In Section 4 we obtain some results similar to (d) by placing some restrictions 

on the commutator subgroup of A. W e  also show here 
(e) A • B is hopfian ff B is a finite group whose Sylow p subgroups are cyclic. 
(f) A •  is hopfian if B is a perfect group, 
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Our main avenue of at tack on the problems to be considered may be outlined 
here very briefly. Namely if B has finitely many normal subgroups and A X B 
is not hopfian we choose a homomorphic image C of B with as few normal sub- 
groups as possible such tha t  A X C is not hopfian. Then as in Lemma 7 of [3], 
Z(C), the center of C is non-trivial and there exists a surjective endomor/~hism 
of A x C  such that  ~ is not an isomorphism on A and such that  C~ r f ] C =  1 
for all integers r, r # 0. Furthermore C does not have an abelian direct 
factor. Our approach in this paper is to assume A X B is not hopfian and to gather 
information about C. With suitable restrictions we achieve a desired contradiction. 
Throughout this paper C and cr will be as defined here. 

The existence or non existence of a hopfian group A with the properties (a) is 
unresolved. We show in our remarks following Theorem 1 tha t  if Z(A) has a finite 
torsion group and A has properties (a) then A ---- A x �9 F 1 for some finite central 
subgroup _E 1 and some subgroup A 1 which is a non-hopfian homomorphic image 
of A. Conversely if A can be decomposed in the above manner then regardless 
of the nature of Z(A), A has the properties in (a). For if F ~. F 1 one can easily 
obtain a homomorphism of A x F onto A with arbitrarily large kernel. Baumslag 
and Solitar have shown tha t  there exists a finitely generated hopfian group with 
a non-hopfian group of finite index [1]. In view of this anomolous result, we do not 
think tha t  it is unreasonable to suspect tha t  a group A with properties (a) exists. 

In any case our result (c) together with the results of [2] and [3] show tha t  
A X B is hopfian for a wide range of A. In general, extensions of hopfian groups 
by hopfian groups are studied in [2] and [3] and the latter contains a bibliography 
of some relevant papers on the subject. 

2. Some general results 

2.1. Strong hopficity 

We conjecture that  if B has finitely many normal subgroups A X B must be 
hopfian. I f  this conjecture is false A is in a certain sense close to being non-hopfian. 
For write A ~ . C - - - - A s - C l a - - - - C x A ,  where C 1CZ(C) ,  A ,  c A .  Note Ca is 
in the centralizer of Aa �9 C1~ so that  there is a homomorphism y of C X A ,  onto 
Ca �9 A ,  -~ L such tha t  y is the identity oR A ,  and such tha t  y agrees with 
on C. Note L .  C = A x C  so tha t  L/L N C-~ A. Hence cr maps A x C 1 

onto L which in turn can be mapped onto A homomorphicly. I f  we designate the 
resulti~.g homomorphism of A X C 1 onto A by a ,  we see ~,  is not an isomorphism 
on A and since IA N kernel ~1 may be made as large as we please by choosing 
a suitable c~, so may ]A fl kernel ~,I. Also we note ~,  may be extended to a 
homomorphism of A x Z(C) onto A for in the above discussion we may replace 
C 1 by Z(C) and A ,  by A* where A ,  c A * c A .  In  the sequel ~ ,  will be as 
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above. These considerations prompt the definition: Let F be an arbitrary finite 
abelian group. We call a group A strongly hopfian if every homomorphism of 
A • 2" onto A has kernel of bounded order ~ _N where N is dependent only on 
A and 2". Clearly, a strongly hopfian group is hopfian. 

We may summarize the above discussion as 

THEORE~ 1. I f  A is strongly hopfian and i f  B has finitely many normal sub- 
groups, then A •  is hopfian. 

As an example of some conditions which imply strong hopficity suppose tha t  
the torsion subgroup of Z(A), E, is finite. Suppose further tha t  normal subgroups 
of finite index in A which are homomorphic images of A are hopfian. Then A 
is strongly hopfian. For if 0 is a homomorphism of A •  onto A, 2" a finite 
abelian group, we have A 0 j+l C A 0 i, j ~ 0 and 

A -~ AO j .  2"0. 2"0 2 . . .2"0 i ,  j ~ l . 

Hence A ~ A 0 i �9 E so tha t  [A : A 0/] _~ [El. Hence ultimately the subgroups 
A 0 i are identical, say for j ~ k. :But then since 0 maps M ~ A 0 h onto itself, 
0 is an isomorphism on M. Since A : M .  E, we see tha t  kernel 0 contains 
at most [E[ elements of A. I t  easily follows tha t  A is strongly hopfian. 

T~EO~EM 2. I f  Z(A)  is contained in any normal subgroup of finite index in A 
which is a homomorphic image of A,  then i f  L has finitely many normal subgroups 
or i f  L is finitely generated abelian group then A • L is hopfian. 

Proof. The hypothesis implies tha t  A is strongly hopfian, so tha t  if L has 
finitely many normal subgroups, A • L is hopfian by Theorem 1. I f  L is a finitely 
generated abelian group, we may assume by Theorem 3 of [3] tha t  L is an infinite 
cyclic group. But  then if A •  is not hopfian, almost exactly as before we can 
obtain a homomorphism S of A • L onto A which is not an isomorphism on A. 
But  then A = A S . L S .  I f  AS is of infinite index in A, then A = A S x L S ,  
and LS is infinite cyclic. But  then A • L is hopfian by Theorem 3 of [3]. Hence 
AS is of finite index in A so L d c A S ,  tha t  is A S = A .  :But then 8 is an iso- 
morphism on A contrary to assumption. 

Theorem 1 naturally leads us to ask what we can say about homomorphisms of 
A X 2" onto A where 2" is a finite abelian group. In this direction we may state, 

THEORE~ 3. I f  A does not have a direct factor of prime order and i f  F is a finite 
abelian group of square free exponent and i f  0 is an arbitrary homomorphism of 
A • onto A with kernel K,  then 0 is an isomorphism on A,  K : 2 " ,  and K 
is a central subgroup of A • 
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Proof. Let A 0 fl FO -~ 2,10, F1 C F.  Hence we may find J~ such tha t  
iV = 2 ' 1 •  2 and K ~ A • However if 01 is the restriction of 0 to A • 
01 maps A •  2 onto A, so that  if A 1 - ~ K f ] A ,  then A 1 = k e r n e l  01 so tha t  
(A[A1) • 2,2 ~ A. Hence 2,~ ---- 1 so tha t  A 0 ---- A. Hence 0 is an isomorphism 
on A and 2 " 0 c A 0 .  I f  we write fO-~a/O, f E 2 "  a / E A ,  then one may show 
K - ~  { f - l a / ] f  e F} and K is a central subgroup isomorphic to 2,. 

2.2. A necessary and sufficient condition that A •  be hopfian 

THEOREM 4. A necessary and sufficient condition that A • B be hopfian for all 
B is that i f  0 is an arbitrary surjective endomorphism of A X B then there exists 
some group subgroup B ,  of B such that A O B = A O x B ,  O. 

Proof. The necessity is obvious. For the sufficiency suppose tha t  our hypothesis 
holds for all groups B but  A • B is not hopfian for some fixed B. But  then by 
hypothesis we may write 

Ao~C = A s •  C, c C .  (1) 

Now Ao~C ~ AI•  A 1 C A. Note C, is a central subgroup of C so tha t  C, 
is a finite abelian group. Now since C , s  f] C = 1, if we project C , s  into A1, 
(by mapping C into 1 and A 1 onto itself via the identity map) and if say A ,  
is this projection of C , s  into A1, then A ,  ~ C,.  Furthermore we claim 
A ,  fl As  = 1. To see this say C,  is the direct product of i cyclic groups El, 
E 2 . . .  E~ generated by ca, e 2 . . .  e~ respectively, where each E~ is of order a 
power of a prime. Then 

As �9 C = (A • 2 1 5  . . .  •215162 

Write ei=aie~, e~eC,  a i e A  1. Let A k ~ - A • 2 1 5  . . .  •  k, O < k ~ i ,  and 
let A ~ A. Let A~ be the subgroup generated by ak+l, ak+~ . . . .  a,, k < i, 
and let A~ be the identity group. Suppose 

A s C =  Aks•  k < i .  (2) 

(2) is certainly true for k = i. But  if /c > 0, we may write from (2), 

A s ' C - ~  F •  F = Ak - l sXAk , .  

Since ek is of prime power order, say order e L = p', either ak or e~ has order 
p ' m o d F .  I f  the order e~mod2'  is p" 

A s -  C' = F x (e~)  

which implies tha t  C has a direct abelian factor which would contradict 
the "minimali ty"  of C. Thus 
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Ao~ " C = F X (ak) = Ak-lo~ • Ak, -1 

so tha t  (2) is true for 0 < k < i .  
Since A~ = A, ,  setting k = 0 in (2) gives us our assertion. 
Now if y is the projection of Ao~C onto A~ which maps A ,  into 1 and which 

is the identity on Ac~, clearly Cy ~ C and Cy [7 A---= 1. Furthermore, CAAor 
so certainly C~,A(A • Hence, A • C = A • Cy. As in Lemma 4 of [3] this 
implies ~ is an isomorphism on A contrary to assumption. 

We note tha t  we have also established the following results in the proof of the 
theorem: 

CO~OLL~a~u 1. A sufficient condition that A •  be hopfian for fixed A and 
for fixed B is that for each homomorphic image E of B and for each surjective endo- 
morphism y of A x E  we have A y E  = A y •  for some D c E. 

COnOLLARY 2. I f  A •  is not hopfian, then it is impossible to f ind C.  C C 
such that A~C = A~ • C.~. 

3. Restrict ions on Z(A) 

3.1. Z(A) with a torsion group with minimal condition for its primary subgroups 

The main results of this section depend mainly on the endomorphism a .  of 
the previous section and on the following result: 

L ~ M A  1. Suppose A • B is not hopfian. I f  L is a Sylow p subgroup of 
Z(C) there exists a basis Yl, Y2 . . . .  Ye for L such that i f  0 is an arbitrary positive 
power of o~ then for any i, l < i < e, 

yiO ~-- y[l~y~2~ . . .  y~u . . . y:~ rood A 

where the exponents rli, r:~, . . ,  ri~ are all divisible by p. 

Proof. Let Z(C) = M •  where L is a Sylow p subgroup of Z(C). Let 

L = L I • 2 1 5  . . .  x L ,  

is a direct product of cyclic groups of the same order pnj where where each L i 
n u + l < n u ,  u--- 1,2 . . . .  s - -  1. Suppose wCLk.  Let wO~-wlwpw 3 . . . w s  m o d A  
where w i C L i. We claim Wl, w 2 , . . .  , wk are pth powers in Z(C). Since w is of 
order p-k and each L i for i < k is a direct product of cyclic groups of order 
p-k and n i > n ~  we can easily see tha t  w~ i s a  ptL power in Z(C) for i < k .  
I t  is not obvious however tha t  wk must be a p,h power. To see this, choose a 
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basis ml, m e , . . .  , m i for  L~ so t h a t  L~ is the  direct  p roduc t  of  the  <ms> and 
each m s is of order  p"k. Le t  w k = m~lm~ 2 . . . .  m}i. To show wk is a pth power  
we show p is a divisor of each t~. Suppose for example  p is no t  a divisor of  tl. 
Le t  F be the  subgroup genera ted  by  me, ma, �9 �9 �9 , mj and  let  E be the  subgroup 
genera ted  by  the  Li, i # k. Le t  A 1 = A • M • E • F .  Hence,  A1C 0 = A 1 • <ml>, 
CO/A 1NCO,~<ml>.  But  the  order  of w O m o d A  1NCO is p-k. Hence,  

CO = <wO> • (A~ N CO). 

Since 0 is an isomorphism on C this implies t h a t  C has a cyclic direct  fac tor  of  
oder  p=k which is impossible. Now if  Yl, ?/2 . . . .  , y~ is obta ined  b y  taking the  union  
of  basis '  of  each L s and  i f  the  y 's  are indexed such t h a t  r < t implies the  y 's  
in L~ precede the  y 's  in L, t hen  the  y 's  have  the  asserted proper ty .  

THEOREM 5. Let B have finitely many normal subgroups. Suppose that for each 
prime 2, the subgroup of elements in Z(A)  of order a power of p satisfies the minimal 
condition for normal subgroups. Then A •  is hopfian. 

_Proof. Suppose the  assert ion is false. Le t  Lp be a Sylow p group of  Z(C) 
for the pr ime divisor p of  JZ(C)1. Let  P be the  pta :powers of  the  elemests of  
order  a power of  p in Z ( A ) •  We will show t h a t  we can f ind subgroups 

L e C Z ( A ) •  Z(C) and  posi t ive integers rp such t h a t  

Lp ~ Lp , L~, N A -~ I , and L e e ( p e P .  (3) 

To obta in  the  desired contradic t ion no te  t h a t  (3) implies t h a t  A • Z(C) is the  

direct  p roduc t  of  the  groups A and  Lp for p a pr ime divisor of  [Z(C) I. Hence  
if  r is a posi t ive common mult ip le  of  the  r e and  y = cr r, t hen  each e lement  of  

L~y is a pth power  for all p and  hence each e lement  of  L ~ , .  is a pth power.  
B u t  no te  t ha t  if  H is an a rb i t r a ry  group wi th  a f ini te central  p subgroup H 1 
and  if  H = HIH ~ for  some subgroup H e C H and  if ~ is a homomorph i sm of  
H onto  some group K such t h a t  eve ry  e lement  in HI~ is a pth power  then  K = 
H28. Hence  AV. = A, a contradict ion of  the  hopf ic i ty  of  A. 

We will give an  induct ive  m e t h o d  for construct ing the  L e. Le t  p be a f ixed 
pr ime divisor of  1Z(C)] and  let  Yl, Ye . . . .  , y, be a basis for Lp as in L e m m a  1. 
We will show t h a t  there  exists ul, u S . . . .  , u, in Z(A)  • Z(C) such t h a t  for  1 < i < e 

us -~ ys mod  A , (4) 

us and  ys have  the  same order,  and  (5) 

some f ixed  power  of  er maps  us into P (6) 

Once we do this  we see t h a t  the  subgroup genera ted  b y  the  us, 1 < i < e is iso- 

morphic  to  L~ and  m a y  be t aken  as Lp. Our m e t h o d  first  gives u,, t hen  u,_1, 
t hen  u,_ 2 and  so for th .  
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Suppose t h a t  s is an  integer ,  1 ~ s __< e and  t h a t  we have  a l ready  found  
u s, us_ 1 . . . .  , u~ such that. (4) and  (5) hold  for s ~ i ~ e and  t h a t  say  some power  
0 of  ~ m a p s  us, us_l . . . .  , u~ into  P .  W e  show t h a t  under  this a s sumpt ion  we can 
f ind u E Z(A) • Z(C) such t h a t  u ~ Ys-~ rood A and  u and  Y,-1 have  the  same 
order  and  some power  of  0 m a p s  u into P .  Then  u m a y  be  t a k e n  as u8_1 and  
we m a y  r epea t  the  p rocedure  unt i l  all the  u ' s  are const ructed.  (The induct ive  s tep 
of  f inding u~_l also shows how to f ind  u,.) 

Wr i t e  y ---- Ys-1. Le t  K be  the  group  genera ted  b y  us, u~+l, �9 �9 �9 , u,. Then  we 
can wri te  yO ~- a ly~ l . . ,  y~:-~ rood K ,  a 1 E A where  each t, above  is divisible 
b y  p .  Hence ,  

yO ~--- a 1 rood P . K .  (7) 

I f  alO ~ asy~l . . ,  y~_-i 1 rood K ,  a s e A, then  yO s --  asy~l . . ,  y~,~l rood P -  K f rom 

which we deduce t h a t  each  of the  q, are divisible b y  p.  Hence  a 10 ---- a s rood (K.  P) .  
B y  considering yO 3 we see in a s imilar  w a y  t h a t  we m a y  wri te  asO ~ a 3 rood (KP), 
a 3 E A and  t h a t  we can define a~ E A induc t ive ly  so t h a t  

a~O ~- a~+ 1 rood (KP) . 

One m a y  ve r i fy  t h a t  a~ E Z(A) and  t h a t  the  order  of  a~ is a divisor  of  the  order  
of  y. F u r t h e r m o r e ,  since 0 m a p s  K -  P into P we see a k0 ~ -~- ak+~ rood ( K .  P )  
and  yO "~ ~ a,~ rood ( K .  P) .  N o w  the  e lements  of  order  a power  of  p in Z(A • C) 
fo rm a direct  p r oduc t  of  a divisible group  and  a f inite group.  Hence  no t  all the  aj- 
can be dis t inct  rood P .  Hence  we can  f ind  pos i t ive  integers  k and  m such t h a t  
a~------ a ~ + ~ m o d P .  Hence ,  (ya~l)O " E K .  P and  consequent ly ,  (ya[1)O "~+1 EP.  
Hence,  i f  we define u,_~ ~ ya[ ~ t hen  ujO "~+1 E P,  s - -  1 < e so t h a t  the  p roo f  is 
complete .  

COROLLARY 1. I f  B is a finite group such that the subgroup of Z(A) consisting 
of elements whose orders are divisors of IBI obeys the minimal condition for subgroups 
then A • B is hop finn. 

Pro@ Since C is a h o m o m o r p h i c  image  of  B only  p r ime  divisors of  IB] 
come into p l ay  in the  case where  B is finite.  

COrOLLArY 2. I f  B has finitely many normal subgroups and 0 is a surjeetive 
endomorphism of A • B such that 

aO : aO s for a e Z(A) (8) 

then 0 is an automorphism. I f  B is finite and (8) holds only for central elements of 
A whose orders are divisors of IB] then 0 is an automorphism. 

Proof. Suppose  the  asser t ion false. Then  in passing f rom 0 and  A •  to  
and  A • C we no te  t h a t  (4) m a y  be  preserved;  t h a t  is we m a y  assume a~ ~-- a~ 2 
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for  a E Z(A)  or for  central  e lements  of  A whose orders  divide ]B] in ease B is 

finite.  Now proceed exac t ly  as in the  theorem to cons t ruc t  the  g roups  L~. Define 
0, s, y, us . . . .  u. as before.  ~qow apply  0 to  (7) obtaining 

yO 2 =-- alO ~-- alO 2 rood P 

so t h a t  U,_l m a y  be t aken  as ya~ 1. 

3.2. _Finite B 

We apply  the  results of  section 2.2 in this section to  f inite groups wi th  some 
special restr icts  on IB[. I n  cont ras t  to  Corollary 1 of  Theorem 5 we show t h a t  in 
some eases we need  no t  p a y  a t t en t ion  to  all the  e lements  in Z(A)  whose orders 
are divisors of IB]. 

Lv, M ~  2. I f  G is a group and i f  7 is an endomorphism of G and i f  g C G 
and the elements g$, gy2, gya . . . .  are finite in number, we can f ind a positive integer 
r such that gT" -~ g72~. 

Proof. Choose posi t ive integers e and f such t h a t  g72' = gy2,+f. Then  for a n y  

q ~ 0 ,  g 7 2 ~ - ~ q = g 7  ~+fq-q .  Choose q so t h a t  2 ~ + / q - q = 2 ( 2  ~q -q )  and  choose 
r = 2 ~ q .  

LEMMA 3. Suppose B is finite and Z(A)  has only finitely many elements of 
order p2. I f  A •  is not hopfian, then Z(C) is not of the form L •  where JL 
is cyclic of order 1, p or p2, p a prime and where M is of square free exponent 
prime to p. 

Proof. Suppose the  assertion is false. Le t  

Ao~C = Aa . Cla , Ao~ N Ca = C2a with  C a c C 1 C Z ( C )  . 

Then we claim C 1 is not  of  square  free order  or else C 1 = C 2 • C a so t h a t  AaC --- 
A s  • Caa con t ra ry  to  Corollary 2 of  Theorem 4. Hence  L is of  order  pg. and L ~ C r 
F u r t h e r m o r e  i f  L = (w}, 

wa ~ A a  (9) 

or again we would obta in  a cont radic t ion  of  Corollary 2 of  Theorem 4. Moreover,  
since A ( C a ) - ~ A  m o d Z ( C )  and  As(C)--= A a m o d Z ( C T ) ,  one sees t h a t  
Co~/A N Co~ and  C/A~ fl C are isomorphic to  subgroups of  Z(C). Hence  

E = (w p) • M C A a  -1 N Aa  (10) 

or otherwise C would have  a f ini te abelian direct  fac tor  which is impossible. Since 
Aa  ['l Ca C E a  we see Aa  ['l Ca C A. 
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N o w  let  K = C~ 13 (C X A 13 A~). W e  claim K = A~ 13 C~. We  h a v e  a l ready  
shown A~ 13 Cc~ C K.  On the  o ther  h a n d  suppose  k E K .  T h e n  

k = Cor = c la  , c 6 Z ( C )  , C 1 6 Z ( C )  , a 6 A 13 A ~ .  (11) 

F r o m  (10) we see t h a t  i f  w ~ - w  q m o d A ,  t h e n  (p ,q)  = p .  Hence  (10) and  (11) 
i m p l y  

% e A~ (12) 

so t h a t  K-----A~[3Cc~ as asserted.  B u t  t h e n  if  we set  G - - - - A x C  and  M - ~  
(A 13 A~)C~ we see 

G / M  = [(A~)(C~)]/M ~ A ~ / A  n A~ ~ (A . A~) /A  

so t h a t  [ G : M ]  < {C[. B u t  M13C- - - -  1 so [ G : M ]  > ]C[. Hence ,  we conclude 
A x C - - - - M x C .  

N o w  in all of  our  above  a r g u m e n t s  we m a y  replace  ~ b y  ~ ,  i > 1, and  A 
b y  a n y  A 1 such t h a t  

I n  pa r t i cu la r  as in (9) 

A ~ X C  = A x C .  (13) 

WOJ ~ A 1  a i  , i > 1 (14) 

for  a n y  A 1 in (13). 
I n  a n y  case our  hypo thes i s  concerning Z(A)  guaran tees  t h a t  the  e lements  

wed, i---- 1 , 2 , 3 . . .  are f ini te  in number �9  B y  L e m m a  2 we m a y  choose r >  0 
such t h a t  w~ ~ ----- w~ 2~. B u t  t h e n  if  we set  A 1 ~-~ A 13 A~ ~- C~ ~ and  a = wa ~ 
we see a 6 A  1 and  wcr - ace ~, c o n t r a r y  to  (14). 

THEOREM 6. I f  {B[-----p'q;1 e, �9 . . q , ,  where p, q l , . . . , q s  are the distinct prime 
divisors of [B[, and 0 < e  < 3 ,  l < e  I<_2 for l < i  < s  and i f  Z (A)  has 
f initely many elements of order p~, then A x B is hopfian. 

Proof. Suppose  the  asser t ion is false. Then  p3 is no t  a divisor  of  {Z(C){ or else 
C would  have  a direct  abol ish fac tor  of  order  p2 [4]. Similar ly  q~, i = i ,  9 . . . . .  s, 

is no t  a divisor  of  [Z(C){ and  we ar r ive  a t  a con t rad ic t ion  of  L e m m a  3. 
I n  a s imilar  way ,  the  n e x t  two  theo rems  follow easi ly  wi th  the  aid of  the  previous  

theo rem,  L e m m a  3 and  Theorems  6 and  3 of  [3]. 

~ 4 fl el~ e 2 T ~ O ~ E M  7. I f  [B{ -~ ,,  ~1 ~2 �9 �9 �9 q:8 where p, ql . . . .  , qs are the distinct prime 
divisor of {B], 1<_ e~ < 2 for 1 < i < s, and i f  Z(A)  has only f initely many 
elemests of order p~, and i f  a Sylow p group of B is non-abelian, then A X B is 
hop fiSh. 
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TaEo~]~  8. I f  Z(A) has onlyfinitely many elements of order p2 and if  ]B] = pa, 
p a prime, the A •  is hopfian. 

TJZEO~E~I 9. Let [B] ~1 ~: _ _ P~ P2 . . p:~, 1 < e ~ < 3 ,  where the Pl are the distinct 
prime divisors of [B[. Let L~ be a Sylow p~ group of B and suppose that at most 
one of the groups L i a r e  abelian. I f  Z(A) has finitely many elements of order p~, 
i : 1,2 . . . .  , r, then A •  is hopfian. 

Proof. Suppose the assertion false. Then Z(C) is not divisible by p~ for any 
Pi or C has an abelian direct factor. On the other hand, [Z(C)[ must (by Lemma 3) 
be divisible by p~ �9 p], i r j .  Since C does not have any abclian direct factor we 
must have e~ = e  i = 3. But  then the Sylow pl and the Sylow P1 groups of C 
are abclian and isomorphic to the Sylow pj and the Sylow p~ groups of B, contrary 
to assumption. 

4. Restriction on the commutator subgroup 

In  investigating the hopficity of A • B, we can obtain some further results by 
considering some of the following restrictions on A': 

A'  c Z ( A ) .  (15) 

I f  B is finite, and p~ is a divisor of IBl, p a prime, then A' has (16) 
only finitely many elements of order p~. 

I f  K is an arbitrary normal subgroup of a homomorphic image D 
of B such tha t  Z(D) r 1, then A'  has only finitely many normal subgroups (17) 
isomorphic to K. 

L ] ~ v ~  4. I f  (15), (16) or (17) hold and A •  is not hopfian, then C' is a 
central subgroup of C. In  any case, C' c Ao~ and C'~ C A. 

Proof. As in the proof of Lemma 3, C~'A f] Ca and C'A~ fl C arc abelian 
so tha t  the last two assertions arc evident. Hence if (15) holds our assertion is 
evident. I f  (16) holds, let y be in a Sylow p group of C'. But  then y ~ c  A '  
for i ~ 1. By Lemma 2 we may choose a positive integer r such tha t  

y~r : y~pr. 

ttence y r C A~ r f] C~ r so tha t  y~r is a central element. I f  (17) holds we note 
tha t  since C'~ ~ c A' ,  we may choose (exactly as in Lemma 2) r ~ 0 with C'~ ~ 
C'~ 2". tIence C ' ~ c  - A~ r so C'~" and hence C' is central. 

Now recall tha t  for any group G, Z(G) D G' C 1% (G) where Fr  (G) is the 
Frat t ini  subgroup of G, and for a finite group G, G' c l~r (G) implies tha t  (7 
is nilpotent. ~ence we have the following: 
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L E M ~  5. I f  B is finite and A •  is not hopfian and i f  (15), (16) or (17) 
holds, then C is nilpotent. 

el e2 Vr TItEO~E~ 10. Suppose B is a finite group, [B] Pl  P2 �9 �9 .Pr , where the p, 
are the distinct primes dividing IBI. Suppose one of the conditions (15), (16) or (17) 
holds. I f  e~<_3 for all i, then A •  ishopfian.  I f  e ~ < 4  for all i and Z(A)  
has only finitely many elements of order p~, i = 1, 2, . . . r, then A • B is hopfian. 

Pro@ Suppose the assertion is false. By  Lemma 5, C is nilpotent and hence 
is a direct product of p groups for various primes p, where p divides IBI. How- 
ever, b y  Theorem 6 of [3], the direct product of a hopfian group with a group of 
order pa is hopfian. In any ease with the aid of Theorem 8 and Theorem 3 of [3] 
we have our result. 

TIZEO~E~ 11. I f  B = B'  �9 JL where L is an abelian subgroup of B and i f  one 
of the conditions (15), (16) or (17) holds, then A •  is hopfian. 

Pro@ Suppose the assertion is false. Note any homomorphic image of B satisfies 
the same hypothesis as B. Hence we may write, C = C' �9 M where M is abelian. 
By  Lemma 4 C' is a central subgroup of C so that  C is abelian and consequently 
finite contrary to Theorem 3 of [3]. 

COROLLARY. I f  B is finite and i f  all the Sylow p groups of B are cyclic, then 
A • B is hopfian. 

Pro@ B/B '  is cyclic. ([6] Theorem 11). 

THEOREM 12. I f  B is a perfect group then A •  ks hopfian. 

Proof. Suppose the assertion is false. Any homomorphie image of a perfect 
group is perfect. Hence C is perfect. By  Lemma 4, C C A~ which is contrary 
to Lemma 4 of [3]. 
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