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O. Introduction 

Let t9 be an unbounded domain in the real n-dimensional cartesian spac. 
R" and let a and k be reM-valued and Lebesgue measm'able functions on De 
The function k is not required to have a constant sign. We shall consider a Hilbert 
space realization of the spectral problem 

( -  ~ a2lax~ + a(x))u = ~(x)~ in x), (0.1) 
j=l 

u = 0 on the boundary, ~(0.2)  

where i is the eigenvalue parameter. Under certain conditions (Sections 1 and 2) 
we shall deduce exact bounds for the positive and for the negative continuous 
spectrum of this problem. The case when k(x) = 1 for all x in [2 was treated 
by Arne Persson in [7]. 

The author wishes to express his gratitude to A. Pleijel and Arne Persson for 
their generous interest. 

1. Conditions, the spectral problem 

Let C~~ be the set of all infinitely differentiable real-valued functions with 
compact support in f2 and write 

(u, v) = f (grad u grad v -t- auv)dx (1.1) 

~2 

when u and v are in C~~ I t  is assumed that (u, u) is positive definite on 
C~(12). Furthermore there shall exist a constant C such that 
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f ]k]u2dz < C(u, u) (1.2) 

on C~(9). Completion of C~(~)  wi th  respect to l.I, lul = (u ,u)  1/2, gives a 
Hilberr space H on which (u, v) and, because of (1.2), also a form corresponding 
to 

K(u, v) = f kuv dx on C~(9) (1.3) 
~2 

can be defined as limits on Cauchy sequences in C~(D). The form K(u, v) becomes 
symmetr ic  and  bounded. Hence 

K(u, v) ~-- (Ku, v) (1.4) 

defines a selfadjoint operator  K. Under  suitable conditions the  spectral problem 
for K, i.e. for the equat ion Ku  = / ~ u ,  is equivalent  to the eigenvalue problem 
(0.1), (0.2) if A ~ #-1, see [8], [9]. Our aim is not  to discuss such conditions bu t  to 
obtain exact  bounds  for the  continuous spectrum of K as defined by  (1.4). 

The eigenspace corresponding to a real interval  I is denoted by  H(I). For  
reference we state the following consequences of the spectral theorem. (1) I f  u # 0 
is an element of H(I), then (Ku, u)/(u, u) i.e. K(u, u)/(u, u) belongs to I. (2) The 
spectrum is discrete in I i f  H(Io) is finite dimensional for every closed interval i o 
contained in the open kernel of I. 

2. Further conditions 

Precompactness of a quadrat ic  form Q on a linear space wi th  scalar product  
(. , .) can be characterized by  a compactness inequali ty.  To every s > 0 there 
shall exist a finite number  of (. , .)-bounded linear forms L1, L 2 . . . .  , LN such tha t  

N 

IQ(u, u)l ~ z(u, u) + ~ iLj(u)#. (2.1) 
j = l  

Precompact  is compact  if  the space is complete. 
Le t  Sr be the intersection of f2 and the sphere { x : l x  I < r}. Define 

by  a-(x) = �89 ~ a(x)). We assume that for every finite r the integrals 

a -  

f u=dx, f a-(x)u dx, f l (x)lu2dx 
Sr S r Sr 

(2.2) 

are precompact on C~ (#2) with respect to the scalar product in (1.1). I)recompactness 
implies boundedness.  Thus for every r and every u in C~(D) 
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f u ~ dx Cl(r)(u, (2.3) < U)~ 

S r 

where the constant C~(r) depends on r. Similar inequalities are valid for the other 
integrals in (2.2). 

I t  is furthermore assumed that on C~(D) 

f grad u dx < Q(r)(u, U)~ (2.4) 
Sr 

where the constant C2(r ) depends upon r. 
The inequality (2.3) shows tha t  every element u in H (Cauchy sequence) 

determines a function also denoted by u which is square integrable over St. 
Since r is arbitrary the definition of u can be extended to the whole of f2. 
According to (2.4) the function u has generalized locally square integrable 
derivatives of the first order. For u in H, values can be attr ibuted to the left 
hand sides of (2.3) and (2.4) either as limits on Cauchy sequences or as integrals 
in which the corresponding function and its generalized derivatives are introduced. 
The inequalities (2.3), (2.4) remain valid in H. On account of their boundedness 
the other two integrals in (2.2) can be similarly defined as limits or as integrals. 
The integrals (2.2) are compact on H. 

From the inequality (1.2) it follows tha t  for u and v in H the value of K(u, v) 
equals the integral in (1.3) in which the corresponding functions in L~o~(dx) are 
inserted. These functions belong to L2( I]c Idx). The inequality (1.2) is valid also in H. 

The possibility that  a non-zero element of H may determine a function u 
which is 0 almost everywhere is not excluded. However, an eigenspace of K be- 
longing to an interval I of positive distance from the origin is in one-to-one cor- 
respondence with its functions in L~or ). This follows from statement (1), end 
of Section 1. 

3. Sulficient conditions 

As in Courant & Hilbert [1], pp. 515--521, it can be proved tha t  for evory 
e > 0 a Friedrich's inequality 

f j = l  
S r Sr S r 

holds on C~(D). The functions Wl, w2 . . . .  , w N are bounded and integrable with 
compact supports. The proof is simplified since, when Sr is not contained in ~2, 
the functions in C~(D) vanish identically in neighbourhoods of the common 
boundary of Sr and D. 
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I f  a-(x) and k(x) are bounded in every St, and i f  (2.3) and (2.4) hold, then the 
compactness of the integrals (2.2) is a consequence of (3.1). For according to (2.3) 
the linear forms in (3.1) are (. , .)-bounded and by the use of (2.4) one can introduce 
(u, u) in the s-term. Thus the first integral in (2.2) is precompact on C~(Y2), 
compact on H. Because of the boundedness of a-(x) and ]c(x) in Sr the last 
two integrals in (2.2) are majorized by the first one, hence compact. 

_Remark. Under the conditions of Sections 1 and 2 we shall obtain bounds for 
the continuous spectrum of K. Any set of conditions which imply ours will evidently 
do for the same purpose. Such a set (not assuming boundedness of a-  in S~) is 
due to Arne Persson when ]c(x) is identically 1. His assumption that  a(x) be 
bounded from below for large values of Ixl is, however, no~ necessary. In Section 9 
we shall indicate an example in which a(x) is not bounded from below but all 
conditions of Sections 1 and 2 are fulfilled. 

4. Result to be obtained 

Let 

L + = sup (K(u, u)/(u, u)), L;- = inf (K(u, u)/(u, u)) 

when u varies in C~~ S J,  and consider the non-increasing and non-decreasing 
limits 

L + = l i m L  +, L---~limL~-.  
r --r o o  r - + o o  

An easy consequence of the compactness of the third integral in (2.2) is tha t  L + > 0 

and L -  < 0. To see this take R > r. For Q(u, u) = [[k]u~dx, the precompactness 

SR 
relation (2.1) holds with certain L1, L2 . . . .  , LN. The space C~'(S R -- St) is of 
infinite dimension and thus contains functions u :# 0 for which Lj(u) = 0, 
j = 1, 2 , . . .  ,N .  For such a function the precompactness relation gives 

f lklu2dx < u) so t h a t  S(U~ 

SR 
IK(u, u) l/(u, u) < s. 

Thus L + > - - s  and L7 ~ s  for any e >  0 which shows that  L + ~ 0  and 
L - <  0. We shall prove the following 

THEOREm1. The spectrum of K outside L -  ~ # ~ L + is discrete and this interval 
contains no smaller interval with this property. 
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5. A basic inequality 

For 0 < ~ < r let ~0 be an infinitely differentiable function which is identically 
0 for ]x I ~ ~, identically 1 for Ix[ > r and has all its values in the closed interval 
[0, 1]. With u, also ~u belongs to C~~ and (~u, ? u ) ~  0. Easy computations 
give 

(~u, q~u) = (u, u) -- f (1--  cf2)grad2udx -- f (1 - 
Sr Sr 

+ 2 f u~ grad u grad ~ dx § f u~ grad2 q dx. 
S r S r 

q~2)au2dx -+- 

According to the Cauchy--Schwarz inequality and by  the help of (2.4) it follows 
that  for all u # 0 in C~~ 

O <__ (q~u, qvu)/(u,u) < l + f a-u dx/(u,u) + f + 
S r S r 

C~ f u2dx/(u, u). -4- (5.1) 
Sr 

Here the constants C 1 and C 2 depend upon the choice of ~ iuctuding the choice 
of ~ and r. 

A first consequence of (5.1) is tha t  for any element u = {un}~ in H, also 
qu = {~u,}~ belongs to H. For (5.1) shows, on account of the boundedness of 
the integrals (2.2), that  with u, also {~u,}~ is a Cauchy sequence (with elements 
in C~(~9--So)  ). A transition to the limit proves (5.1)fox" u in H. 

6. Upper bound for the positive continuous spectrum 

/ .  

For u in C~(Y2) it is clear that  K(u, u) = K(cfu, c/u) - ~ / ( 1  - -  q92)ku2dx, a 

relation which remains valid for u in H. With u in H this formula is divided 
by  (u, u). I f  ~u = 0 the quotient K(q~u, ?u)/(u, u) vanishes. I f  ~u # 0 the 
quotient equals (K(~u, q~u)/(~u, cfu)) �9 ((q~u, ~u)/(u, u)). Here K(~u, ~u)/(~u, q~u) 
< L~-. For u in H the quotient (~u, cfu)/(u, u) can be estimated according 
to (5.1). In both cases 
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( \1/2 
f f 

S r S r 

S r S r 

where the  constants  depend upon the choice of  ~v including the  choice of  q and  
r , q  < r .  

Consider H ( L  + 4- 8 < # < co) for b > 0. Because of  (1.2) the  ent i re  spec t rum 
of  K lies in the  closed in terval  [ - - C , C ]  and  H ( L  +4-  8 <_tt < co) = 
H ( L  + 4- 8 < # <_ C). The dimension of  this space is claimed to  be finite. Assume 
the  cont ra ry .  F i rs t  choose s in 0 < e < 8/2 and  take  ~ so large t h a t  
L + < L  + 4 - e .  A choice of  ~0 (and r >  ~) gives certain values to  C~ and  C s 
in (5.1). Take  e 1 > 0 so small t h a t  

(L + 4- e){1 4- e I 4- Ol#l 1/2 4- C2el} 4- e 1 < L + 4- 8 .  

The  integrals (2.2) appearing in (6.1) are compact ,  thus  can all be major ized b y  an 
expression 

N 
ex(u, u) 4- ~, ]Lj(u)I s . 

j=l 

I f  H ( L  + 4- 8 < # < co) is of  infinite dimension it  contains non-zero elements  
u for which the  l inear forms Lj(u) vanish,  j = 1, 2 . . . . .  N.  For  such an e lement  
it  follows that 

K(u, u)/(u, u) <_ (L+ + e){ 1 + q + qq~/~ + csq}  + q < L+ 4- 8. 

Since u belongs to  H ( L  + 4- 8 _< # < oo) the  last inequal i ty  is v iola ted b y  s ta te-  
men t  (1) a t  the  end of  Section 1. Thus,  according to  s t a t emen t  (2) in Section 1, the  
value  of  L + is an upper  bound  for the  posi t ive cont inuous spectrum.  

7. Best upper bound for the positive continuous spectrum 

This section depends only  on (1.2) and  the  posi t ive definiteness of  (1.1); compare  
[10], p. 360. 

Let  M >  0 and  assume t h a t  H 1 = H ( M  < #  < co) is f inite-dimensionM. 
Then  H 1 is spanned by  eigenfunetions vj, v2 . . . . .  v N which can be t aken  or tho-  
normal ized  with respect  to (. , .). The  eigenspaces H 1 and H 2 = H ( - -  co < # < M) 
are or thogonal  complements ,  also or thogonal  wi th  respect  to K ( . ,  .). P u t  
u = u  1 + u s ,  where u 1 belongs to  H 1 and  u s belongs to  I t  s. Then  ( u , u ) =  
(u v us) + (u s, u2) and K(u ,  u) = K ( u  v us) 4- K ( u  s, %). According to  (1.2), 
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K(%, %) <_ C(%, %) and because of statement (1) in Section 1, K(%, %) <_ 
M(%, %). Hence 

K(u,  u)/(u, u) < (0 - M ) ( u .  u~)/(u, u) + M . (7.1) 

Write % = ClV 1 -3 7 C2V 2 -~- . . . - t -  C N V N ,  where cj = (u 1, vj) = (u, vj). The eigen- 
values & corresponding ~o vl, j = 1, 2 . . . .  , N, are positive and cj = #i lK(u,  vj). 

Let u be a function in C~(D- -S , ) .  On account of (1.2) 

I f 
~ 2 - -  S r D - -  S r 

so tha t  ]cjl2(u,u) -1 tends to 0 when r tends to infinity, j = 1, 2 , . . . , N .  I f  
2 

(U l ,  U l )  = C 1 -~- C 2 -~- . . . @ C 2 i s  i n t r o d u c e d  i n t o  (7.1) t h e  l i m i t  property o f  t h e  

coefficients c i shows that ,  according to the definition of L + in Section 4, 

L + = lim sup (K(u, u)/(u, u)) < M. 

Thus L + is the least upper bound of the positive continuous spectrum. 

8. Bound for the negative continuous spectrum 

A change of sign of k(x) shows tha t  L -  is the greatest lower bound for the 
negative continuous spectrum. Thus the spectrum of K outside L - < / x  < L + 
is discrete and this interval is the smallest one with this property. For a differential 
problem of type (0.1), (0.2) this means tha t  the spectrum in 

1/L- < ,~ < 1/L + 

is discrete and tha t  no larger interval has this property. 

9. Example 

We shall show that  our conditions can be fulfilled even with a function a(x) 
which is not bounded from below for large values of Ix I. 

The domain ,Q is taken as the entire space R n. Let p and P be functions 
on R", p real-valued and P vector-valued with values in R". I f  u belongs to 
C~(R"), partial integrations give 

f (grad 
R n 

= f (gradu + uP)2dx + f (lo -- P2)u2dx, 
,2 

R n R n 

(9.1) 
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where a = p - -  div P and p2 is the  scalar p roduc t  of  P b y  itself. The integrated 
par ts  vanish  since u has compac t  support .  Thus the left hand  side of  (9.1), i.e. 

(u, u) is positive definite on C~~ ") provided  Io > p2 for all x. 

Take p = cons tant  and  P ( x )  -~ gradf ( r )  with r = Ixl and  f'(r) = A + sin (#), 
where A is a constant .  Then  

a(x)  = p - -  2r cos (#) - -  (n - -  1)r-l(A + sin (r~)) 

which is no t  bounded  from below. I f  A < 0 the  funct ion a - ( x )  is locally bounded.  
We have p2 = (A + sin (re)) 2 and  it is easily seen t h a t  we can take  10 > (IA[ + 1) 2 

such t h a t  (2.3) and (2.4) hold with the integrals ex tended over the entire space R" 
(the constants  of  course independent  of  r). This is still t rue  if a positive locally 

bounded  funct ion is added  to a(x).  The negat ive  pa r t  of  the new funct ion a(x)  

is still locally bounded.  This gives a simple way  of  construct ing ~ couple of locally 

bounded  funct ions a(x)  and k(x)  for which (1.2) and, on account  of  Section 3, 

also the o ther  condit ions of  Sections 1 and 2 are satisfied. The new funct ion a(x)  

can be chosen unbounded  f rom below. 
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