Sets of synthesis and sets of interpolation for weighted Fourier algebras

U. B. TEWARI

Institut Mittag-Leffler, Djursholm, Sweden

§ 1. Introduction. Let $A_0(\mathbf{T})$ denote the Banach algebra of continuous functions with absolutely convergent Fourier series. We define

$$A_{lpha}(\mathbf{T}) = \{f \in C(\mathbf{T}) : \sum_{n} |\widehat{f}(n)| \ (1 + |n|)^{lpha} < \infty\}, \ \ lpha > 0 \ .$$

We shall also be concerned with the Banach algebra of Lipschitz functions $\Lambda_{\alpha}(\mathbf{T}), \lambda_{\alpha}(\mathbf{T})$ and $(\lambda_{\alpha} \cap A)(\mathbf{T})$. We let $\lambda_{0}(\mathbf{T}) = C(\mathbf{T})$ and $\lambda_{1}(\mathbf{T}) = C^{1}(\mathbf{T})$, [6; pp. 42-43].

Let $R \subset C(\mathbf{T})$ be a regular Banach algebra such that the maximal ideal space of R is \mathbf{T} . For a closed subset E of \mathbf{T} , we define

 $egin{aligned} I^R(E) &= \{f \in R: f = 0 \ ext{ on } E\} \,, \ R(E) &= R/I^R(E) \ ext{ is the restriction algebra of } R \ ext{ to } E \,. \ ilde{R}(E) &= \left\{f \in C(E): \sup_{\substack{\mu \in M(E) \ \mu \neq 0}} rac{|\int f \, d\mu|}{||\mu||_{R'}} < \infty
ight\} \end{aligned}$

where R' is the dual of R. $\tilde{R}(E)$ is called the tilda algebra of R(E). For $f \in \tilde{R}(E)$, $||f||_{\tilde{R}}$ is defined by

$$\|f\|_{\widetilde{R}} = \sup_{\substack{\mu \in M(E) \\ \mu \neq 0}} \frac{|\int f \, d\mu|}{\|\mu\|_{R'}} \, .$$

Let I be a closed ideal in R, then hull I is defined to be the set of common zeros of all functions in I. We say that a closed subset E of \mathbf{T} is of synthesis in R if $I^{R}(E)$ is the only closed ideal in R whose hull is E and that *ideal theorem* holds for E in R if every closed ideal I in R whose hull is E is the intersection of all closed primary ideals containing I. We let

$$PM_{lpha}({f T})=(A_{lpha}({f T}))'$$
 and $M_{lpha}({f T})=(\lambda_{lpha}({f T}))'$

Let us remind ourselves that when we talk of A_{α} , the index $\alpha \in [0, \infty[$ while in case of λ_{α} and $\lambda_{\alpha} \cap A, \alpha \in [0, 1]$.

An element of $PM_{\alpha}(T)$ will be called an α -pseudomeasure and an element of $M_{\alpha}(\mathbf{T})$ will be called an α -measure. By $PM_{\alpha}(E)$ $[M_{\alpha}(E)]$ we shall denote the set of α -pseudomeasures [α -measures] carried by E. E is called a set without true α -pseudomeasures if $PM_{\alpha}(E) = M_{\alpha}(E)$ and E is called an H^{α} -set if $A_{\alpha}(E) = \lambda_{\alpha}(E)$.

In Section 2, we shall discuss the Ditkin property for the algebras A_{α} and $\lambda_{\alpha} \cap A$ and prove the following:

THEOREM 1. Let *E* be a closed subset of **T** such that for an infinite sequence $\{N_j\}_{j=1}^{\infty}$ of integers, the points $2\pi j/N$ ($N \in \{N_j\}$) either belong to *E* or are at least at a distance $2\pi/N$ from *E*. Then *E* is a set of synthesis for $\lambda_{\alpha} \cap A$, $0 < \alpha < 1$.

In Section 3, we describe a totally disconnected perfect set of synthesis for $A_{\alpha}(\mathbf{T})$, $0 \leq \alpha < 1/2$.

Finally in Section 4, we discuss H^{α} -sets and sets without true α -pseudomeasures. We prove that only finite sets are H^{α} -sets. In this process we shall also prove that every function $f \in A_{\alpha}(E)$ can be extended to $A_{\alpha}(\mathbf{T})$ without increasing its norm and that the tilda algebra of $A_{\alpha}(E)$ is $A_{\alpha}(E)$.

I wish to express my deep gratitude to Professor N. Th. Varopoulos for his generous advice and criticism and to the Institut Mittag-Leffler for its hospitality.

§ 2. Carl Herz [1] has proved that if $f \in A_{\alpha}$ is such that $f(t_0) = f'(t_0) = \ldots = f^{[\alpha]}(t_0) = 0$ then there exists a sequence of functions $f_n \in A_{\alpha}$ such that $f_n = 0$ in a neighbourhood of t_0 and

 $\|f-f\!f_n\|_{{\cal A}_{\alpha}}\!\to 0 \quad {\rm as} \quad n\to\infty \ .$

We state the following consequence of his result.

THEOREM. Let E and F be closed subsets of \mathbf{T} such that E is of synthesis in A_{α} and F has countable boundary. Then ideal theorem holds for $E \cup F$ in A_{α} . In particular, ideal theorem holds for a closed subset with countable boundary for the algebra A_{α} .

If $0 < \alpha < 1$, we observe that usual Ditkin property holds for the algebra $\lambda_{\alpha} \cap A$. We shall now give the proof of Theorem 1.

For a positive integer n and $f \in \lambda_{\alpha} \cap A$, let us define $f_n \in \lambda_{\alpha} \cap A$ as follows: $f_n(2\pi j/n) = f(2\pi j/n), \quad 0 \leq j \leq n$ and linear in each interval $[2\pi j/n, 2\pi (j+1)/n].$

206

Let $T_n: \lambda_{\alpha} \cap A \to \lambda_{\alpha} \cap A$ be the linear operator defined by $T_n(f) = f_n$. The routine computation shows that $||T_n|| \leq 3$ for every *n*. Since piecewise linear functions are dense in $\lambda_{\alpha} \cap A$ it follows that if $N \in$ an infinite sequence $\{N_j\}$ of integers, $T_N f \to f$ in $\lambda_{\alpha} \cap A$ for all $f \in \lambda_{\alpha} \cap A$ as $N \to \infty$.

Let E and $\{N_j\}$ be as in the statement of Theorem 1. The condition on E implies that if $N \in \{N_j\}$ then $T_N f = 0$ on E for all $f \in I^{\lambda_{\alpha} \cap A}(E)$. Moreover, $T_N f$ vanishes on an open set which contains all but finitely many points of E.

Given $\varepsilon > 0$, choose $N \in \{N_i\}$ so large that

$$\|f - T_N f\|_{\lambda_{\alpha} \cap A} < \varepsilon/2$$
 .

Now the Ditkin property for $\lambda_{\alpha} \cap A$ implies the existence of a $g \in \lambda_{\alpha} \cap A$ such that $g \cdot T_N f$ vanishes in a neighbourhood of E and

$$\|T_N f - g \cdot T_N f\|_{\lambda_{lpha} \cap A} < arepsilon/2$$
 .

Therefore $||f - g \cdot T_N f|| < \epsilon$ where $gT_N f = 0$ in a neighbourhood of E. This proves that E is of synthesis for the algebra $\lambda_{\alpha} \cap A$.

§ 3. We shall follow McGehee [4] in constructing a perfect totally disconnected set of synthesis for the algebra A_{α} , $0 \leq \alpha < 1/2$.

We recall the following lemma due to McGehee [4] about finitely supported measures.

3.1. LEMMA. Let $F = \{x_j : 1 \le j \le k\}$ be a finite set of distinct points of **T**. Then given $\varepsilon > 0$ there exists a number $N = N(x_1, \ldots, x_k; \varepsilon)$ such that for every $\mu \in M(F)$

$$egin{array}{l} \max_{|n-m|\,\leq\,N} |\hat{\mu}(n)| \geq (1-arepsilon) \, \|\mu\|_{PM} \,\,\, ext{for each} \,\,\,m; \ \|\mu\|_{PM} = \sup_{|\hat{\mu}(n)|} \,\,\|\hat{\mu}(n)\| \end{array}$$

where

We construct E as the intersection of a decreasing sequence of closed sets E^k , each E^k being the union of s_k disjoint closed intervals each of length l_k . Let $E_k = \{x_k^{(1)}, \ldots, x_k^{(s_k)}\}$ be the set of the left end points of the intervals constituting E^k . Given E_k , choose N_k (by Lemma 3.1) such that for every measure $\mu \in M(E_k)$,

$$\sup_{|n| \leq N_{oldsymbol{k}}} |\hat{\mu}(n)| \geq rac{1}{2} \|\mu\|_{PM}$$

Now choose the length l_k of the intervals in E^k such that the points of E_k are at least $2l_k$ apart and such that

$$N_k (s_k l_k)^{1/2} = o(1) \tag{1}$$

We shall now show that E is a set of synthesis for the algebra A_{α} , $0 \leq \alpha < 1/2$.

3.2. LEMMA. To each $S \in PM_{\alpha}(E)$ we can associate a sequence of measures $\mu_k \in M(E_k)$ such that

$$|\hat{S}(n) - \hat{\mu}_k(n)| \le C(\alpha) |n| (s_k l_k)^{1/2} ||S||_{PM_{\alpha}} \text{ for all } k \text{ and } n$$

$$\tag{2}$$

where $C(\alpha)$ is a constant depending only on α .

In particular,

$$\lim_{k \to \infty} \hat{\mu}_k(n) = \hat{S}(n) \quad \text{for all} \quad n \; . \tag{3}$$

Proof. We observe that the formal integral of S is the L^2 -function $\sigma(x) \sim \sum_{n \neq 0} \frac{\hat{S}(n)}{in} e^{inx}$ (where we have assumed that $\hat{S}(0) = 0$) with the norm $\|\sigma\|_2 \leq C(\alpha) \|S\|_{PM_{\alpha}}$ where $C(\alpha)$ is a positive constant depending only on α . The proof of the lemma is now exactly the same as that of the lemma 4, p. 141–143 in [4].

3.3. Theorem. E is a set of synthesis for the algebra A_{α} , $0 \leq \alpha < 1/2$.

Proof. Let $S \in PM_{\alpha}(E)$. By (2) in Lemma 3.2, we have

$$\widehat{S}(n) - \widehat{\mu}_k(n) ert \leq C(lpha) ert n ert (s_k l_k)^{1/2} ert S ert_{PM_lpha}$$

for all n and k. Now by our choice

$$\sup_{|n| \leq N_k} |\hat{\mu}_k(n)| \geq \frac{1}{2} ||\mu_k||_{PM}$$

Therefore

$$\|\mu_k\|_{PM_{lpha}} \leq 2 \sup_{|n| \leq N_k} rac{|\hat{\mu}_k(n)|}{(1+|n|)^{lpha}} \leq 2[1+C(lpha)N_k(s_kl_k)^{1/2}] \|S\|_{PM_{lpha}}$$

Now since $N_k(s_k l_k)^{1/2} = o(1)$, it follows that $\sup_k ||\mu_k||_{PM_{\alpha}} < \infty$. This together with (3) of Lemma 3.2 implies that μ_k converges to S in the weak*-topology of PM_{α} . This proves that E is of synthesis for the algebra A_{α} .

Remark. By changing the thinness condition (1), we can construct sets E which are of synthesis for the algebras A_{α} , where $\alpha \in [n, n + 1/2[, n \text{ is a positive integer.}]$

§ 4. We start by stating the following proposition which relates the sets without true α -pseudomeasures and the H^{α} -sets.

4.1. PROPOSITION. Let E be a closed subset of **T** without true α -pseudomeasures. Then E is an H^{α} -set and the ideal theorem holds for E in A_{α} .

208

We now proceed to determine the H^{α} -sets. We need the following easy lemma.

4.2. LEMMA. Let $\alpha \ge 0$ and $l_{\alpha}^{\infty} = \left\{ sequences \ c = \{c_n\} : \sup_{n} \frac{|c_n|}{(1+|n|)^{\alpha}} < \infty \right\},$ $l_{\alpha}^{1} = \left\{ sequences \ a = \{a_n\} : \sum_{n} |a_n|(1+|n|)^{\alpha} < \infty \right\},$ $c_{0,\alpha} = \left\{ c \in l_{\alpha}^{\infty} : c_n = o(|n|^{\alpha}) \right\}.$

Then $(c_{0,\alpha})' = l_{\alpha}^{1}$.

The following proposition is of independent interest. However, we shall use the method of its proof.

4.3. PROPOSITION. Let E be a closed subset of **T**. Then for each $f \in A_{\alpha}(E)$ there exists $F \in A_{\alpha}(\mathbf{T})$ such that $F|_{E} = f$ and $||F||_{A_{\alpha}(\mathbf{T})} = ||f||_{A_{\alpha}(E)}$.

Proof. Let $N_{\alpha}(E)$ be the annihilator of $I^{\mathcal{A}_{\alpha}(\mathbf{T})}(E)$ in $PM_{\alpha}(\mathbf{T})$ and $L(E) = c_{0,\alpha} \cap N_{\alpha}(E)$. Then f induces a bounded linear functional f' on L(E) with the norm $\leq ||f||_{\mathcal{A}_{\alpha}(E)}$. By the Hahn-Banach theorem there is an extension F' of f' to $c_{0,\alpha}$ such that $||F'|| \leq ||f||_{\mathcal{A}_{\alpha}(E)}$. By Lemma 4.2 this corresponds to a function $F \in \mathcal{A}_{\alpha}(\mathbf{T})$ such that $||F||_{\mathcal{A}_{\alpha}(\mathbf{T})} \leq ||f||_{\mathcal{A}_{\alpha}(E)}$. We shall now show that $F|_{E} = f$. Let t_{0} be an arbitrary point of E. Then $\delta_{t_{\alpha}} \in L(E)$. Therefore

$$f(t_0) = f'(\delta_{t_0}) = F'(\delta_{t_0}) = F(t_0)$$
.

This completes the proof of the proposition.

Remark. The idea of the above proof goes back to Y. Katznelson and K. DeLeeuw [3].

We now prove the main proposition needed for our study of H^{α} -sets. The proposition is interesting for its own sake.

4.4. PROPOSITION. Let E be a closed subset of **T**. Then $\widetilde{A}_{\alpha}(\widetilde{E}) = A_{\alpha}(E)$.

Proof. Let $f \in A_{\alpha}(E)$. Then f induces a bounded linear functional f' on M(E) as a subspace of $N_{\alpha}(E)$. As in Proposition 4.3 we can extend f' to $c_{0,\alpha}$ and thus get $F \in A_{\alpha}(\mathbf{T})$ such that $F|_{E} = f$, i.e. $f \in A_{\alpha}(E)$. This completes the proof.

We need the following easy facts: (i) Let E be a closed subset of **T**. Then for $0 < \alpha \le 1$, $\widetilde{\lambda_{\alpha}(E)} = \Lambda_{\alpha}(E)$.

(ii) If E is an infinite compact subset of **T**, then

$$\lambda_{lpha}(E) \, = \, arLambda_{lpha}(E) \; \; ext{for} \; \; 0 < lpha \leq 1 \; .$$

The above facts together with Proposition 4.4 imply

4.5. PROPOSITION. If E is an infinite compact subset of **T** then $A_{\alpha}(E) \neq \lambda_{\alpha}(E)$.

Our findings about H^{α} -sets can be summed up in the following:

4.6. THEOREM. Let E be a compact subset of **T** and $0 < \alpha \leq 1$. Then the following are equivalent:

(i) E is a set without true α -pseudomeasures.

(ii) E is an H^{α} -set.

(iii) E is finite.

References

- 1. HERZ, C. S., Two problems in the spectral synthesis of unbounded functions. Mimeographed notes (1964).
- 2. KAHANE, J. P., & SALEM, R., Ensembles parfaits et séries trigonometriques, Hermann, Paris, 1963.
- DELEEUW, K., & KATZNELSON, Y., On certain homomorphisms of quotients of group algebras. Israel J. Math. 2 (1964), 120-126.
- MCGEHEE, O. C., Certain isomorphisms between quotients of a group algebra. Pacific J. Math. 21 (1967), 133-151.
- 5. VAROPOULOS, N. TH., On a problem of A. Beurling. J. Functional Analysis 2 (1968), 24-30.
- 6. ZYGMUND, A., Trigonometric series, 2nd ed., Cambridge University Press, 1959.

Received May, 1970

U. B. Tewari Indian Institute of Technology Kanpur (U.P.) India

210