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1. Introduction 

The aim of the present work is to give some generalizations of a well-known 
theorem by  Zygmund and Verblunsky, which in one of its original forms can be 
stated as follows [13, p. 352]: 

Let ~ ~_~ a,e i€ be a trigonometric series with complex coefficients and suppose that 
an = o(n), n ~ ~ .  I f  the series is Abel summable to an everywhere finite function 
f E LI(T) then the given series is the Fourier series of f.  

This theorem has been generalized in various directions. Verblunsky [13, p. 356] 
proved it under weaker conditions on the Abel sums of the series and Shapiro [8] 
has obtained analogous results in higher dimensions under the assumption that  
~R_<l~l<~+l la~] = o(R) as _R tends to infinity. Results have also been obtained 
for trigonometric integrals of one variable by  Verblunsky [12] and of several variables 
by  Shapiro [7]. In these theorems summation by  the Abel-Poisson or by  the Ces~ro 
meShod is used. 

In this paper the theorem wilt be formulated in a more general form and proved 
for a class of summation methods which contains the Abel-Poisson method as a 
special case. Many of the earlier results will appear as corollaries. 

The method of proof will consist in replacing summation using a given kernel 
H by  summation using a kernel K, which is a certain linear combination of H 
and its dilatations. The properties of K will be such that  we then can deduce our 
results directly. 

I wish to express my  gratitude to professor Yngve Domar, who suggested the 
problem, for his kind interest and support. 
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2. Notations and definitions 

The points  in the  n-dimensional  Euclid~an slo~ee I t  ~ or in the  n-dim3nsional 
torus  T ~ will be denoted  b y  x = (xl, x~ . . . . .  x,). We  shall wri te  lx l -=  r = 
(x~ + x~ + . . .  + ~n)'~. 

I f  F is a ny  given funct ion on R ~ and  if  R > 0 then  we define the  funct ion 
FR b y  the  relat ion ~ R ( x ) =  R"F(Rx) for  all x E R% 

I f  a funct ion F has der ivat ives  a lmost  everywhere  then  we denote  those 
der ivat ives  by  [OF/Oxl] etc. B y  OF/Ox 1 etc. we mean  der ivat ives  in dis t r ibut ional  
sense. 

We denote  the  Laplac ian  by  A, i.e. 

[a sl 
Af--  ~ ~ and [~f] = y. [Ox~l �9 

for the  open ball wi th  centre  x and  radius ~, IB(Q)I will We write  B(x, q) 
denote  its volume.  

A real-valued funct ion H on R ~ is said to belong to the  class 9 (  if: 

(i) H is non-negat ive  and  twice cont inuously  differentiable 

(ii) H is radial,  i.e. there  exists a funct ion H 0 on [0, Jr  m) such t h a t  H(x) = 
H0(lxl) for all x e R ~ 

(iii) H is integrable and d f i ~ , H  dx = 1 

i f  IB(R)I [FIdx = 0(1) as R--> oo.  
~(0, R) 

denotes  the  I) i rae measure,  i.e. the  measure given by  the  u~nit mass at  the  
origin. 

Th roughou t  G will s tand  for the  funct ion def ined b y  the  following reIat ion 

1 
G(x)--cn ix[2_ n if n > 3  

= c z .  Ioglx[  i f  n = 2  

where the  constants  cn are chosen so t h a t  A G = 8. 

(iv) dHo/dr is non-posi t ive 

(v) dPtto/drP-~ O(r -(n+2+~)) as r--~ oo for some e >  0. 

In  the  sequel we shall no t  use the  no ta t ion  T/o, bu t  write abusively tt(x) = H(r ) 
and  H '  for  H 0 = dHo/dr. 

A locally integrable funct ion _F on R ~ is said to  belong to  the  class c ~  if: 
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The Four ie r  t r ans form of  a funct ion F or a measure tt is denoted  b y  _F and 
respectively,  bo th  when the  t rans form is def ined in the  o rd inary  sense and  in 

the  distr ibut ional  sense. 

3. Some lemmas 

Before we can prove  our  main  theorems we need some lemmas.  The first  one 
is fundamenta l  for  the  m e t h o d  of  p roof  in this paper  and  contains the  main  new idea. 

LEMMA 3.1. Suppose that H is a given function in the class 9g. Consider the 

function K defined by the relation K(x) = 2 H,(x) -~ for all x E R"~{0}.  Then 

_K satisfies the following conditions: 
(i) K is non-negative and twice continuously differentiable for x = O. 

(it) K is radial. 

(iii) K is integrable and f i( ~ K dx = 1. 

(iv) A K  = A -- M~, where A is the function defined by A(x)  -= -- 2H'([xl)/lxl 

for x + O and where M = I R  ~ A dx" 

Proof. (i)--(iii) are obvious.  To prove  (iv) we choose an a rb i t r a ry  funct ion 
(p e C~(l t ' ) .  The  result  t hen  follows f rom the following equalities: 

oo 

f f (AK,  q)} = (K ,  Aq)} = 2 Aq:(x)dx H,(lx]) ta - -  

ilr* 1 

T 

f f  .x = 2 lim dt Aq)(x)H(Jx]) ta -- 
T---> 00 

1 i i n  

T 

f f  I(x) = 2 1 i r a  q) dx A ~ dt = 
T--> m 

i i n  1 

T 

= 2 T--,limo~ ~ dx -[t \ lxl / dt----- 
R n  1 

with  A and  M 

= lim f (--  q)Ar + q)A)dx = ( A  -- Md, q)) 
T---> ao 

I1 n 

defined as in (iv) above.  
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I n  our  n e x t  l emma we assume t h a t  n > 2, b u t  the  resul t  also holds for  n = 1 
wi th  obvious modif icat ions of  the  s t a t emen t  and  its 10roof. 

LEMMA 3.2. Let B C 1t 2 be an open ball, let G be the function defined in section 

2, let H ~. 9~ and define, as in lemma 3.1, the function K by K(x) ~ 2 dt/t a 

for all x e I ! ~ { 0 } .  
I f  F E ~ satisfies the following conditions: 

(i) F is upper  semi-continuous in B 

(ii) limR..~ (F  * AKR)(x ) > f(x)  for all x e B, where f is integrable, is finite in 
the ball B and has compact support, 
then A(F -- f , G ) >  0 in B, i.e. F - - f ,  G is an almost subharmonic function in B,  

Proof. Le t  2'0 be def ined b y  F0(x ) ~ F(x) for x e B and  zero otherwise,  
A tr ivial  es t imate  gives 

2H'(r) 
[ ~ K ] ( x )  = - -  O(r -(n+~+~)) 

as r - +  oo and  we hence easily obta in  t h a t  

lira (AKR * (.F --  Fo))(x ) ---- 0 for all x E B .  
R-~oO 

2' 0 therefore  also satisfies (i) and (ii) and  we m a y  hence wi thou t  loss of  genera l i ty  
assume t h a t  F vanishes outside B. 

Assume now t h a t  (ii) holds wi th  str ict  inequal i ty  for all x E B and  t h a t  f is 
upper  semi-continuous.  Le t  /~a be def ined b y  /~TR(x ) -----KR(x) for  all x in some 
ball B(O, ~) with  Q greater  than  two t imes the  radius of  B and  zero otherwise.  
Then  

l i m Y , A K 7  R = l i m F * A K R  for all x E B .  

Since f is upper  semi-continuous and f ini te  there  exists for  each x o E B and  each 
s > 0 a 8 > 0 such t ha t  f(x) <f(xo) § e whenever  ]x - -  Xo] < 8. Hence  

AF~ �9 ( f  , G)(xo) -~ (F~ , f)(x) < f(Xo) § 2e 

for all R larger t h a n  some _R o depending upon  x 0 and  s. 
Using the  finiteness of  f again we conclude t h a t  

lira ((F - -  f * G) * d/~R)(x) > 0 for all x E B .  (3.1} 
R-->o~ 

Fur the rmore ,  since f is bounded  above,  we can easily p rove  t h a t  - - f *  G 
and  hence also F - -  f ,  G is upper  semi-continuous.  Suppose, still on the  assumpt ion  
t h a t  (ii) holds wi th  strict  inequal i ty ,  t h a t  / 7 _  f ,  G is no t  subharmonic  in B.  
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Then we can f ind a harmonic funct ion u such tha t  ~b = F - - f *  G ~- u has a 
ma x i mum in some interior point  x o of B. Bu t  then  (iv) of lemma 3.1 gives 
li--mR_~ (O �9 A/~R)(x0) <_ 0 which contradicts (3.1) since 1-TmmR~ ~ (u �9 AKR)(xo) = O. 
The result  now follows in the  part icular  case we have considered. 

To prove the general case we choose, using the Vitali-Carath6odory theorem 
[4, p. 75], a non-decreasing sequence {fk}k%~ of upper  semicontinuous functions 
satisfying: 
(i) f k - -> f  a.e. and  in Ll-norm as /c--> oo 

(ii) f , < f  in B. 
The first  par t  of  this proof  tells us t ha t  A(F --  fk * G) ~ 0 in B. But  fk * G 

converges to f ,  G in the distr ibutional  sense and  thus  A (F  - - f *  G) > O, which 
proves the lemma. 

The following two lemmas are simple generaliza$ions of lemmas of Shapiro [9, 
p. 69--70] and  our proofs are essentially the  same as his. 

LEMMA 3.3. Let F be an arbitrary function in 9~]i, let F be its Fourier transform 
and assume H E 9g. 

Define the functions ~ and U by 

and 

2H'(Ix[) 
~(x) = - -  Mlx[ for x E Rn~{0} 

U(x) = { Co i f  [x[ <- I 
otherwise 

where the constants C and M are chosen such that U(O) = ~(0) = 1. 

I f  F is a measure such that [F[({x; N < Ix[ < 2N}) = o(1) as 25 ----> r 
(F , zR - - F ,  UR) tends to zero uniformly in R" as R---> ~ .  

then 

Proof. P u t  V = n - -  U. Since r V E L I ( R  n) we know t h a t  V E C I ( R  n) and  

since V(0) = 0 we immedia te ly  see tha+~ If(r) = O(r) as r--~ O. :Furthermore, 
since H E 9~, it  follows t h a t  dn/dr = d/dr(--  2H'(r) /Mr)  E Li(Rn). Since dU/dr  

A 

is a bounded measure we can conclude t h a t  V(r) = O(r -1) as r - +  oo. 
A 

P u t  / , = F .  Then 

l /  (;) 
P < 

1t n 

f -< fz dl l(x) + o(1). 
2N< Lx I <2N+ 1 
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A 

Using the  fac t  t h a t  V(r) = O(r) as r - -> 0 we ob ta in  

: f (;)I <.,(x, = = o<, + .  
2N<R 2N<R 

2N< 1~[ < 2N+ 1 
A 

F u r t h e r  because  V(r) = 0 ( r  -x) as r - -~  m it  follows t h a t  

alibi(x) = ~ , o  = o ( 1 )  as R - +  m ,  
2N>R 2N>R 

2N--< I~I<2N+ 1 

and  the  l e m m a  is p roved .  

:L:EMMA 3.4. With the same assumptions and notations as in lemma 3.3 

l im sup IF * UR(x) --  F * UR(y)I ) = O. 
R-->o~ Ix--yI<R-L 

The p roof  is similar  to  the  preceding one and  is therefore  o m i t t e d '  

4. The main theorems 

As before let H be  an a r b i t r a r y  funct ion in the  class 9( .  Wr i t e  f , ( x )  and  
f*(x) for  the  lower and  uppe r  l imits respec t ive ly  of  (F * AHR)(x ) as _R tends  to  
infini ty,  

T } t ~ o ~ M  4.1. Let F be a bounded continuous function on R n. I f  
(i) f .  and f*  are f ini te  for all x E R ~ 

(ii) f .  ~ Z, where Z is a locally integrable function, 
then f .  = f *  a.e. and A F = f . .  

Proof. I t  is sufficient to p rove  t h a t  f .  = f *  a.e. and  A F  = f ,  in an  a r b i t r a r y  
open ball  B C R ~. W e  can wi thou t  loss of  genera l i ty  a s sume  t h a t  F vanishes  
outs ide B,  because  i f  we define a funct ion F 0 b y  ~ 0 ( x ) =  F(x)  for  x e B and  
F o = 0 otherwise,  t hen  limR+ ~ ((F - -  Fo) �9 AHR)(x ) = 0 for all x e B. Clearly 
we can also assume t h a t  Z has  com pac t  suppor~ a n d  we define as before the  
funct ions  _K and  ~ b y  the  re la t ions 

K ( x ) = 2  H , ( ~ l g ,  x e m \ { 0 }  

~(x) - 

where we choose M so t h a t  f 
R ~ 

1 

2H'( lx[)  

-M lzl 
, . e m \ { o }  

~ d x  = 1. 
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Then the following useful relation holds. 
T 

f e' 2 ( F  �9 A H , )  -~  = M ( F  �9 ~: - -  F ,  ~ r )  = .F �9 [ A K ]  - -  M F  �9 ~ r .  (4.1)  

1 

The proof  is a direct application o f  Fubini 's  theorem: 
T T 

f 2 (F  �9 AHO ~ = 2 -~ F ( x  - -  y )AH, (y )dy  = 

1 1 Rn 

T 

/ f f = 2 F ( x  - -  y )dy  AH,(y )  -~ = M F ( x  - -  y)(x(y)  - -  zT(y))dy 

Rn 1 R n  

where the last equal i ty  follows from the proof  of  lemma 3.1. 
l~elation (4.1) also holds if  F e ~ ,  which will be of use later. 

I f  we now in (4.1) let T t end  to inf ini ty  it  follows from the cont inui ty  of F in 
B tha t  the last expression in (4.1) tends to ( F ,  A K ) ( x )  for all x E B. After  a 
change of scale we obtain 

oo 

f ~1r (F �9 AH~)(x) ~ = ( f  �9 ~K,)(x)  f o r  x r B .  
R 

From this we conclude t h a t  Z ~ f* ~ ~o, ~ ~* ~ f*  in B ,  where ~ ,  (x) and 
~*(X) are the lower and  upper limits of F ,  A K R ( x  ) as R tends to iufini ty.  

We can assume tha t  Z is finite for all x E B. L e m m a  3.2 then  shows t h a t  
the  function r  satisfies A ~ > 0 .  

Hence A F  .~ Z ~ ~u where # = A ~b is a positive measure (see e.g. [5, p. 29]) 
and  hence F �9 2 H  R = (/~ ~- Z) * HR. 

But  limR_~0 g * HR = Z a.e. We also claim tha t  lim/~ �9 H R exists a.e. and equals 
some locally integrable f u n c t i o n  g. 

To prove this  we shall use the wellknown fact  [4, p. 149] t ha t  

lim d# 
,~o IB(r)  IR( ' 

exists for almost  all x and equals a locally integrable function,  which we denote 
by  g. 

:By a simple calculation we obtain 
oo 

R n  0 [x--yl_<r 

--- f H;(r) r f d,(V)=,B(1), f 
o Ix-y l<, .  o i~,_~.l<,. 
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Using the  Lebesgue domina ted  convergence theorem we now easily get t h a t  

l imt t  �9 HR(x) = g(x) a.e. 
R--> o~ 

F r o m  this it  follows t ha t  f ,  = f *  a.e. in B and  t h a t  f ,  and  f *  are locally 
integrable and so l emma 3.2 gives 

A ( F - - f * * G ) = 0  in B 

and, since B is a rb i t ra ry ,  the  theorem follows. 
Remark 4.1. The  above theorem remains t rue  even if  condit ion (ii) is replaced b y  

(ii') f*  > X, where g is a locally integrable function. 
For  a m e thod  of  p roof  see [13, p. 358]. 
In  our  ne x t  theorem we shall replace the  condi t ion F cont inuous b y  a condi t ion 

on the  Four ie r  t r ans form of  F .  This will give us a general izat ion of  the  results of  
Verb lunsky  [13, p. 352] and Shapiro [8, Theorem 1]. 

THEOI~,M 4.2. Let F belong to the class c)]l and let F denote the Fourier transform 
of F (in the distributional sense). I f  

(i) 2 is a measure satisfying ]FI({x;-N < Ix I < 2N}) = o(1) as N--> ~ ,  
(ii) f ,  and f*  are finite for all x C R',  

(iii) f ,  ~ Z, where g is a locally integrable function, 
then f ,  = f*  a.e. and d F  = f , .  

Proof. Le t  B G R" be an a rb i t r a ry  ball. I t  is sufficient  to  prove  t h a t  f ,  = f *  
a.e. and d F  = f *  in B. 

Le t  B o be a bounded  neighbourhood of  B. We claim t h a t  it  suffices to consider 
an F which vanishes outside B 0. To show this  we choose a funct ion h E C~(R ' )  
which equals 1 on B and vanishes outside B 0. Define F 0 -~ Fh.  We then  get 

Y0 = ~ * ~ where h e C~ ") and where 

A 

h(x) = 0( lx l -P  ) as x--> ~ for all p .  (4.3) 

Le t  E N -~- {x E Rn; 2 N < lxl < 2 N+I} and  denote  the  measure _F b y  #. The 
A 

funct ion F o then  satisfies 

A 

lFoIdx = o(1) a s  N - ~  ~ ,  

E N  

(4.4) 

since 
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o<_ f <_ f f = 
EN Rn EN 

f f = dl/,[ Ih(x --  y)ldx -4- d]/*l Ih(x --  y)dx q- 

[yl<2 N - 1  EN 2N--1 < l y t ~ 2 N +  2 EN 

f dl~t }h(x --  y)ldx = 11 --k h -t- Ia ,  

[yl_~2N+2 EN 

where, using (i) and (4.3) 

N--2 

Ix < ]/~[(U Ek)sup I/~(x)[ = o ( 1 )  as N---> oo 
1 >2N--1 x _  

N +  1 

/2 _< I~I(U E~) sup I~(x)E = o(1) as _ ~  
N--1 Rn 

I~ _< ~ (~,(Ek) sup I~(x)l)= o(1) as N-+  ~o. 
k=N+2 ix]>_2k--1 

We can thus as claimed take F and Z to vanish outside B 0. 
As we noted above, relation (4.1) holds also for F E ~]~. Furthermore,  (ii)shows 

that  2 f l  ( F ,  AH,) dt/t a converges to a finite limit for all x C B as T tends to 

infinity. From (4.1) it follows that  limr+~ (F * Zr)(X) must exist and take finite 
values for all x EB.  But  we also know that  ( F ,  Zr)(X) tends to F(x) for 
almost all x. We can therefore assume that  limr+~ F * zr  = F for all x and tha t  
F is finite everywhere. 

I f  we again set ~v*(x) and q ,  (x) equal to the upper and lower limits respectively 
of (F*AKR)(x)  then we get as before z - - < f ,  ~ ,  - - < q * < f *  in B. 

The remaining par t  of the proof is now an adaptat ion of the arguments used 
by  Verblunsky and Shapiro. 

Choose an everywhere finite upper semi-continuous function u _< Z. 
I f  q~ = F -  u * G were upper semi-continuous we could as in lemma 3,2 

conclude that  ~ was subharmonic. 
Let  therefore D be the set of all points in B where r is not upper semi- 

continuous. We claim that  D is the empty  set. 
Assume tha t  D is non-empty.  By the Baire category theorem there exists a 

ball B'  = B(x  o, 2d) such tha t  x0 C D and such that  F *  AHa(x  ) is uniformly 
bounded for x C/3 n B'  (where 13 denotes the closure of D). 

From this it follows by  relation (4.1) tha t  F �9 z r  converges uniformly in 13 n B'  
and hence that  the restriction FISnw is continuous. 
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Choose now an arbitrary number M > [ - - u ,  G)(%). 
Since - - u ,  G is upper semi-continuous and since FtgnB, is continuous we 

can assume that  d has been chosen so that  

qb(x) < M @ F(Xo) for all x E/7) 13 B ' .  (4.5) 

Let x be an arbitrary point in B " - ~ B ( x  o, d) not belonging to D and let 
x'  C D 13 B '  be one of the points minimizing the distance to x from /7) gl B'.  
Put  R = I X -  X'[ -1  and let U be as in lemma 3.3. 

Let e > 0 be given. Since R > d -1 we can assume that  d has been chosen 
so tha t  

I F ,  U~(x) - - F ( x ' ) ]  < I F ,  UR(x) - - F ,  UR(x')I --r (4.6) 

IF �9 UR(x') --  F �9 zR(x')] -~ tF * ~ ( x ' )  --  F(x')] < e . 

That this assumption is allowed follows from lemmas 3.3 and 3.4 and from the 
fact tha t  2' �9 ~R converges uniformly to F on D 13 B'. We may also assume tha t  

IF@o ) - -F (y ) [  < e  for all y E D f ? B '  (4.7) 

and, since - - u  * G is upper semi-continuous, that  

( - - u , G ) ,  UR(y) < _ M  for all y E B ' .  (4.8) 

Since ~b is upper semi-continuous in the ball B(x,  Ix --  x']) we have tha t  ~b 
is subharmonic there and hence tha t  

+ ( x )  < r �9 u~(x)  = ~' �9 V~(x) - (u �9 ~)  �9 U . ( x )  . (4.9) 

:From (4.6)--(4.9) it follows tha t  

qb(x) < M ~ F ( x o ) - ~ - 2 e  for all x e C D F I B  

and together with (4.5) this gives a contradiction. We conclude that  r is upper 
semi-con~imlous in B. 

Thus A ~ > 0 in B and using she same argument as in the proof of theorem 
4.1 we get tha t  f ,  = f *  a.e., that  f ,  and f* are locally integrable and tha t  
A ( F - - f * * G ) = 0  in B. 

This proves the theorem. 

5. Application on trigonometric series and integrals 

The preceding theorems can be applied to the theory of summation of trigono- 
metric series and integrals. In the particular case when H is the Poisson kernel they 
will give us some of the classical results by Zygmund, Verblunsky and Shapiro. 
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We shall denote  the  points  in Z" by  m = (m I . . . .  m.) and  wri te  

2,112 (m, x) ~1 m~xi. Iml = (m~ + m~ + . . .  + ~,,~) , = 

We star t  b y  defining the  summat ion  methods  in quest ion and  b y  making some 
remarks.  

DE]~INITIOlV 5.1. Let H E 9g and let ~ e z "  a~ e ~(~'~) be a given trigonometric 
series with complex coefficients. 

The series is said to be summable-(H) at the point x E R" i f  

R~oo  rnCZ n 

exists and is finite. 
I f  we have  the  condit ion a~ = 0([m] k) for some k the  series defines a periodic 

dis t r ibut ion on R ~ which we denote  by  f .  We can write 

In  general this should be in te rpre ted  as an equal i ty  be tween two distr ibutions.  In  
all eases we shall consider, however ,  the  series on the  left  hand  side will be absolutely 
convergent  for all R > 0 and we simply def ine  f �9 H R as its sum. 

We shall let f , ( x )  and  f*(x)  denote  the  lower and upper  limits respect ively  of  
f *  HR(x ) as R tends to  infinity.  

Now we can formula te  some corollaries to theorems 4.1 and  4.2. 

THEOREM 5.1 (cf. [14]). Let ~ e z  n a.~e ~(~'x) be a trigonometric series with com- 

plex coefficients, let H E 9g and suppose that X la.,I~(m/R) l < oo for all R > O. I f  

(i) ~ # 0  - -  amlml -~e~('~'~) is the _Fourier series of a continuous function F, 
(ii) f ,  and f*  are finite everywhere, 

(iii) f ,  ~ Z for some integrab!e function g 

then f ,  = f*  a.e. and the given series is the Fourier series of f , .  

Proof. I f  we suppose t ha t  a 0 = 0 (as we may,  wi thou t  loss of  general i ty)  then  
the  conditions of  theorem 4.1 are satisfied and the  result  follows. 

TIIEOREM 5.2 (cf. [13], 13. 356]). Let Z a , , e  ~('~'*) and H be as in theorem 5.1 
I f  (ii) and (iii) of that theorem hold and i f  in addition 

(i') ~ la~] = o(N ~) as N --> oo 
~'_<_ 1~[_<2N 

then the conclusion of theorem 5.1 still holds. 



234 ~ x z v  ~'6R Z~Ar~MAr~K. Vol. 9 :No. 2 

Proof. Assume t h a t  a 0 ---- 0 and let F C L2(T ~) be the function whose Fourier  
series is ~,,,:o- laml ]mJ 2ei(m'~). Consider _F as a tempered distr ibution on R ~. 
I ts  Fourier  t ransform consists of point  masses at  the points {2~m}. Condition (i') 
implies t ha t  this measure satisfies condition (i) of theorem 4.2 from which the  
theorem follows. 

Next  we shall prove a result concerning tr igonometric integrals. 

THEOREM 5.3. Let ] be a given function in the Schwartz class 3' of tempered 
distributions and let H C c2g be such that f H  R E LI(l t  ") for all R > O. 

Write = fo + fl ,  where fo has compact support and where f l  vanishes in a 
neighbourhood of the origin. 

Let f e ~5"' be the inverse _Fourier transform of f and let f , (x)  and f*(x) denote 
the lower and upper limits of f ,  HR(x ) as R tends to infinity. 

If 
(i) -- lyl-2 f(y) is the _Fourier transform of a continuous and bounded function _F1 

(ii) f ,  and f*  are finite for all x q t l  n 
(iii) f ,  > Z, where Z is a locally integrable function, 
then f ,  = f*  = f a.e. 

Proof. Let  fi  be the inverse Fourier  t ransform of ] i ,  i ---- 0, 1. Then fo E C a (lt") 
and  hence l i m f o ,  H R = f 0  for all x. ~'rom theorem 4.1 i t  follows t h a t  AF 1 = f l  
and the  theorem follows. 

Remark 5.1 (el. [7]). Condition (i) is satisfied if  for instance 

(a) ] (y)( ]  -~-lyl2) -1 e L  1 

or if 

(b) f(y)(1 + ly/2) -~ e L  2 and f ] ( y ) ( 1  -6 lf]12)-lei(x'Y)df] 
B(o, R) 

converges poin~wise to a continuous function as R tends to infinity.  
B y  the same method,  bu t  using r 4.2 instead of theorem 4.1, we obtain 

the following result. 

THeOReM 5.4. Let f ,  f,  f , ,  f*  and H be as in theorem 5.3. 
I f  (ii) and (iii) of theorem 5.3 hold and i f  in addition 

f A (i') I f ldy 
N<IyI<_2N 

= o ( N  z) as N---> oo 

then f , = f*  = f a.e. 
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6. Exceptional sets 

In  the  preceding sections we have  th roughou t  assumed t h a t  f ,  H~ is bounded  
as a funct ion of  R at  all points  x. This condit ion can be somewhat  weakened and  
results corresponding to those ob ta ined  b y  Verb lunsky  [13, p. 356] and  Shapiro 
[8, theorem 2], [7] can be proved.  

I f  n ---- 1 it  is for instance sufficient bo th  in theorems 4.1 and 4.2 to  assume 
t ha t  f ,  and f *  are f ini te except  in a denumerable  set E if in addi t ion we know 
t ha t  

f * H R ( x  ) ~-o(R)  as R - +  oo for all x C E .  

I f  n ~_ 2 it  is sufficient in theorem 4.1 to  assume th a t  f ,  and  f*  are finite 
except  in a set of  zero capaci ty  wi th  respect  to  the  kernel  - -  G. In  theorem 4.2 
it  is sufficient to  assume for n ~ 2 t h a t  f ,  and f*  are finite except  in a set wi thout  
f ini te cluster points.  

The following resul t  seems to be new. For  the  sake of  simplici ty we do no t  
formula te  it  in full generali ty.  

Ta~OREM 6.1. Suppose n ~ 2. Let ~ e z  n a.~ e i(m'x) be a given trigonometric series 

with complex coefficients and assume that H E 9~ is such that X ]amH(m/R)] < 
for all R > O. Assume further that E is a bounded closed set of capacity zero with 
respect to the kernel --  G. 

i f  
(i) [a l=o(N2) 

N~imI<_2N 

(it) l i m ~ + + a , ~ H ( m / R ) e  i(m'x) ~ - C  for x ~ E ,  where C is a constant, 
(iii) there exists ~ ~ 0 such that X a.,H(m/R)e i('~'~) ~ O(R 2-~) as J~--> ~ for 

x E E ,  
then a.~-~ O, m :/: O, and a o ~- C. 

Proof. We m a y  wi thou t  loss of  general i ty  assume t h a t  a 0 = 0. 
Le t  F o E L2(T ~) be the  funct ion whose Four ie r  series is 2 7 -  a,~lm1-2 e i('~'~). 
Consider F o as a periodic funct ion on R n and  let  B C R ~ be an a rb i t r a ry  

open ball conta ining E.  As in the  proof  of  theorem 4.2, we can mul t ip ly  _F 0 b y  a 
funct ion h E C~~ n) which equals 1 on B and  which vanishes outside a neigh- 
bourhood  B o of  B. I t  is sufficient to  p rove  t h a t  the  funct ion  F ---- hF o equals 
C a.e. on B. P u t  Z = Ch and  let  as before u denote  the  funct ion  - - 2 H ' ( r ) / M r .  

F r o m  (it) and  (iii) it  follows t h a t  

oo 

f (F * AH,)(x)dt/t 3 

1 
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converges bo th  when x r  and when x C B ~ C E  and hence, using (4.1), 
t h a t  F * ~v(X) tends  to  a f ini te limit for  all x E B as T tends  to  inf ini ty.  

We can therefore  assume t h a t  _~ has been chosen finite everywhere  and such 
t ha t  l i m T _ ~ |  F for all x E B .  

Le t  D be the  set of  points  where 2' is no t  cont inuous  and suppose t h a t  D 
is non-empty .  Using the  Baire  ca tegory  theorem we then  can prove  t h a t  there  
exists a bM1 B'  = B(xo, 2d) such t h a t  its centre  x 0 belongs to  D and  such t h a t  
R~-2(F * ~H~)(x)  is un i formly  bounded  for x E D f3 B '  and for all R > 1. B y  
(4.1) this implies tha t  F * Zv converges uni formly  in /~ t3 B '  and  hence t h a t  
2'[~ n 4, is continuous.  

Wri te  q~ = F - -  ;~ �9 G and  note  t h a t  X * G is continuous.  Proceeding as in 
the  p roo f  of  theorem 4.2 we get  t h a t  r is cont inuous in a ne ighbourhood of  Xo 
and thus  t h a t  F is cont inuous in B. 

Using (4.1) once more we see t h a t  lim (F  �9 AKR)(x) = C for all x E B n CE 

and we can conclude f rom lemma 3.2 t h a t  the  suppor t  of  d ~ is conta ined in E .  
Since E has capaci ty  zero and  since ~ is cont inuous in B it  follows f rom a classical 
theorem [3, theorem VII . I ]  t ha t  q~ is harmonic  in the  whole of  B, which gives 
the  theorem.  

7. A pointwise saturation theorem 

In  this section we shall consider a problem of  a slightly different  type .  
I t  is a well-known theorem b y  I-~ille t ha t  if  the  Abel-Poisson means  u(r, x) of  

a funct ion f E C(T) satisfy 

u(r, x) - -  f (x )  
lim ---- 0 (7.1) 

r-+l--0 1 - -  r 

un i formly  in T then  f equals a constant  [3, p. 122]. For  an account  of  fu r ther  
results in this direct ion see e.g. Sunouchi  [10]. 

We shall here prove  a theorem which shows t h a t  the  above result  remains t rue  
even under  the  much  weaker  assumption t h a t  (7.1) holds pointwise. Andr ienko [1] 
has recen t ly  obta ined  a similar result  for (C,1)-summability. 

Le t  N be the  dis t r ibut ion on R whose Four ier  t rans form is ~ ( t )  = - -  i �9 sign t, 

define 97 = f �9 N (where the  convolut ion is defined b y  means of  the  Four ier  t rans-  
n+i  

form) and  let P be the  Poisson kernel,  i.e. P(x)  = cn(1 + lx[~)--~ - where the  

constants  cn are chosen so t ha t  /3(0) = 1. 
The main  results of  this section is the  following theorem.  

Ttt:EORE~I 7.1. Let n = 1 a n d  let X be the space L~(R) or LI(T). Suppose 

that f E X is f in i te  everywhere and let - -  ~ < a < b < + ~). I f  
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lim JR(f , PR(x) -- f(x))  = g(x) for all x E [a, b] , (7.2) 
R--~ oO 

where g is a locally integrable and f ini te  function, then 

dx --  --  g in [a, b] . 

Proof. We start by noting that  the proof of theorem 4.2 actually gives a stronger 
result than stated in tha t  theorem. We have, in fact, only used the assumptions 
(ii) and (iii) to prove tha t  the integral 

co 

(f �9 H,/(x/g 
1 

is convergent and that  

and 

f dt ~*(x) : lim 2R 2 ( f  �9 H,)(x) -~ 
R - +  oo 

R 

09 

f ( f  dt ~,(x) = lim 2R 2 �9 H,)(x) t~ 
R - + ~  R 

both are finite for all x and that  ~ ,  >_ Z for some locally integrable function Z. 
The assumptions on f ,  and f* in theorem 5.2 and 5.4 could therefore be 

replaced by, for instance, the  assumption that  for all x E [a, b] 

and 

( f ,  H , ) (x )~  < 
1 

f d, lim 2R 2 ( f  * Ht)(x) -~ : g(x), 
R 

where g is a finite and locally integl'able function. 
Using this observation it is now an easy matter to deduce theorem 7.1. 
I f  we set y = . R  -1 we can write 

Y 

l f d  
R ( f  �9 PR -- f )  = y dt ( f  * P,-Jdt 

0 
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Let  ~0 be the tempered distr ibution whose Fourier  t ransform is 
Then the  Fourier  t ransform of d/dt( f .  P,-1) equals 

d ^^ d ] ^ ^ P 
d--t ( f P ~ ) =  ~ (  "e- ' lYl)= q)" P ' - ' = ( ~ v *  t-,) �9 

Using this we can write (7.2) as 

Y l/  
l im - (q *P,- ,)(z)dt=g(x) 

y~o+ Y 
0 

which, after  a change of variable, gives 

-- IY[f(Y). 

ix) 

f lim .R (~v �9 P,)(x) -~ = g(x). 
R--->- oo 

R 

By means of a part ial  integrat ion we f inal ly obtain 

oo 

f l im 2R ~ (~0 �9 Pt)(x)~ = g(x) 
R.--> oo 

R 

for x E [ a , b ] .  

But ,  since f E X, we know t h a t  

2 N  

f l~ldx = o(N2) (or ~ I~(k)l = 0(5"2)) 
N 

and hence we can by  the observation in the beginning of this proof, use theorem 
5.2 or 5.4 to conclude t h a t  

On the other hand,  

and thus  

= g  a.e. in [a,b]. 

(f-)" (t) = - ~ f~t)  s i gn  t 

,f(t/sign \dx/  (t)=- t - - - - -  

which proves the theorem. 
_Remark 7.1. I t  might  be wor th  pointing out  t h a t  the part icular  proper ty  of 

the  Poisson kernel t h a t  makes the above proof work is t h a t  the  function (--  x P ) -  
belongs to c~.. 

B y  an analogous method  we can, using theorem 5.3, obtain the following result. 
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THEOREM 7.2. Let  n ~ 2 and let B c R n be an arbi trary open ball. A s s u m e  

that f E L ~ ( R  ~) N LI(R ") is  f in i te-valued.  I f  

lim R ( f  �9 PR(x)  - -  f ( x ) )  = 0 f o r  all x e B ,  
R - +  vo 

then f = O  in  B .  
As a corollary to theorem 7.1 we can get the result obtained by Andrienko [1] 

in the case when g = 0 .  

COROLLARY 7.1. Let  X ,  f and  g be as in  theorem 7.1 and  denote the F e j &  kernel 

by n. If 
lim R ( f  * DR(x) ,-- f ( x ) )  = g(x) for  all x C [a, b] (7.3) 

R.--> oO 

then d ~ d x  = - -  g in  [a, b]. 

Proof .  I t  is sufficient to prove that  (7.3) implies (7.2). 
Fix x E R and assume tha t  f ( x ) =  0 which can be done without loss of 

generality. Set ~o(t) = ~(t)e ~x' i k  f ( - -  t)e-~% 
We can then write 

oo oo oo 

i f  f( i f  f * PR(x)  ~- ~ t )e -  ~' e ~x' dt = - ~  y~(t)dt u - -  e-U du  = 
- -  m 0 t ] R  

oO u R  

i f  f - -  2~ ue -u  du  yJ(t) 1 - -  dt = ue -u  Q ( u R ) d u  , 
0 0 0 

where, by assumption, Q(u) = g(x) �9 u -z  ~- o(u -z) as u - +  oo and where IQ/ is 
bomlded. By  means of a simple change of variable we now immediately obtain 
our corollary. 

We finish this section by remarking tha t  lemma 3.2 could be formulated as a 
pointwise saturation theorem. The method of proof of the lemma does in fact give 
the following result, which is similar to ~ theorem proved by H. S. Shapiro [6, p. 27] 
(in the case when n = 1) under stronger assumptions on f. 

THEOREM 7.3. Suppose  that H is  a posi t ive  radial  f unc t i on  on R n which  satisf ies 

(i) f H dx = 1, 
R n 

(ii) f .  dx = a s  

[~[ > _ R  
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I f  f is a bounded continuous function on R ~ for which 

lim R2(f �9 HR(x) --  f(x))  = g(x) 
R - +  oo 

at each point x C R ~, where g is f inite and locally integrable, then zf=g. 

(7.4) 

Proof. From condition (ii) it follows that  it is sufficient to prove the theorem 
in the ease when f (and hence also g) has compact support. 

By solving the equation 

a2K n -  1 OK 
A K - -  Or 2 ~- r ar -- H 

we get a function 

K ( x ) = / r l " " d r f H ( y ) d y  

lxl Ixl >- r 

satisfying A K  = H -  (~ and (7.4) can be written 

lim ( f  �9 AKR)(x) = g(x) . 
R - +  oo 

The argument used in the proof of lemma 3.2 now gives the result. 
Note. After the completion of the manuscript the author was informed tha t  

prof. H. Berens recently has obtained theorem 7.1 by a different but related 
argument [2]. 
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