On strong Ditkin sets

SADAHIRO SAEKI

Tokyo Metropolitan University, Tokyo, Japan

Let G be a locally compact abelian group with character group Γ , and let M(G) be the convolution algebra consisting of all bounded regular measures on G. The Fourier transform of a measure μ in M(G) is defined by

$$\hat{\mu}(\gamma) = \int\limits_{G} (x, -\gamma) d\mu(x) \quad (\gamma \in \Gamma) .$$

We shall regard the group algebra $L^{1}(G)$ as a closed ideal in M(G) (see [9, p. 16]). For a given closed subset E of Γ , let us denote by:

$$\begin{split} I(E) &= \{f \in L^1(G) : \hat{f} = 0 \text{ on } E\};\\ I_0(E) &= \{f \in L^1(G) : \hat{f} = 0 \text{ on some neighborhood of } E\};\\ J(E) &= \text{the closure of } I_0(E), \end{split}$$

and, for any measure μ in M(G), define

$$\|\mu\|_E = \sup \{\|f * \mu\| : f \in I_0(E), \|f\| \le 1\}.$$

In other words, $\|\mu\|_E$ is the operator norm of the mapping: $f \to f * \mu$ (from $I_0(E)$ into $L^1(G)$).

Definition 1. (cf. [10] and [8]). We say that a closed subset E of Γ is a Wik set if there exists a family $\{\mu_{\alpha} \in M(G)\}_{\alpha \in A}$ of measures which is directed, in the sense that the index set A is a directed set, such that:

- (a) $\sup \{ \|\mu_{\alpha}\|_{E} : \alpha \in A \} < \infty ;$
- (b) $\hat{\mu}_{\alpha}(\gamma) \xrightarrow[\alpha \in A]{} 0$ if $\gamma \in E$, and $\hat{\mu}_{\alpha}(\gamma) \xrightarrow[\alpha \in A]{} 1$ if $\gamma \in E^{c}$.

Definition 2. (cf. [10]). E is called a strong Ditkin set if there exists a directed family $\{\mu_{\alpha} \in M(G)\}_{\alpha \in \mathcal{A}}$ of measures such that:

SADAHIRO SAEKI

- (c) $\sup \{ \|\mu_{\alpha}\|_{E} : \alpha \in A \} < \infty ;$
- (d) $\hat{\mu}_{\alpha} = 0$ on some neighborhood of E depending on μ_{α} ($\alpha \in A$);
- (e) For each f in I(E), $f * \mu_{\alpha} \xrightarrow{} f$ in the norm of M(G).

It is then trivial that every strong Ditkin set is a Wik set, and we can also show that our definition of a strong Ditkin set coincides with the original one given by Wik if I(E) is separable (see Theorem 2). Note that this last condition on I(E)is always satisfied if G is both σ -compact and metrizable.

In this paper we shall be concerned with the problem of determining all strong Ditkin sets without interior. We shall solve this problem entirely, and thus complete a line of investigation by Wik [10], Rosenthal [7], [8], and Gilbert [4].

THEOREM 1. Let K be a closed subset of Γ , let $u + \Lambda$ be a coset of an algebraic subgroup Λ of Γ such that $K \cap (u + \Lambda) = \emptyset$, and let $\{\gamma_i\}_i$ be any finite subset of Λ . Then for every $\varepsilon > 0$, there exists a function k in $L^1(G)$ such that:

- (i) $\hat{k} = 1$ on the set $\{u + \gamma_i\}_i$, and $\hat{k} = 0$ on some neighborhood of K;
- (ii) $||k|| \le 1 + \varepsilon$.

Proof. By translating the sets under consideration, we may assume that u = 0. We shall also assume that the set $\{\gamma_i\}_i$ algebraically generates the group Λ , since this assumption has no effect on the hypothesis and the conclusion of our theorem. Thus Λ has the form $\Lambda = \mathbf{Z}^N \times D$ as algebraic groups, where \mathbf{Z} is the group of integers, N a non-negative integer, and D a finite group [5, (A. 27)]. For every positive integer n, denote by

$$\Lambda_n = \{(z_1, \ldots, z_N, d) \in \Lambda : |z_j| \le n \ (j = 1, \ldots, N), \ d \in D\}.$$

It is then easy to see that

Card
$$(\Lambda_n) = (2n+1)^N \operatorname{Card}(D)$$
, and $\Lambda_m \pm \Lambda_n = \Lambda_{m+n}$ (1.1)

for all m and n, where, in general, Card (A) denotes the cardinal number of a set A.

Fix now an arbitrary positive integer m so that $\{\gamma_i\}_i \subset \Lambda_m$. Then for every n, there is a symmetric compact neighborhood V_n such that:

The sets
$$\lambda + V_n$$
, $\lambda \in A_{m+n}$, are pairwise disjoint; (1.2)

K is disjoint from $\Lambda_{m+2n} + V_n + V_n$. (1.3)

Setting $C = \Lambda_m$ and $V = \Lambda_n + V_n$ in [9, 2.6.1], we can find a function k_n in $L^1(G)$ such that:

$$k_n = 1$$
 on Λ_m , and $\hat{k}_n = 0$ outside $\Lambda_{m+2n} + V_n + V_n$; (1.4)

$$||k_n|| \le \{h(\Lambda_{m+n} + V_n)/h(\Lambda_n + V_n)\}^{\frac{1}{2}}$$
(1.5)

where h denotes the Haar measure on Γ . It then follows from (1.1), (1.2), and (1.5) that

$$||k_n|| \le \{(2m+2n+1)^N/(2n+1)^N\}^{\frac{1}{2}}.$$
(1.6)

Thus, for every $\varepsilon > 0$, we can take *n* so that $||k_n|| < 1 + \varepsilon$. Putting $k = k_n$ for such an *n*, we see from (1.3) and (1.4) that *k* satisfies the desired conditions.

THEOREM 2. (cf. [6]). Let E be any closed subset of Γ , and F the closure of the interior of E, then we have

$$\|\mu\|_E = \sup \{\|f * \mu\| : f \in I(F), \|f\| \le 1\} \equiv \|\mu\|'_F$$

for every μ in M(G). Thus, in particular, if E has no interior point, we have $\|\mu\|_E = \|\mu\|$ for all μ in M(G).

Proof. Fix μ in M(G) and let $\varepsilon > 0$ be arbitrary. We can choose f in I(F) so that $||f|| \leq 1$, \hat{f} has compact support, and

$$||f * \mu|| > ||\mu||_F' - \varepsilon$$
 (2.1)

There exists then a trigonometric polynomial P on G such that:

$$\|P\|_{\infty} \leq 1; \ P(x) = \sum_{i=1}^{n} c_i(x, -\gamma_i) \ (x \in G);$$
 (2.2)

$$\sum_{i=1}^{n} c_i f(\gamma_i) \hat{\mu}(\gamma_i) > ||f * \mu|| - \varepsilon .$$
(2.3)

Let K be the intersection of the (compact) support of \hat{f} and the boundary of E, and let Λ be the subgroup of Γ generated by the set $\{\gamma_i\}_{1}^{n}$. Then K does not contain any interior point, and Λ is countable; therefore Baire's theorem assures that $K + \Lambda$ has no interior point. Thus, every neighborhood U of 0 in Γ contains an element u with $(u + \Lambda) \cap K = \emptyset$. Theorem 1 applies, and we can find kin $I_0(K)$ such that $||k|| < 1 + \varepsilon$ and $\hat{k} = 1$ on the set $\{u + \gamma_i\}_{1}^{n}$. It is easy to see that

$$k * f \in I_0(E), \text{ and } ||k * f|| \le 1 + \varepsilon,$$
 (2.4)

which, combined with (2.2), shows

$$\begin{aligned} \sum_{i=1}^{n} c_i \widehat{f}(u+\gamma_i) \widehat{\mu}(u+\gamma_i) &= \left| \int_{\mathcal{C}} (x,-u) P(x) d(k*f*\mu)(x) \right| \\ &\leq \|k*f*\mu\| \leq (1+\varepsilon) \|\mu\|_E \,. \end{aligned}$$

$$(2.5)$$

Since U is an arbitrary neighborhood of 0, and since u belongs to U, (2.3) and (2.5) show that

$$(1+\varepsilon)\|\mu\|_E \ge \|f*\mu\| - \varepsilon . \tag{2.6}$$

(Note that the Fourier transform of a measure is continuous.) Combining (2.1) and (2.6), we have

$$(1+arepsilon)\|\mu\|_E \geq \|\mu\|_F' - 2arepsilon$$
 .

Since $\varepsilon > 0$ was arbitrary, this yields the inequality $\|\mu\|_E \ge \|\mu\|'_F$. But, since $I_0(E) \subset I(F)$, the converse inequality $\|\mu\|_E \le \|\mu\|'_F$ is obvious, and we have proved that $\|\mu\|_E = \|\mu\|'_F$. This completes the proof.

We now introduce some notations. Let C, AS, and CS be the families of all closed subsets, algebraic subgroups, and closed subgroups of Γ , respectively. For any family \mathcal{F} of subsets of Γ , let us denote by $\mathcal{K}(\mathcal{F})$ the smallest Boolean algebra that contains \mathcal{F} and is translation-invariant.

We then have:

THEOREM 3.
$$\mathscr{R}(CS) = \mathscr{R}(C) \cap \mathscr{R}(AS).$$

We need two lemmas. The first one is due to Cohen [2], and the second one is also essentially contained in [2, p. 225]. We shall prove here only the second one.

LEMMA 4 ([2, p. 223]). Let Λ_{ij} be a finite collection of cosets of subgroups Λ_i in AS. Then if

$$f(\gamma) = \sum_{ij} c_{ij} f(\Lambda_{ij}, \gamma)$$

for some constants c_{ij} $(f(\Lambda, \gamma)$ denotes the characteristic function of a set Λ), and B_k are the disjoint sets on which $f(\gamma)$ takes its finite number of values, then there are finitely many subgroups Λ'_i such that $\mathcal{R}(\{B_k\}_k) = \mathcal{R}(\{\Lambda'_i\}_i)$.

LEMMA 5. Every coset in $\mathcal{R}(C)$ is closed.

Proof. Let Λ be any coset in $\mathcal{R}(C)$. To prove that Λ is closed, we may assume that Λ is a subgroup, and also, by replacing Γ by $\overline{\Lambda}$, that Λ is dense in Γ . Since Λ is in $\mathcal{R}(C)$, there are finitely many closed sets F_i and open sets G_i in Γ such that

$$\Lambda = \bigcup_i \left(F_i \cap G_i \right).$$

Since Λ is dense in Γ , there is an index *i* such that the closure of the set $S_i = F_i \cap G_i$ contains a non-empty open set U. Note that $U \subset \overline{S}_i \subset F_i$. It is

also trivial that $U \cap S_i \neq \emptyset$, and so $\emptyset \neq U \cap G_i \subset S_i \subset \Lambda$ which implies that Λ is an open subgroup. Since every open subgroup is closed, this completes the proof.

Proof of Theorem 3. Let E be any set in $\mathcal{K}(C) \cap \mathcal{K}(AS)$. Applying Lemma 4 to the function $f(\gamma) = f(E, \gamma)$, we see that there are finitely many subgroups Λ_i such that $\mathcal{K}(\{E\}) = \mathcal{K}(\{\Lambda_i\}_i)$. Since E is in $\mathcal{K}(C)$, it follows that every Λ_i is in $\mathcal{K}(C)$, and so Lemma 5 assures that every Λ_i is closed. Therefore we have $E \in \mathcal{K}(\{\Lambda_i\}_i) \subset \mathcal{K}(CS)$, and this clearly establishes Theorem 3.

COROLLARY 6 (due to Gilbert [4, Theorem 3.1]). Every closed set E in $\mathcal{R}(AS)$ has the form

$$E = \bigcup_{i} \left[\Lambda_{i} \cap (\bigcup_{j} \Lambda_{ij})^{c} \right], \qquad (6.1)$$

where Λ_i and Λ_{ij} are finitely many closed cosets in Γ such that every Λ_{ij} is contained and open in Λ_i with respect to the relative topology of Λ_i .

Proof. Let E be any closed set in $\mathcal{K}(AS)$. It then follows from Theorem 3 that E has the form (6.1), where Λ_i and Λ_{ij} are finitely many closed cosets in Γ such that $\Lambda_i \supset \Lambda_{ij}$. Since E is closed, E is the union of the closures of $\Lambda_i \cap (\bigcup_j \Lambda_{ij})^c$. But all Λ_i and Λ_{ij} are closed cosets, and so that it is easy to check that the closure of $\Lambda_i \cap (\bigcup_j \Lambda_{ij})^c$ is $\Lambda_i \cap (\bigcup_j \Lambda_{ij})^c$, where $\bigcup_j \Lambda_{ij}$ denotes the union of those Λ_{ij} that are open in the relative topology of Λ_i (cf. the argument in [9, p. 86]). This establishes the proof.

THEOREM 7. For every closed set E in Γ without interior, the following three statements are equivalent:

- (i) E is a strong Ditkin set;
- (ii) E is a Wik set;
- (iii) E is of the form (6.1).

Proof. The implication (i) implies (ii)» is trivial. Suppose that E is a Wik set. There exists then a directed family $\{\mu_{\alpha} \in M(G)\}_{\alpha \in A}$ having the properties (a) and (b) in Definition 1. Since E has no interior point, the property (a), together with Theorem 2, yields

$$\sup\left\{\|\mu_{\alpha}\|:\alpha\in A\right\}<\infty.$$
(7.1)

Regarding each μ_{α} as a measure on the Bohr compactification \tilde{G} of G, we can conclude from (7.1) and (b) that $f(E, \gamma)$ is the Fourier transform of a measure in $M(\tilde{G})$. It follows from Cohen's theorem [1] that E is a member of $\mathcal{K}(AS)$. (Note that the dual group of \tilde{G} is Γ with the discrete topology.) Therefore Corollary 6

SADAHIRO SAEKI

guarantees that E has the form (6.1), which establishes the implication $(ii) \Rightarrow$ (iii)».

Finally suppose that (iii) is the case. It is trivial that a finite union of strong Ditkin sets and a translate of a strong Ditkin set are strong Ditkin sets, too. Thus, to prove (i), it suffices to verify that every closed set E of the form

$$E = \Lambda \cap (\bigcup_{j=1}^{n} \Lambda_j)^{c}$$
(7.2)

is a strong Ditkin set, where Λ is a closed subgroup of Γ and each Λ_j is a closed coset in Γ which is open in the relative topology of Λ . Observe then that, for each j, Λ_j corresponds to a point in the quotient group $\Gamma/(\Lambda_j - \Lambda_j)$, and that the subset $[\Lambda/(\Lambda_j - \Lambda_j)] \cap {\Lambda_j}^e$ of this group is a closed set which does not contain the spoints Λ_j , since Λ_j is both open and closed in Λ . It follows that there is a measure v_j in M(G) such that $\hat{v}_j = 1$ on Λ_j , $\hat{v}_j = 0$ on some open set U_j containing $\Lambda \cap \Lambda_j^e$. Define

$$v = (\delta - v_1) * \ldots * (\delta - v_n),$$

where δ denotes the Dirac measure at 0 in G. Then $\hat{v} = 0$ on $\bigcup_{j=1}^{n} \Lambda_j$ and $\hat{v} = 1$ on $U = U_1 \cap \ldots \cap U_n$, which is an open set containing E. Suppose now that $\{f_i\}_i$ is any finite subset of I(E) and $\varepsilon > 0$, then $f_i * v$ belongs to $I(\Lambda)$ for every *i*. It follows from a theorem of Calderon [9, 2.7.2] that there is a measure $\mu' = \mu'(\{f_i\}_i, \varepsilon)$ in M(G) such that $\hat{\mu'} = 1$ on some neighborhood of Λ , $\|\mu'\| < 2$, and $\|f_i * v * \mu'\| < \varepsilon$. Setting

$$\mu = \mu(\{f_i\}_i, \varepsilon) = \delta - \nu * \mu'$$

we see that $\|\mu\| \leq 1 + 2\|\nu\|$, $\hat{\mu} = 0$ on some neighborhood of E, and that $\|f_i - f_i * \mu\| < \varepsilon$ for all i. Therefore the family $\{\mu(\{f_i\}_i, \varepsilon)\}$ has all the required properties (c), (d), and (e) in Definition 2. This proves that E is a strong Ditkin set, and hence (iii) implies (i). The proof is now established.

Remark. The part $(iii) \Rightarrow (i)$ of Theorem 7 is (essentially) due to Gilbert [3], although our proof seems to be simpler than his.

References

- 1. COHEN, P. J., On a conjecture of Littlewood and idempotent measures. Amer. J. Math. 82 (1960), 191-212.
- 2. -»- On homomorphisms of group algebras. Amer. J. Math. 82 (1960), 213-226.
- 3. GILBERT, J. E., On a strong form of spectral synthesis. Ark. Mat. 7 (1968), 571-575.
- 5. HEWITT, E. & Ross, K. A., *Abstract harmonic analysis*. Vol. I. Springer-Verlag, Heidelberg 1963.
- MEYER, Y., Prolongement des multiplicateurs d'idéaux fermés de L¹(Rⁿ). C. R. Acad. Sc. Paris, 262 (1966), Sér. A, 744-745.
- ROSENTHAL, H. P., Sur les ensembles de Ditkin forts. C. R. Acad. Sc. Paris 262 (1966), Sér. A, 873-876.
- 8. --- On the existence of approximate identities in ideals of group algebras. Ark. Mat. 7 (1967), 185-191.
- 9. RUDIN, W., Fourier analysis on groups. Interscience, New York 1962.
- 10. Wik, I., A strong form of spectral synthesis. Ark. Mat. 6 (1965), 55-64.

The manuscript was submitted to the Arkiv för matematik on June 16, 1969. Publication was delayed due to the reorganization of the journal. Sadahiro Saeki Tokyo Metropolitan University Tokyo Japan