The asymptotic distribution of the eigenvalues of a degenerate elliptic operator

Clas Nordin

1. Introduction

Let R be a Riemannian manifold of dimension $n>1$ and class C^{2}, let $\varphi \in C^{2}(R)$ be real and such that $\varphi=0 \Rightarrow \operatorname{grad} \varphi \neq 0$ and such that $\varphi \geq 0$ defines a compact part R_{φ} of R. Let $\Sigma g_{j k} d x^{j} d x^{k}$ be the metric of R and $d V=g^{\frac{1}{2}} d x$ ($g=\operatorname{det}\left(g_{j k}\right)$) its volume element. Let $L^{2}\left(R_{\varphi}\right)$ be the real Hilbert space on R_{φ} with norm square $\int_{\mathbf{R}_{p}} u^{2} d V$. Let us interpret the degenerate differential operator

$$
\Delta_{\varphi}=-\sum g^{-\frac{1}{2}} \partial_{j} \varphi g^{\frac{1}{2}} g^{j k} \partial_{k}, \partial_{j}=\partial / \partial x^{j} \quad\left(g^{j k}\right)=\left(g_{j k}\right)^{-1}
$$

as the Friedrichs extension associated with the two quadratic forms

$$
a(u)=\int_{R_{\varphi}} \varphi \sum g^{j k} \partial_{j} u \partial_{k} u d V, \quad b(u)=\int_{R_{\varphi}} u^{2} d V
$$

and the real space $C^{1}\left(R_{\varphi}\right)$. According to Baouendi and Goulaouic [1], $A=\Delta_{\varphi}$ is a non-negative selfadjoint operator on $L^{2}\left(R_{q}\right)$ and $(I+A)^{-1}$ is compact. Let $\left\{\lambda_{j}\right\}_{0}^{\infty}$ be the eigenvalues of A associated with a complete set of eigenfunctions and let $N(\lambda)$ be the number of those eigenvalues which are $\leq \lambda$. We are going to give an asymptotic formula for $N(\lambda)$ as $\lambda \rightarrow \infty$. Let $d v$ be the volume element on $S=\partial R_{\varphi}$ with respect to the induced metric and let $\partial / \partial v$ be the unit interior derivative on S. Let ω_{n} be the volume of the unit ball in R^{n} and put

$$
\begin{equation*}
c_{n-1}=(2 \pi)^{1-n} \omega_{n-1} \int_{S}(\partial \varphi / \partial v)^{(1-n) / 2} d v \tag{1}
\end{equation*}
$$

Finally, let

$$
\begin{equation*}
d_{2}=c_{1} / 4 \text { and } d_{n}=(n-1) c_{n-1} \int_{1}^{\infty}[(t+1) / 2] t^{-n} d t \text { when } n>2, \tag{2}
\end{equation*}
$$

where $[x]$ is the greatest integer $\leq x$. Then we have the following theorem which generalizes earlier results by Baouendi and Goulaouic [1] and N. Shimakura [4]. The first two authors obtain only the order of growth of $N(\lambda)$, while Shimakura, who considers a case where the eigenvalues are known explicitly, does not have the correct factor d_{n} when $n>2$.

Theorem. When $\lambda \rightarrow \infty$, then

$$
n=2 \Rightarrow N(\lambda) \sim d_{2} \lambda \log \lambda, \quad n>2 \Rightarrow N(\lambda) \sim d_{n} \lambda^{n-1}
$$

Here and throughout the paper, the sign \sim means that the quotient of the two sides tends to 1 as λ increases to ∞.

Note. It follows easily from the proof that this result holds also, if Δ_{φ} is replaced by $\Delta_{\varphi}+\psi$, where ψ is a real function, bounded on R_{φ}.

The subject of this paper was suggested by Lars Gårding. I thank him for valuable advice and great help during my work.

2. Quadratic forms and the Weyl-Courant principle

To simplify the notations we now put $R=R_{\varphi}$ and consider R as a Riemannian manifold with boundary $S=\partial R_{\varphi}$. Then $0 \leq \varphi \in C^{2}(R), \varphi=0$ only on S and $\varphi_{v}=\partial \varphi / \partial \nu$ is positive and continuous on S. By definition

$$
A=\Delta_{\varphi}=-\sum g^{-\frac{1}{2}} \partial_{j} \varphi g^{\frac{1}{2}} g^{j k} \partial_{k}
$$

is the Friedrichs extension associated with the two quadratic forms

$$
a(u)=\int_{\boldsymbol{R}} \varphi \sum g^{j k} \partial_{j} u \partial_{k} u d V, \quad b(u)=\int_{\boldsymbol{R}} u^{2} d V
$$

and the class $C^{1}(R)$. Let $H^{k}=H^{k}(R)(0 \leq k \leq 2)$ be the space of all functions whose derivatives of order $\leq k$ are square integrable over R, topologized in the obvious way. According to Baouendi and Goulaouic, ([1], Théorème 1^{bis}), $A+I$ is a topological isomorphism between the space of all $f \in H^{1}$ such that $\varphi f \in H^{2}$ and the space H^{0}. In particular, there is a constant C such that

$$
\int_{R}\left(u^{2}+\sum g^{j k} \partial_{j} u \partial_{k} u\right) d V \leq C \int_{R}((A+I) u)^{2} d V
$$

whenever u is in the domain of A. Since the imbedding of H^{1} into H^{0} is compact this shows that A has discrete spectrum.

When V is a subset of R, let $C_{0}^{\mathrm{l}}(V)$ denote the space of all real continuously differentiable functions with compact supports in V. Note that if V is open then $C_{0}^{1}(V)$ consists of all elements of $C_{0}^{1}(\bar{V})$ that vanish close to the boundary of V and that $C_{0}^{1}(V)$ increases when V is open and increases. Put

$$
\begin{equation*}
\lambda_{k}(a / b, V)=\sup _{\mathcal{L} \subset D} \inf _{0 \neq u \in \mathcal{L}} a(u) / b(u) \tag{3}
\end{equation*}
$$

where $D=C_{0}^{1}(V)$ and \mathcal{L} ranges over all linear subspaces of D of codimension $k-1$. By the Weyl-Courant principle, $\left\{\lambda_{k}(\alpha / b, R)\right\}_{1}^{\infty}$ are all the eigenvalues of A with the correct multiplicities. Also, every λ_{k} increases if a / b increases or if V is open and decreases. The function $N(a / b, V)=N(a / b, V, \lambda)$ which counts the number of solutions j of the inequality $\lambda_{j}(a / b, V) \leq \lambda$ then has the opposite properties. It is also well known that

$$
\begin{equation*}
N\left(R_{1}\right)+N\left(R_{2}\right) \leq N(\stackrel{\circ}{R}) \leq N(R) \leq N\left(\bar{R}_{1}\right)+N\left(\bar{R}_{2}\right) \tag{4}
\end{equation*}
$$

where we have left out the arguments a / b and λ and R_{1}, R_{2} are disjoint open subsets of R such that $R=\bar{R}_{1} \cup \bar{R}_{2}$. We shall use these properties of the counting function to get successive reductions of our problem.

3. Reduction to a boundary strip

Close to S we may parametrise R as follows. To every x there is a geodesic $l=l(x)$, passing through x and normal to S. Let $y \in S$ be the point where l reaches S and let t be the geodesic distance from x to y. Then t, y are $C^{2}-$ functions of x and can be used as coordinates. We notice in passing that in these coordinates, the metric is

$$
d t^{2}+\sum_{2}^{n} g_{j k}(t, y) d y^{j} d y^{k}
$$

and $g_{j k}(0, y)=\gamma_{j k}(y)$ is the metric induced on S. Let $\varepsilon>0$ be small and consider the boundary strip $R_{e}: 0<t<\varepsilon$ and its open complement $R_{e}^{*}: t>\varepsilon$. By (4) we have

$$
N\left(R_{\varepsilon}\right)+N\left(R_{\varepsilon}^{*}\right) \leq N(R) \leq N\left(\bar{R}_{\varepsilon}\right)+N\left(\bar{R}_{\varepsilon}^{*}\right)
$$

The result we want to prove is that

$$
N(R)=N(a / b, R, \lambda) \sim \sigma_{n}(\lambda), \quad \lambda \rightarrow \infty
$$

where $\sigma_{2}(\lambda)=d_{2} \lambda \log \lambda$ and $\sigma_{n}(\lambda)=d_{n} \lambda^{n-1}$ when $n>2$, the constants d_{n} being given by (2). Now it is well known that

$$
N\left(\bar{R}_{\varepsilon}^{*}\right)=O_{\varepsilon}\left(\lambda^{n / 2}\right), \quad \lambda \rightarrow \infty,
$$

so that it suffices to prove that

$$
\begin{equation*}
\underline{\lim } \sigma_{n}(\lambda)^{-1} N\left(a / b, R_{\varepsilon}, \lambda\right) \quad \text { and } \quad \overline{\lim } \sigma_{n}(\lambda)^{-1} N\left(a / b, \bar{R}_{\varepsilon}, \lambda\right) \tag{5}
\end{equation*}
$$

are both arbitrarily close to 1 when ε is small. In the next step we shall replace the quotient a / b by another one where the variables t, y are separated.

4. Separation of variables

Let us now put

$$
a_{1}(u)=\int_{R_{\varepsilon}} t p_{\nu}\left((\partial u / \partial t)^{2}+\sum_{2}^{n} \gamma^{j k}(y) \partial_{j} u \partial_{k} u\right) \gamma^{\frac{1}{2}} d y d t
$$

and

$$
b_{\mathbf{1}}(u)=\int_{R_{\varepsilon}} u^{2} \gamma^{\frac{1}{2}} d y d t
$$

where y_{2}, \ldots, y_{n} are coordinates on S and $\varphi_{v}=\partial \varphi / \partial \nu$. Since

$$
\varphi(x(t, y))=t \varphi_{v}(y)(1+O(t))
$$

and

$$
\sum_{2}^{n} g^{j k}(t, y) \partial_{j} u \partial_{k} u=(1+O(t)) \sum_{2}^{n} \gamma^{j k}(y) \partial_{j} u \partial_{k} u, \quad g^{\frac{1}{2}}=\gamma^{\frac{1}{2}}(1+O(t))
$$

it is obvious that

$$
\begin{aligned}
& N\left(a / b, \bar{R}_{\varepsilon}, \lambda\right) \leq N\left(a_{1} / b_{1}, \bar{R}_{\varepsilon}, \lambda(1+o(\varepsilon)),\right. \\
& N\left(a / b, R_{\varepsilon}, \lambda\right) \geq N\left(a_{1} / b_{1}, R_{\varepsilon}, \lambda(1-o(\varepsilon)) .\right.
\end{aligned}
$$

Hence it suffices to show that, for every $\varepsilon>0$,

$$
\begin{equation*}
N\left(a_{1} / b_{1}, T, \lambda\right) \sim \sigma_{n}(\lambda), \quad \lambda \rightarrow \infty, \quad T=R_{\varepsilon} \text { or } \bar{R}_{\varepsilon} \tag{6}
\end{equation*}
$$

In fact, this implies (5). Next, let us introduce the function $w=u \sqrt{\varphi_{v}}$ instead of u. Then

$$
\begin{aligned}
& a_{2}(w)=a_{1}\left(w / \sqrt{\varphi_{\nu}}\right)=\int_{R_{\varepsilon}} t\left((\partial w / \partial t)^{2}+\sum_{2}^{n} \varphi_{\nu} \gamma^{j k}\left(\partial_{j} w / \sqrt{\varphi_{v}}\right)\left(\partial_{k} w / \sqrt{\varphi_{v}}\right)\right) \gamma^{\frac{1}{2}} d y d t \\
& b_{2}(w)=b_{1}\left(w / \sqrt{\varphi_{\nu}}\right)=\int_{R_{\varepsilon}} w^{2} \varphi_{\nu}^{-1} \gamma^{\frac{1}{2}} d y d t
\end{aligned}
$$

where the first equations are definitions. We now have a true separation of variables and we can rewrite (6) as

$$
\begin{equation*}
N\left(a_{2} / b_{2}, T, \lambda\right) \sim \sigma_{n}(\lambda), \quad \lambda \rightarrow \infty, \quad T=R_{\varepsilon} \text { or } \bar{R}_{\varepsilon} \tag{7}
\end{equation*}
$$

5. The spectrum of a second order selfadjoint elliptic operator on S

Let

$$
\begin{aligned}
& a_{0}(w)=\int_{S} \varphi_{\nu} \sum \gamma^{j k} \partial_{j}\left(w / \sqrt{\varphi_{\nu}}\right) \partial_{k}\left(w / \sqrt{\varphi_{v}}\right) d v \\
& b_{0}(w)=\int_{S} w^{2} \varphi_{v}^{-1} d v
\end{aligned}
$$

be the forms on S that correspond to a_{2}, b_{2}. It is well known that the Friedrichs extension corresponding to the forms a_{0}, b_{0} and the class $C^{2}(S)$ is the operator

$$
A_{0} w=-\sum\left(\varphi_{v} / \gamma\right)^{\frac{1}{2}} \partial_{j} \gamma^{\frac{1}{2}} \varphi_{v} \gamma^{j k} \partial_{k}\left(w / \sqrt{\varphi_{v}}\right)
$$

which has the property that

$$
a_{0}\left(w_{1}, w_{2}\right)=b_{0}\left(A_{0} w_{1}, w_{2}\right)
$$

where $a_{0}(.,$.$) and b_{0}(.,$.$) are the bilinear forms associated with the forms a_{0}$ and b_{0}. Moreover, $A_{0} \geq 0$ is selfadjoint and has a discrete spectrum, the lowest eigenvalue being 0 and the corresponding eigenfunction $w=\sqrt{\varphi_{\nu}}$. Let $\left\{h_{\mathrm{k}}\right\}_{0}^{\infty}$ with eigenvalues $\left\{\mu_{k}\right\}_{0}^{\infty}$ be a complete orthonormal set of eigenvalues and eigenfunctions of A_{0}, and let $N_{0}(\mu)=N\left(a_{0} / b_{0}, S, \mu\right)$ be the corresponding counting function. It is wellknown (cf. e.g. Hörmander [3]), that ${ }^{1 \text { 1 }}$

$$
\begin{equation*}
N_{0}(\mu) \sim c_{n-1} \mu^{(n-1) / 2}, \mu \rightarrow \infty \tag{8}
\end{equation*}
$$

where, as stated in the introduction,

$$
c_{n-1}=(2 \pi)^{1-n} \omega_{n-1} \int_{S} \varphi_{\nu}^{(1-n) / 2} d v
$$

6. Expansions in eigenfunctions

When $w \in C_{0}^{\mathrm{l}}\left(R_{\varepsilon}\right)$ or $C_{0}^{1}\left(\bar{R}_{\varepsilon}\right)$, let us expand w in terms of the eigenfunctions h_{j}. We get

$$
w=\sum_{0}^{\infty} w_{j}(t) h_{j}(y)
$$

[^0]Hence, in view of the orthogonality properties of the h_{j},

$$
a_{2}(w)=\sum_{0}^{\infty} f\left(w_{j}, \mu_{j}\right) \quad \text { and } \quad b_{2}(w)=\sum_{0}^{\infty} g\left(w_{j}\right)
$$

Here

$$
f(\mu)=f(\mu, u)=\int_{0}^{\varepsilon} t\left(u^{\prime}(t)^{2}+\mu u(t)^{2}\right) d t \quad \text { and } \quad g(u)=\int_{0}^{\varepsilon} u(t)^{2} d t
$$

are forms involving just one variable and all w_{j} belong either to $C_{0}^{1}\left(I_{\varepsilon}\right)$ or $C_{0}^{1}\left(\bar{I}_{\varepsilon}\right)$, where I_{ε} is the interval $0 \leq t<\varepsilon$. Since all w_{j} are independent of each other, this gives

$$
N\left(a_{2} / b_{2}, T, \lambda\right)=\sum_{0}^{\infty} N\left(f\left(\mu_{j}\right) / g, J, \lambda\right), \quad T=R_{\varepsilon} \text { or } \quad \bar{R}_{\varepsilon}, J=I_{\varepsilon} \quad \text { or } \quad \bar{I}_{\varepsilon} .
$$

Hence our theorem follows if we can show that the right side is $\sim \sigma_{n}(\lambda)$ in both cases. Now, from the Weyl-Courant principle

$$
N\left(f(\mu) / g, \bar{I}_{\varepsilon}, \lambda\right) \leq \dot{N}\left(f^{\prime} / g, \bar{I}_{\varepsilon}, \lambda\right)
$$

where

$$
f^{\prime}(u)=\int_{0}^{\varepsilon} t\left(1-\varepsilon^{-1} t\right) u^{\prime 2} d t
$$

and hence, according to Goulaouic ([2], p. 360-11) we have

$$
\begin{equation*}
N\left(f(\mu) / g, I_{\varepsilon}, \lambda\right)=O(\sqrt{\lambda}), \quad \lambda \rightarrow \infty \tag{9}
\end{equation*}
$$

uniformly when $\mu \geq 0$. Since $\sqrt{\lambda}=o\left(\sigma_{n}(\lambda)\right), \lambda \rightarrow \infty$, this means that we are reduced to showing e.g. that

$$
\begin{equation*}
\int_{1}^{\infty} N(f(\mu) / g, J, \lambda) d N_{0}(\mu) \sim \sigma_{n}(\lambda), \quad \lambda \rightarrow \infty, \quad J=I_{\varepsilon} \text { or } \bar{I}_{\varepsilon} . \tag{10}
\end{equation*}
$$

Here, instead of a sum over the μ_{j} we have written a Stieltjes integral, the region of integration being $1 \leq \mu<\infty$.

7. A one-dimensional case with a parameter

Together with the forms f, g, consider the forms

$$
\begin{equation*}
F(\varrho, v)=\int_{0}^{\varrho} x\left(v^{\prime 2}+v^{2}\right) d x, \quad G(\varrho, v)=\int_{0}^{\varrho} v^{2} d x, \tag{11}
\end{equation*}
$$

depending on the parameter $\varrho>0$. Putting $v(x)=u(x / \sqrt{\mu})$ we then have

$$
f(\mu, u) / g(u)=\sqrt{\mu} F(\varepsilon \sqrt{\mu}, v) / G(\varepsilon \sqrt{\mu}, v)
$$

when $\mu>0$. Hence putting for simplicity

$$
M(\lambda, \varrho)=N\left(F(\varrho) / G(\varrho), I_{\varrho}, \lambda\right)
$$

and writing $\bar{M}(\lambda, \varrho)$ when I_{ϱ} is replaced by \bar{I}_{e}, we have

$$
N\left(f(\mu) / g, I_{\varepsilon}, \lambda\right)=M(\lambda / \sqrt{\mu}, \varepsilon \sqrt{\mu})
$$

where I_{ε}, M may be replaced by $\bar{I}_{\varepsilon}, \bar{M}$ and it suffices to show that

$$
\begin{equation*}
\int_{i}^{\infty} m(\lambda / \tau, \varepsilon \tau) d N_{0}\left(\tau^{2}\right) \sim \sigma_{n}(\lambda), m=M \text { or } \bar{M} \tag{12}
\end{equation*}
$$

In order to proceed further, we now need detailed information about the functions M and \bar{M}. It is given in the following lemma where it is understood that $\lambda>0$.

Lemma. Let $m=M$ or \bar{M}. Then
a) $1 \leq \lambda<\varrho \Rightarrow m(\lambda, \varrho)=\lambda / 2+O\left(\lambda^{3 / 4}\right)$
b) For every $\varrho_{0}>0$ holds $\lambda \geq \varrho \geq \varrho_{0} \Rightarrow m(\lambda, \varrho)=O(\sqrt{\lambda \varrho})$
c) Given an even integer $A>0$ and $0<\delta<1$, there is a $\varrho_{0}>A$ such that if $\lambda \leq A$ and $\varrho \geq \varrho_{0}$, then

$$
m(\lambda, \varrho)=[(\lambda+1) / 2]
$$

except for symmetric intervals of length 2δ around the old integers $1,3, \ldots$, in these intervals the difference of the two expressions is at most 1 in absolute value.

Proof. Let $M\left(\lambda, \varrho_{1}, \varrho_{2}\right)$ and $\bar{M}\left(\lambda, \varrho_{1}, \varrho_{2}\right)$ be the counting functions associated with the forms

$$
\int_{\varrho_{1}}^{\varrho_{2}} x\left(v^{2}+v^{2}\right) d x, \quad \int_{\varrho_{1}}^{\varrho_{2}} v^{2} d x
$$

and the classes $C_{0}^{1}(I)$ and $C_{0}^{1}(\bar{I})$ respectively, where $I=\left(\varrho_{1}, \varrho_{2}\right)$. When the first of these forms is replaced by $c \int_{\varrho_{1}}^{\varrho_{2}}\left(v^{\prime 2}+v^{2}\right) d x \quad(c>0)$ the eigenvalues are λ_{k} and $\bar{\lambda}_{k}, k=1,2, \ldots$, respectively, where

$$
\begin{aligned}
& \lambda_{k} c^{-1}-1=\pi^{2} k^{2}\left(\varrho_{2}-\varrho_{1}\right)^{-2} \\
& \bar{\lambda}_{1}=0, \quad \bar{\lambda}_{k}=\lambda_{k-1}, \quad k \geq 2
\end{aligned}
$$

It follows easily from this that
$-1+\pi^{-1}\left(\varrho_{2}-\varrho_{1}\right)\left(\lambda \varrho_{2}^{-1}-1\right)_{+}^{\frac{1}{2}} \leq m\left(\lambda, \varrho_{1}, \varrho_{2}\right) \leq \pi^{-1}\left(\varrho_{2}-\varrho_{1}\right)\left(\lambda \varrho_{1}^{-1}-1\right)_{+}^{\frac{1}{2}}+1$,
where $m=M$ or \bar{M} and x_{+}denotes the positive part of x.
To prove a) let

$$
1=\varrho_{0}<\varrho_{1}<\ldots<\varrho_{v-1}=\lambda<\varrho_{v}=\varrho
$$

be a partition of $[\mathbf{1}, \varrho]$, such that the partition of $[1, \lambda]$ is equidistant. By (4)

$$
\sum_{0}^{\nu-1} M\left(\lambda, \varrho_{k}, \varrho_{k+1}\right) \leq m(\lambda, 1, \varrho) \leq \sum_{0}^{\nu-1} \bar{M}\left(\lambda, \varrho_{k}, \varrho_{k+1}\right)
$$

which combined with (13) gives

$$
-v+\sum_{0}^{v-3} f\left(\varrho_{k+1}\right)\left(\varrho_{k+1}-\varrho_{k}\right) \leq m(\lambda, 1, \varrho) \leq \sum_{0}^{v-2} f\left(\varrho_{k}\right)\left(\varrho_{k+1}-\varrho_{k}\right)+v
$$

where

$$
f(x)=\pi^{-1} \sqrt{\lambda / x-1} \text { when } 1 \leq x \leq \lambda
$$

Now f is decreasing, and hence

$$
-\lambda^{3 / 2} \nu^{-\mathbf{1}}-\nu+\int_{1}^{\lambda} f(x) d x \leq m(\lambda, \mathbf{1}, \varrho) \leq \int_{1}^{\lambda} f(x) d x+\lambda^{3 / 2} \nu^{-\mathbf{1}}+\nu
$$

Here

$$
\int_{1}^{\lambda} f(x) d x=\lambda / 2+O\left(\lambda^{3 / 4}\right)
$$

which is seen by an easy calculation. Choosing e.g. $v=\left[\lambda^{3 / 4}+3\right]$ we get

$$
m(\lambda, \mathbf{1}, \varrho)=\lambda / 2+O\left(\lambda^{3 / 4}\right)
$$

and a) follows from (4) and (9).
To prove b) let

$$
\varrho_{0}<\varrho_{1}<\varrho_{2}<\ldots<\varrho_{y}=\varrho
$$

be an equidistant partition of $\left[\varrho_{0}, \varrho\right]$. By (4) and (13) we get, as in the proof of a)

$$
m\left(\lambda, \varrho_{0}, \varrho\right) \leq \sum_{0}^{\nu-1} f\left(\varrho_{k}\right)\left(\varrho_{k+1}-\varrho_{k}\right)
$$

and hence

$$
m\left(\lambda, \varrho_{0}, \varrho\right) \leq \varrho_{0}^{-\frac{1}{2}} \nu^{-1} \varrho \lambda^{\frac{1}{2}}+\int_{\varrho_{0}}^{\varrho} f(x) d x+\nu
$$

Now, putting $x \lambda=t^{2}$

$$
\int_{\varrho_{0}}^{\varrho} f(x) d x=2 \pi^{-1} \int_{\sqrt{\lambda_{e_{0}}}}^{\sqrt{\bar{\lambda}}} \sqrt{1-t^{2} \lambda^{-2}} d t \leq \sqrt{\lambda \varrho} .
$$

Hence putting e.g. $v=\left[\varrho^{\frac{1}{2}}+1\right]$, we get

$$
m\left(\lambda, \varrho_{0}, \varrho\right)=O(\sqrt{\lambda \varrho})
$$

and b) follows from (4) and (9).
To prove c) observe that

$$
u(t, \lambda)=(2 \pi i)^{-1} \int_{\mathbf{R e} z=d>1} e^{z t}(z-1)^{\frac{1}{2}(\lambda-1)}(z+1)^{-\frac{1}{2}(\hat{\lambda}+1)} d z
$$

is a solution of

$$
\begin{equation*}
-\left(t u^{\prime}\right)^{\prime}+t u=\lambda u \tag{14}
\end{equation*}
$$

which is regular at the origin. Every solution w of (14) with $t w^{2}$ integrable near the origin is a multiple of u since the equation (14) has a basis of solutions

$$
u_{0}(t)=1+t f_{0}(t), \quad u_{1}(t)=\left(1+t f_{1}(t)\right) \log t
$$

where f_{0} and f_{1} are regular. Hence if $\lambda_{\nu}(\varrho), \nu=1,2, \ldots$, are the eigenvalues of the Friedrichs extension associated with the forms $F(\varrho), G(\varrho)$ and the class $C_{0}^{1}\left(I_{\varrho}\right)$ then they are the zeros of

$$
\lambda \rightarrow u(\varrho, \lambda)
$$

and the zeros of

$$
\lambda \rightarrow u_{t}^{\prime}(\varrho, \lambda)
$$

if $C_{0}^{1}\left(I_{\varrho}\right)$ is replaced by $C_{0}^{1}\left(\bar{I}_{\varrho}\right)$. A change of variables shows that

$$
u(t, \lambda)=(2 t)^{-\frac{1}{2}(\lambda+1)} e^{t} v(t, \lambda),
$$

where

$$
v(t, \lambda)=(2 \pi i)^{-1} \int_{\mathrm{Re} z=c>0} e^{\pi} z^{\frac{1}{2}(\lambda-1)}(1+z / 2 t)^{-\frac{1}{2}(\lambda+1)} d z
$$

It is easy to verify that

$$
v_{t}^{\prime}(t, \lambda)=4^{-1}(\lambda+1) t^{-2} v(t, \lambda+2)
$$

and hence

$$
\left.u_{t}^{\prime}(t, \lambda)=(2 t)^{-\frac{1}{2}(\lambda+1)} e^{z}\left(-\frac{1}{2}(\lambda+1) t^{-1}+1\right) v(t, \lambda)+4^{-1}(\lambda+1) t^{-2} v(t, \lambda+2)\right) .
$$

Hence the zeros of $\lambda \rightarrow u(t, \lambda)$ are the same as the zeros of $\lambda \rightarrow v(t, \lambda)$ and the zeros of $\lambda \rightarrow u_{t}^{\prime}(t, \lambda)$ are the same as the zeros of $\lambda \rightarrow w(t, \lambda)$, where

$$
w(t, \lambda)=\left(1-\frac{1}{2}(\lambda+1) t^{-1}\right) v(t, \lambda)+4^{-1}(\lambda+1) t^{-2} v(t, \lambda+2)
$$

We also have

$$
\begin{array}{ll}
v(t, \lambda) \rightarrow v(\infty, \lambda), & t \rightarrow \infty \\
w(t, \lambda) \rightarrow w(\infty, \lambda), & t \rightarrow \infty
\end{array}
$$

where

$$
v(\infty, \lambda)=w(\infty, \lambda)=-\pi^{-1} \sin (\pi / 2)(\lambda-1) \int_{0}^{\infty} e^{-x} x^{\frac{1}{2}(\lambda-1)} d x
$$

The convergence is uniform on every compact subset of Re $\lambda>0$ and the limit function is analytic in Re $\lambda>0$ with simple zeros only at the points $1,3,5, \ldots$. Hence, if $0<\delta<1$ and an even integer $A=2 p$ are given, there exists a $\varrho_{0}>A$ such that $\lambda \rightarrow v(\varrho, \lambda)(\lambda \rightarrow w(\varrho, \lambda))$ for $\varrho \geq \varrho_{0}$ has precisely p zeros in the strip $0<\operatorname{Re} \lambda<A$, one in each dise $|\lambda-(2 k-1)|<\delta, k=1, \ldots, p$. The fact that $\overline{u(t, \bar{\lambda})}=u(t, \lambda)$ shows that the zeros are real and the proof of the lemma is finished.

8. End of the proof

By (8) and b) of the lemma we have

$$
\int_{i}^{\sqrt{2 / \varepsilon}} m(\lambda / \tau, \varepsilon \tau) d N_{0}\left(\tau^{2}\right)=O\left(\lambda^{n / 2}\right)=o\left(\sigma_{n}(\lambda)\right\rangle, \quad \lambda \rightarrow \infty
$$

and hence, according to (10), we are reduced to proving that

$$
\begin{equation*}
I(\lambda)=\int_{\sqrt{\lambda / \varepsilon}}^{\infty} m(\lambda / \tau, \varepsilon \tau) d N_{0}\left(\tau^{2}\right) \sim \sigma_{n}(\lambda), \quad \lambda \rightarrow \infty \tag{15}
\end{equation*}
$$

Now let $0<\delta<\frac{1}{2}$ be given. By (8) and c) of the lemma we can choose λ^{\prime} so big that

$$
\lambda \geq \lambda^{\prime} \Rightarrow \begin{cases}N_{0}\left(\tau^{2}\right)=\left(c^{n-1}+O(1) \delta\right) \tau^{n-1}, & \text { all } \tau \geq \sqrt{\lambda / \varepsilon} \\ m(\lambda / \tau, \varepsilon \tau)=0, & \text { all } \tau \geq \lambda /(1-\delta)\end{cases}
$$

c) of the lemma, an integration by parts and an estimation of the product $m(\sqrt{\lambda \varepsilon}, \sqrt{\lambda \varepsilon}) N_{0}(\lambda / \varepsilon)$ by $\left.b\right)$ of the lemma then shows that

$$
I(\lambda)=O\left(\lambda^{n / 2}\right)-\int_{V^{\prime} / \bar{\varepsilon}}^{\lambda /(1-\delta)} N_{0}\left(\tau^{2}\right) d m(\lambda / \tau, \varepsilon \tau), \quad \lambda \geq \lambda^{\prime}
$$

and hence

$$
I(\lambda)=O\left(\lambda^{n / 2}\right)-\int_{\sqrt{\lambda / \varepsilon}}^{\lambda /(1-\delta)}\left(c_{n-1}+O(1) \delta\right) \tau^{n-1} d m(\lambda / \tau, \varepsilon \tau), \quad \lambda \geq \lambda^{\prime}
$$

Now, another integration by parts gives

$$
\begin{equation*}
I(\lambda)=O\left(\lambda^{n / 2}\right)+\left((n-1) c_{n-1}+O(1) \delta\right) \int_{\sqrt{\lambda / \varepsilon}}^{\lambda /(1-\delta)} m(\lambda / \tau, \varepsilon \tau) \tau^{n-2} d \tau, \quad \lambda \geq \lambda^{\prime} \tag{16}
\end{equation*}
$$

When $n=2$

$$
I(\lambda)=O(\lambda)+\left(c_{1}+O(1) \delta\right) \int_{\sqrt{\lambda / \varepsilon}}^{\lambda /(1-\delta)} m(\lambda / \tau, \varepsilon \tau) d \tau, \quad \lambda \geq \lambda^{\prime}
$$

and by a) of the lemma and the definition of d_{2}

$$
I(\lambda)=\left(d_{2}+O(1) \delta\right) \lambda \log \lambda, \quad \lambda \geq \lambda^{\prime}
$$

and hence

$$
I(\lambda) \sim \sigma_{2}(\lambda), \quad \lambda \rightarrow \infty
$$

which finishes the proof in the case $n=2$.
When $n>2$, choose an even integer $A=2 p$ so big that

$$
A^{-1}<\delta \text { and } \int_{A}^{\infty}[(t+1) / 2] t^{-n} d t<\delta
$$

Put

$$
\int_{\sqrt{\lambda / \varepsilon}}^{\lambda /(1-\delta)} m(\lambda / \tau, \varepsilon \tau) \tau^{n-2} d \tau=I_{1}(\lambda)+I_{2}(\lambda),
$$

where the region of integration is $(\sqrt{\lambda / \varepsilon}, \lambda / A)$ in I_{1} and $(\lambda / A, \lambda /(1-\delta))$ in I_{2}. By a) of the lemma

$$
I_{1}(\lambda)=O(1) A^{-n+2} \lambda^{n-1}=O(1) \delta \lambda^{n-1}
$$

By c) of the lemma

$$
I_{2}(\hat{\lambda})=\int_{\lambda / A}^{\lambda}[(\lambda / \tau+1) / 2] \tau^{n-2} d \tau+O(1) \sum_{1}^{p} \int_{\lambda /(2 k-1+\delta)}^{\lambda /(2 k-1-\delta)} \tau^{n-2} d \tau
$$

where $O(1)$ refers to $\lambda \rightarrow \infty$.
Since $\int_{A}^{\infty}[(t+1) / 2] t^{-n} d t<\delta$, putting $\lambda / \tau=t$ we get

$$
\int_{\lambda / A}^{\lambda}[(\lambda / \tau+1) / 2] \tau^{n-2} d \tau=\lambda^{n-1} \int_{1}^{\infty}[(t+1) / 2] t^{-n} d t+O(1) \delta \lambda^{n-1}
$$

Also,

$$
\sum_{1}^{p} \int_{\lambda /(2 k-1+\delta)}^{\lambda /(2 k-1-\delta)} \tau^{n-2} d \tau=O(1) \delta \lambda^{n-1}
$$

which follows from the mean-value theorem and trivial estimates. Hence, by (16) and the definitions of the constants d_{n}

$$
I(\lambda)=\left(d_{n}+O(1) \delta\right) \lambda^{n-1}, \quad \lambda \geq \lambda^{\prime}
$$

which shows that

$$
I(\lambda) \sim \sigma_{n}(\lambda), \quad \lambda \rightarrow \infty
$$

This finishes the proof.

Added in proof. The asymptotic formula of the theorem is not quite correct. To get the correct formula, replace the exponent $(1-n) / 2$ in (1) by $1-n$ getting

$$
c_{n-1}=(2 \pi)^{1-n} \omega_{n-1} \int_{S}(\partial \varphi / \partial v)^{1-n} d v
$$

The error occurs in section 6 and it was pointed out to me by Mme J. Fleckinger and G. Métivier. The eigenfunctions h_{j} are in general not orthonormal in the inner product $\int_{S} p q d v$ so that the formula for $f(\mu)$ is not correct unless $\varphi_{v} \equiv 1$.

To deduce the correct theorem from this special case, note that it holds when φ_{v} is a constant. More generally, it holds when $N(\lambda)$ refers to a pair of quadratic forms $a_{1}(u), b_{1}(u)$ as given in section 4 with $\varphi_{v}>0$ constant and with $R_{\varepsilon}=S_{0} \times\{t: 0<t<\varepsilon\}$, where S_{0} is an open nicely bounded part of $S=\partial R_{\varphi}$. The Weyl-Courant principle applied to fine partitions of S into such pieces and majorants and minorants of φ_{ν}^{1-n} in each piece finishes the proof.

References

1. Baouendi, M. S. \& Goulaouic, C., Régularité et théorie spectrale pour une classe d'opérateurs elliptiques dégénérés. Arch. Rat. Mec. Anal. 34 (1969), 361-378.
2. Goulanc, C., Sur la théorie spectrale des opérateurs elliptiques. Séminaire N. Bourbaki 21 e année, 1968/69, $\mathrm{n}^{\circ} 360$.
3. Hömmander, L., The spectral function of an elliptic operator. Acta Math. 121 (1968), 193218.
4. Shimakura, N., Quelques exemples des ζ-fonctions d'Epstein pour les opérateurs elliptiques dégénérés du second ordre. Proc. Japan Acad. 45 (1969), 866-871.

Received April 6, 1971
Clas Nordin
Department of Mathematics
University of Lund
Box $\mathbf{7 2 5}$
$\mathbf{2 2 0} 07$ Lund 7
Sweden

[^0]: ${ }^{1}$) Actually, supposing that everything is C^{∞}, Hörmander proves in [3] this formula with the error term $O\left(\mu^{(n-2) / 2}\right)$.

