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1. Introduction 

Let R be a Riemannian manifold of dimension n > 1 and class C 2, let 
qo e C2(R) be real and such tha t  9 = 0 => grad ~ # 0 and such tha t  ~o > 0 defines 
a compact part  By of R. Let X gjkdxidx k be the metric of R and d V = g�89 
(g = det (gik)) its volume element. Let L2(R~) be the real tt i lbert space on /~  

with norm square I u2d V. Let us interpret the degenerate differential o p e r a t o r  
J R~ 

as the Friedrichs extension associated with the two quadratic forms 

Rep "R~o 
and the real space CI(R~). According to Baouendi and Goulaouic [1], A = d~ is 
a non-negative selfadjoint operator on L2(R~) and (I q-A)  -z is compact. Leg 
{~i}g be the eigenvalues of A associated with a complete set of eigenfunctions and 
let N(~) be the number of those eigenvalues which are ~ a. We are going to give 
an asymptotic formula for N(~) as k--> oo. Let dv be the volume element on 
S = aR~ with respect to the induced metric and let a/av be the unit interior 
derivative on S. Let con be the volume of the unit  ball in R" and put 

r : (27t)l-nr f (aT/av) (1-n)/2dv. 
s 

(1) 

Finally, let 
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d~=c l /4  and d ,~-  ( n - -  1)c~_ l f [ ( t ~ -  1)/2]t-"dt when n ~  2 ,  (2) 

1 

where Ix] is the greatest integer ~ x. Then we have the following theorem which 
generalizes earlier results by  Baouendi and Goulaouic [1] and N. Shimakura [4]. 
The first two authors obtain only the order of growth of /V(2), while Shimakura, 
who considers a case where the eigenvalues are known explicitly, does not have 
the correct factor d~ when n ~  2, 

T~tEORE~. When 2 ~ oo, then 

n ~ 2 ~ N(2) ~.~ d22 log 2, n ~  2 ~ N(2) ~ df l  "-~. 

Here and throughout the paper, the sign ~-~ means that  the quotient of the 
two sides tends to 1 as 2 increases to ~ .  

Note. I t  follows easily from the proof that  this result holds also, if z]~ is replaced 
by  Av + ~, where y~ is a real function, bounded on R~. 

The subject of this paper was suggested by  Lars G~rding. I thank him for valuable 
advice and great help during m y  work. 

2. Quadratic forms and the Weyl-Courant principle 

To simplify the notations we now put  /~ = _R~ and consider ]~ as a l%iemannian 
manifold with boundary S = aR~. Then 0 < ~ C C~(R), q~ -= 0 only on S and 
~, = ~ / ~  is positive and continuous on S. By  definition 

is the Friedrichs extension associated with the two quadratic forms 

a(u) = f g OjuOkudV, b(u) = f u dV 
R R 

and the class CI(_R). L e t  H k --- Hk(R) (0 < k < 2) be the space of all functions 
whose derivatives of order _~ k are square integrable over R, topologized in the 
obvious way. According to Baouendi and Goulaouic, ([1], Th~or~me Ibis), A + I 
is a topological isomorphism between the space of all f E / P  such that ~f E H 2 
and the space H ~ In particular, there is a constant C such that  

f (u 2 + ~ gJkOjuOku)dV < C f ((A + I)u)2dV 
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whenever u is in the domain of A. Since the imbedding of H 1 into H ~ is compact 
this shows tha t  A has discrete spectrum. 

When V is a subset of R, let C~(V) denote the space of  all real continuously 
differentiable functions wi th  compact supports in V. Note tha t  if V is open then 
C~(V) consists of all elements of C~(V) tha t  vanish close to the boundary of V 
and :that C~(V) increases when V is open and increases. Put  

~k(a/b, V) -~ sup inf a(u)/b(u), (3) 
,L" (X D 07' uE~F 

where D ~- C~(V) and ./7 ranges over all linear subspaces of D of codimension 
k -- 1. By the Weyl-Courant principle, {2k(a/b, R)}~ ~ are all the eigenvalues of 
A with the correct multiplicities. Also, every 2~ increases if a/b increases or 
if V is open and decreases. The function _N(a/b, V) -= N(a/b, V, 2) which counts 
the number of solutions j of the inequality )~(a/b, V) < )~ then has the opposite 
properties. I t  is also well known tha t  

o 
2v(R~) + 2V(R2) <_ ~V(R) < N(R) <_ N(R~) + 2V(_~) (4) 

where we have left out the arguments a/b and 2 and R1, R 2 are disjoint open 
subsets of R such tha t  / t  = Rx 0 R2. We shall use these properties of the counting 
function to get successive reductions of our problem. 

3. Reduction to a boundary strip 

Close to S we may parametrise R as follows. To every x there is a geodesic 
l -~ l(x), passing through x and normal to S. Let y E S be the point where 1 
reaches S and let t be the geodesic distance from x to y. Then t , y  arc C 2- 
functions of x and can be used as coordinates. We notice in passing tha t  in these 
coordinates, the metric is 

dt ~ + ~ gjk( t, y)dyJdy k 
2 

and gjk(O, y) = 7jk(Y) is the metric induced on S. Let e > 0 be small and con- 
sider the boundary strip R~ : 0 < t < s and its open complement /t* : t > s. 
By (4) we have 

:v(R) + N(R*) < N(R) < ;V(R~) + ~V(M). 

The result we want to prove is tha t  

N(R)  --= N(a/b, R, 2) ~ an(~), 2 ~ co, 

where a2(2) ~ d22 log 2 and a,(~) ~ d,~ ~-1 when n > 2, the constants d~ being 
given by (2). Now it is well known tha t  
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~v(/~*) = o~(4"~), 4 - +  ~ ,  

so t h a t  i t  suffices to p rove  t h a t  

l im an(4)-iN(a/b, .R , 4) and  l im an(4)-aN(a/b, R~, 4) (5) 

are b o t h  a rb i t r a r i ly  close to 1 when  e is small.  I n  the  nex t  s tep we shall replace  
the  quot ient  a/b b y  ano the r  one where  the  var iab les  t, y are separa ted .  

Le t  us now p u t  

and  

where  

and  

4. Separation of variables 

al(u) = f t%((Ou/Ot) 2 + i2 7Jk(Y)OJUO~U)y�89 

bl(u ) = f u27�89 
Re 

Y2 . . . . .  y~ are coordinates  on S and  % = O~/av. Since 

~(x(t, y)) = t%(y)(1 + O(t)) 

gik(t, y)aiuOku = (1 + O(t)) ~ 7Jk(y)aiUOkU, g�89 = 7�89 + O(t)), 
2 2 

i t  is obvious  t h a t  

N(a/b, R~, Z) < N(a~/bl, Re, 4(1 + o(~)),  

N(a/b, R e, 4) ~ N(a~/bl, R~, 4(1 - -  o(e)) .  

Hence  i t  suffices to  show tha t ,  for eve ry  e > 0, 

N(al/b 1, T, 2) ~-~ ~n(2), 4--> ~ ,  T = R~ or / ~  (6) 

I n  fact ,  th is  implies (5). Nex t ,  le t  us in t roduce  the  funct ion  w ~ u % / ~  ins tead  
of  u. Then  

a2(w) = a~(w/V~) = f 
.Re 

t((OwlOt) ~ + ~. %Tsk(Oswl%/~)(akwl%/~))y�89 
2 

b2(w ) = bl{w/%/~) = f w2q~-lT�89 
Re 
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where the f i rs t  equat ions  are definit ions.  We  now have  a t rue  separat ion of variables  
and  we can rewri te  (6) as 

N(a2/b2,  T , A ) - - ~ a ~ ( ~ ) ,  ~--> 0% T : / t  or - ~ .  (7) 

Let 

5. The spectrum of a second order selfadjoint elliptic operator on S 

ao(W) = f % Z YikOJ(W/%/~)Ok(W/%/~) dv' 
S 

bo(w ) = f w2cf7 ldv 
S 

be the  forms on S t h a t  correspond to a2, b 2. I t  is well known th a t  the  Friedrichs 
extension corresponding to the  forms a0, b o and the  class C~(S) is the  opera tor  

Ao w ~ 1_ 1 jk - -  

which has the property that 

ao(Wl, w2) = bo(Aowl, w2) , 

where a0(., .) and  b0(. , .) are the  bilinear forms associated wi th  the  forms a o 
and  b 0. lV[oreover, A o ~ 0 is selfadjoint  and has a discrete spectrum,  the lowest 
eigenvalue being 0 and  the  corresponding eigenfunct ion w ~ %/~ .  Le t  {h~}~ 
wi th  eigenvalues {ifk}~ be a complete o r thonormal  set of  eigenvalues and eigen- 
funct ions of  Ao, and let  No(if ) ~ N(ao/bo, S, if) be the  corresponding count ing 
funct ion.  I t  is wellknown (cf. e.g. HSrmande r  [3]), t h a t  1) 

No(if) c._, if  if (s) 

where, as s ta ted  in the  in t roduct ion,  

c,_1 (2~)1-"~% ~ f 
(1--n)/2, 

_ cry  a v  . 

s 

6. Expansions in eigenfunetions 

When  w E C~(R~) or C~o(/~), let  us expand  w in te rms of the  eigenfunctions 
hj.. We get 

w = ~ wi(t)hj(y ) . 
0 

!) Actually,  supposing tha t  everything is C ~, H6rmander  proves in [3] this formula with 
the  error te rm O ( f f ( n - 2 ) / 2 ) .  
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Hence, in view of the or thogonal i ty  properties of the 

Here 

a2(w) = ~, f(wj, #i) and  b2(w) = g(wj) . 
0 0 

= f+, + = f t(u'(t) ~ + #u(t)2)dt and g(u) = [ u(t)2dt, f(#) 
0 0 

are forms involving just  one variable and all w i belong either to C~(I~) or C0~(i~), 
where I~ is the interval  0 < t < s. Since all wj are independent  of  each other,  
this  gives 

.N(a~/b~,T, 2)=~: .N( f ( t t i ) /g ,J ,  2), T = R ~  or R~, J = I ~  or ]~.  

Hence our theorem follows if  we can show tha t  the r ight  side is ~ a,(2) in b o t h  
cases. Now, from the Weyl-Courant  principle 

where 

N '  N(f(lu)/g, 1~, 2) < ( f /g ,  i~, ,~) 

f'(u) = f t(1 -- e-lt)u'2dt 
0 

and hence, according to Gonlaouie ([2], 13. 360--11) we have 

N(f(#)/g, i t, ~) = 0(~/~), 2 --> ~ ,  (9} 

uniformly when # > 0. Since ~ = o(~n(2)), 2 - ~  0% this means t ha t  we are 
reduced to showing e.g. t h a t  

f N(f(#)/g, J, 2)dNo(tt ) ~ a,(2), 2 - +  J = / ~  or L -  (10), O0~ 

1 

Here, instead of a sum over the  /~i we have wri t ten  a Stieltjes integral, the region 
of integrat ion being 1 < # < ~ .  

7. A one-d imens iona l  case with  a parameter  

Together with the forms f ,  g, consider the forms 

Q 

F(e, v) = f x(v'2 + v2)dx, G(e, v) = f v2dx , 
0 0 

(11) 
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depending on the parameter e > 0. Put t ing v(x) -~ u(x/%/-~) we then have 

f(l~, u)/g(u) = %@F(s ~r v)/G(e ~r v),  

when # > O. Hence putting for simplicity 

M(& e) = N(F(e)/G(e), 15, ~) 

and writing _~ ().,e) when /~ is replaced by  ~ ,  we have 

N(f(/~)/g, I~, ).) = M()./ ~r s %@) , 

where I~, M may be replaced by  i ,  2~ ~nd it suffices to show that  

co 

f m()./z, sz)dNo(Z 2) ~ a,().), m = M or 2~r. (12) 

1 

In  order to proceed further, we now need detailed information about  the functions 
M and ~r. I t  is given in the following lemma where it is understood that  ). > O. 

LEM~A. Let m = M  or ~ .  Then 

a) 1 < ). < e ~ m(& e) = )./2 @ 0().  3/4) 

b) For every ~o > 0 holds ). >_ ~ >_ ~o ~ m(& ~) = O ( V ~ )  

c) Given an even integer A >  0 and O <  6 < 1 ,  there is a ~o > A such that 
if  ). ~ A and ~ ~ ~o, then 

m(& e) = [(X § 1)/2] 

except for symmetric intervals of length 26 around the odd integers 1, 3 , . . . ,  in 
these intervals the difference of the two expressions is at most 1 in absolute value. 

Proof. Let M(& ~1, ~2) and M(& ~1, ~2) be the counting functions associated 
with the forms 

f x(v'2+v2)dx, f v2dx 

and the classes C~(I) and C~(i) respectively, where I : (el, e2). When the first 

L of these forms is replaced by  c (v '2§ v2)dx (c > O) the eigenvalues are 
t 

2 k and ~k, k = 1, 2 , . . . ,  respectively, where 

2kC -1 - -  1 -~- ~2/c2(e 2 - -  0 1 )  - 2  , 

~1 = 0 ,  g k = ) ' k - ~ ,  / ~ > 2 .  
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I t  follows easily from this t h a t  

- -  1 + = -~ (e=  - -  e ~ ) ( a e ~  1 - -  1)~+ < r~(a ,  e~, e~) < = -~ (e2  - -  e ~ ) ( a e l  ~ - -  1)~+ + 1 ,  ( 13 )  

where m = M or _3~ and x+ denotes the positive par t  of x. 
To prove a) let 

1 = O0< e l < . - .  < e~-~ = ~ <  e ~ =  

be a par t i t ion of [1, ~], such t h a t  the par t i t ion of [1, ~] is equidistant .  B y  (4) 

v--1 v--1 

~, M(X, ~k, ~+~) <-- m(~, 1, e) <-- ~, .ffi(X, ~, e~+x), 
0 0 

which combined wi th  (13) gives 

v--3 v--2 

- -  v + ~f(qk+ll(qk+~ -- ek) --< m(~, 1, el _< ~f(okl(~k+~ -- ~k) + v,  
0 0 

where 

f(x) = ~z -1%/~/x -- 1 

Now f is decreasing, and hence 

-- ~a/2~,-1-- v + f f(x)dx <_ m(a, l, ~) < f 
1 1 

Here 

when 1 < x  < ~.  

f(x)dx + ~,3/2"P - 1  -+- 'P 

and hence 
o 

i --1 ,~1 I "  m(~, ~o, q) <-- qg2v em -+- f(x)dx + v. 
d 

oo 

f f(x)dx = ~/2 + 0(~ 3/4) 
1 

which is seen by  an easy calculation. Choosing e.g. v = [~3/4 + 3] we get 

m(L 1, e) = ~/2 + 0(~ 3/4) 

and  a) follows from (4) and  (9). 
To prove b) let 

~ o <  ~ 1 <  ~ 2 < - . .  < ~ ~ 

be an equidis tant  par t i t ion of [~o, Q]. By (4) and (13) we get, as in the proof of a) 

v--1 

re(X, e0, ~) ~ ~f(~k)(Qk+l -- ek) 
o 



THE ASYMPTOTI0 DIBTIIIBITTION O:F THE EIGENVALITEB 17 

Now, pu%ting x~ -= t ~ 

Hence  put t ing  e.g. v = [@�89 @ 1], we get 

re(a, e0, e) -~ 0 ( ~ ) ,  

and b) follows from (4) and (9). 
To prove e) observe tha t  

u(t, ~) = (2~i) -1 f e*t(z - -  1)�89 ~- 1)-�89 

Rez = d >  l 

is a solution of  

- ( tu') '  + tu  = ~ u ,  0 4 )  

which is regular at  the  origin. E v e r y  solution w of  (14) with tw '2 integrable near  
the  origin is a mul t ip le  of  u since the  equat ion (14) has a basis of  solutions 

uo(t ) = 1 + tfo(t), u~(t) -~ (1 + try(t)) log t 

where f0 and f l  are regular. Kence if ~(@), v = 1, 2, . . . ,  are the  eigenvalues of  
the  Friedrichs extension associated with the  forms F(~), G(~) and the class CI(Ie) 
then they  are the  zeros of  

a n d t h e  zeros of  

if C~(I~) is replaced b y  

where 

1 - C0(/~). A change of variables shows tha t  

u(t, 4) = (2t)-�89 A), 

v(t, ~t) = (2~i) -1 f e=z�89 -[- z/2t)-~(~+~)dz. 

Rez=e>O 

I t  is easy to verify tha t  

v : ( t ,  /~) = 4--1(2~ - ~  1)t-2v(t, A -t- 2) 

and hence 

u:(t, 4) = (2t)-�89 1(4 + 1)t -1 -4- 1)v(t, 4) + 4-1(4 + 1)t,2v(t, 2 A- 2)) .  
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Hence  the  zeros of  4 -+  u(t, 4) are the  same as the  zeros of  2 :-+ v(t, 2) and  the  
zeros of  2--+ u:(t, 2) are the  same as the  zeros of  4--+ w(t, 4), where 

w(t, 4) =- ( 1  - -  �89 + 1)t-X)v(t, 2) + 4-1(4 ~- 1)t-2v(t, 2 + 2) .  

We also have  

where 

v(t ,  2) - +  v( oo, 2), t ~ oo 

w(t ,  2) - +  w(  ~ ,  2), t --+ o o ,  

2) -~ w ( ~ ,  4) ---- - -  g - 1  sin (~/2)(2 - -  1 )  f e-:x�89 V ( ~ ,  

0 

The convergence is un i form on every  compact  subset  of  l~e 4 ~ 0 and  the  l imit  
funct ion  is analyt ic  in Re  4 ~ 0 wi th  simple zeros only  at  the  points  1, 3, 5 , . . . .  
Hence,  if  0 < 0 < 1 and  an even  integer  A ----= 2p are given, there  exists a ~0 ~ A 
such t h a t  2 -+  v(~, 4) (2 -+  w(~, 2)) for ~ ~ ~0 has precisely p zeros in the  str ip 
0 < R e 4 < A ,  one in each disc ] 4 - -  (21c-- 1)1 < ~, k---- 1 . . . .  , p .  The  fact  t h a t  

u(t, ).) =- u(t, 4) shows tha t  the  zeros are real and  the  proof  of the  lemma is finished. 

8. End of the proof 

B y  (8) and  b) of  the  lemma we have  

g ~  

f m(41~, ~)dN0(~ ~) = 0(4 "/2) = o(~.(4)), 4 -+ ~ ,  
1 

and hence, according to  (10), we are reduced  to  proving t h a t  

i+ = f m(4lv, ev)dNo(v 2) .~ (r.(2), 2 ~ oo . 

Now let 0 ~ ~ ~ 1  

big t h a t  

2 ~ 2 ' ~  

be given. B y  (8) and  c) of  the  l emma we can choose 2' so 

c) of  the  lemma,  an in tegra t ion  by  par t s  and an es t imat ion of  the  p roduc t  
~ ( v / ~ ,  V~/)N0i4/~) by b) of ~he l e~ma  then shows that  

{ yo(-C~) = (c"- '  + O(1)a)-~"- ' ,  aii  -c >_ V"~)7 

m(2l.~, eT) = o, all T ~ ~/(1 - -  ~) . 
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and hence 

i l(1--~) 

I ( , ;  0 = O(X ~) -- f No(~2)dm(~/~' e~), 2 > _ Z ,  

)~/(1-- ~) 

= _ f (o . ,  + O(llb)z"-ldm(A/z, ez), 

Now, another integration by  parts gives 

I(~) = 0(2 "/2) + ((n --  1)c._1 + 0(1)~) ] m(2/T, ez)."-2dv, 
a t  

V ~  

When n = 2 
~/(1-~) 

I().) = 0(~) + (c 1 + 0(1)(~) / m(X/T, sT)dz, 
V ~  

and by  a) of the lemma and the definition of d 2 

and hence 

2 > ) , ' ,  

1(~) = (d 2 + 0(1)(~)), log ~t, 2 > ~t', 

I(Z) ~ ~2(~), Z-+  oo, 

which finishes the proof in the case n = 2. 
When n > 2, choose an even integer A ---- 2p so big that  

oo 

A -1 < 6 and f [(t + 1)/2]t-"dt < 6 q 

q ]  
A 

Put  

). ~ ). ' .  (16) 

f m(t/v, s'c)'c"-2dv = Ii(t  ) + Is(t ) , 

where the region of integration is (%/2//~, ~/A) in 11 and (A/A, ~/ (1 -  ~)) in 13. 
By a) of the lemma 

I1(~ ) = O(1)A-"+2~ "-~ = 0(1)3~ "-1 . 

By  c) of the lemma 
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where 

Since 

Also, 

21(2k -- 1-- a) 

f ~_2d~ 
z / ( 2 k -  1 + ~) 

f p 1~(2) = [(2/~ q- 1)/2]T'-2d~ + 0(1) 

~/A 

0(1) refers to  2 -+  oo. 

f ~ [(t -[- 1)/2]t-~dt < ~, putr ,~/v = t we get 

A 

oo 

f + = f [<, + i)/2]t-"dt + . 

~i A 

z/(2k- 1 -  ~) 

" f  .cn_Ud.r = 0(1)~2 "-1 

z/(2 k - ~ + ~) 

which follows from the  mean-value theorem and trivial estimates. Hence, by  (16) 
and  the  definit ions of the constants  d~ 

f ( ~ )  = (d n ~-  0(1) (~)~  n - l ,  it ~ ~ t ,  

which shows t h a t  

I ( 2 )  ~ ~ ( 2 ) ,  Z ~ ~ .  

This finishes the proof. 

Added in proof. The asympto t ic  formula of  the theorem is no t  quite correct. 
To get the correct formula,  replace the exponent  (1 -- n)/2 in (1) by  1 --  n get t ing 

/ .  
2 l--n / Cn_l = ( ~ )  o~o_1 (a~/a~)l-ndv . ( 1 ' )  

. 2  
S 

The error occurs in section 6 and  it was pointed out  to me by  Mine J.  Fleckinger 
and  G. M~tivier. The eigenfunctions hj are in general no t  or thonormal  in the  

inner  product  I dv so sp q t ha t  the formula for f(#) is no t  correct unless ~ ~ 1. 

To deduce the  correct theorem from this special case, note t h a t  it  holds when 
~, is a constant .  More generally, it  holds when N(2) refers t o  a pair of quadrat ic  
forms al(u), bl(u) a s  given in section 4 wi th  ~ > 0 constant  and  wi th  
/ ~ = S 0 •  where S O is an  open nicely bounded par t  of S =  3R~. 
The Wcyl-Courant  principle applied to fine part i t ions of S into such pieces and  
majorants  and minorants  of 1 - n  in each piece finishes t h e  proof. 
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