The regularity of growth of entire functions whose zeros are hyperplanes

Lawrence Gruman
University of Minnesota and University of Uppsala

Let $f(z)$ be an entire function (of n variables) of finite order ϱ and normal type σ. We then define $h_{r}(z)=\varlimsup_{\lim _{r \rightarrow \infty}} r^{-\varrho} \ln |f(r z)|, r>0$ (resp. $h_{c}(z)=\varlimsup_{|u| \rightarrow \infty}|u|^{-\varrho} \ln |f(u z)|$, $u \in \mathbf{C}$) and the smallest upper-semicontinuous majorant $h_{r}^{*}(z)=\varlimsup_{\lim _{z^{\prime} \rightarrow z}} h_{r}\left(z^{\prime}\right)$ (resp. $\left.h_{c}^{*}(z)=\overline{\lim }_{z^{\prime} \rightarrow z} h_{c}(z)\right)$. This is plurisubharmonic and satisfies the condition $h_{r}^{*}(t z)=$ $t^{\circ} h_{r}^{*}(z), \quad t>0, \quad\left(\operatorname{resp} . \quad h_{c}^{*}(u z)=|u|^{\circ} h_{c}^{*}(z), \quad u \in \mathbf{C}\right)$; it is called the radial (resp. circular) indicator function of f.

For $n=1$, the function $h_{r}(z)$ is continuous, and so $h_{r}^{*}(z)=h_{r}(z)$ (see [4] or Lemma 1 below), but this is no longer necessarily the case for either $h_{r}^{*}(z)$ or $h_{\mathrm{c}}^{*}(z)$ for $n \geq 2,[3]$. In [1], we undertook a study of the relationship between the distribution of the zeros of $f(z)$ and the local continuity of the function $h_{r}^{*}(z)$. We investigate here a condition on the zeros which implies the global continuity of $h_{r}^{*}(z)$.

If the function $f(z)$ as a function of several variables depends only upon a single variable, say z_{1}, and $f(0) \neq 0$, then $h_{r}^{*}(z)=h_{r}(z)$ and the two are continuous. The zeros are then presented by hyperplanes parallel to the hyperplane $z_{1}=0$. We generalize this result in the following way:

Theorem. Let $f(z)$ be an entire function of order @ and normal type σ such that $f(0) \neq 0$ and the zeros of $f(z)$ are hyperplanes. Then $h_{r}^{*}(z)=h_{r}(z)$ and there are constants T (depending only on σ and @) and α (depending only on @) such that $\left|h_{r}(w)-h_{r}\left(w^{\prime}\right)\right| \leq T| | w-w^{\prime} \|^{\alpha}$ for $\|w\|=\left\|w^{\prime}\right\|=1$. In particular, $h_{r}^{*}(z)$ is continuous.

Remark 1. We will assume, without loss of generality, that we use the Euclidean norm. The value of T depends upon the choice of the norm, but α is independent of the norm chosen.

Remark 2. If $f(z)$ is a function of only one of the variables, then elementary considerations show that the exponent we get is $\min (1, \varrho)$. The α we construct can be chosen to be $\alpha>\min (1 / 3, \varrho /(2 \varrho+1))-\gamma$ for any $\gamma>0$.

Remark 3. The function $h_{r}^{*}(z)$ does not depend on what point in \mathbf{C}^{n} we choose as origin [2], so the assumption that $f(0) \neq 0$ does not effect the conclusion that $h_{r}^{*}(z)$ is continuous and satisfies the Lipschitz condition above; but it does of course effect the fact that $h_{r}(z)=h_{r}^{*}(z)$.

The proof will be established by classical methods pertaining to functions of a single complex variable. We shall first need the following results:

Lemma 1. Let $f(u)$ be an entire function of a single complex variable and $h_{r}(u)$ its indicator function. Then there exists a constant K_{0} (depending on ϱ and σ) such that

$$
\left|h\left(e^{i \theta}\right)-h\left(e^{i \theta^{\prime}}\right)\right| \leq K_{0}\left|e^{i \theta}-e^{i \theta^{\prime}}\right|
$$

Proof. Let $K=\max \left|(\varrho / 2) h\left(e^{i \theta}\right) \sec ^{2}(\varrho q) / 2\right| \quad$ with $\quad\left|\theta_{2}-\theta_{1}\right| \leq q<\pi / \varrho$ and $\theta_{1}<\theta<\theta_{2}$. Then [4, p. 54]

$$
\frac{h\left(e^{i \theta}\right)-h\left(e^{i \theta_{1}}\right)}{\sin \varrho\left(\theta-\theta_{1}\right)} \leq \frac{h\left(e^{i \theta_{2}}\right)-h\left(e^{i \theta_{1}}\right)}{\sin \varrho\left(\theta_{2}-\theta_{1}\right)}+K\left(\theta_{2}-\theta\right)
$$

A similar inequality exists for θ and θ_{2}. Choosing $\left|\theta_{2}-\theta_{1}\right| \leq \pi / 4 \varrho$, we get the desired result.
Q.E.D.

Lemma 2. Let $f(u)$ be holomorphic in the circle $|u| \leq 2 e R$, u complex, with $f(0)=1$, and let η be an arbitrary positive number not exceeding 3e/2. Then inside the circle $|u| \leq R$ but outside a family of excluded circles the sum of whose radii is not greater than $4 \eta R$, posing $M(R)=\max _{|u|=\mathrm{R}}|f(u)|$, we have

$$
\ln |f(u)|>-\left(2+\ln \frac{3 e}{2 \eta}\right) \ln M(2 e R)
$$

Proof. The proof is to be found in Levin [4, p. 21].
Lemma 3. Let the function $f(u)$ be of order @ and type σ. Then there exists δ_{0} (depending only on @ and σ) such that for each choice of the positive numbers δ and ω (with $\delta \leq \delta_{0}$ and $0<\omega<1$), there corresponds on each fixed ray $\arg u=\theta$ a sequence of intervals $r_{n} \leq r \leq(1+\delta) r_{n}\left(r_{n} \rightarrow \infty\right)$ on each of which, for suitable constants T_{1} and T_{2} (depending only on ϱ and σ) the inequality
$\frac{\ln \left|f\left(r e^{i \theta}\right)\right|}{r^{\theta}}>\left[h\left(e^{i \theta}\right)-T_{1} \delta-T_{2} \delta\left(2+\ln \frac{2 e}{\omega}\right)(1+2 e \delta)^{\varrho}\right]=h\left(e^{i \theta}\right)-g(\delta, \omega)$
is satisfied except perhaps on a set of measure not exceeding $\omega \delta r_{n}$.
Proof. Without loss of generality, we may assume $\theta=0$. There is a sequence of $r_{n} \rightarrow \infty$ such that $\ln \left|f\left(r_{n}\right)\right|>[h(1)-\delta] r_{n}^{\circ}$. Assume $\delta<1 / 2 e$. There exists an R_{δ} such that for $r \geq R_{\delta}$, $\ln \left|f\left(r e^{i \phi}\right)\right|<\left[h\left(e^{i \phi}\right)+\delta\right] r^{2} \quad[4, \mathrm{p} .7 \mathrm{l}]$.

By Lemma 1, for $|\phi| \leq \sin ^{-1}(2 e \delta) \leq K^{\prime} \delta$, $\ln \left|f\left(r e^{i \phi}\right)\right|<\left[h(1)+\left(K_{0} K^{\prime}+1\right) \delta\right] r^{2}$. Let $\psi_{n}(u)=f\left(r_{n}+u\right) / f\left(r_{n}\right)$. Then $\psi_{n}(0)=1$ and for $|u| \leq 2 e \delta r_{n}$,

$$
\ln \left|\psi_{n}(u)\right| \leq\left(K_{0} K^{\prime}+2\right) \delta\left(r_{n}+|u|\right)^{2} .
$$

Applying Lemma 2, we see that for $|u| \leq \delta r_{n}$,

$$
\ln \left|\psi_{n}(u)\right|>-\left(K_{0} K^{\prime}+2\right) \delta(2+\ln (2 e / \omega))\left(r_{n}+2 e \delta r_{n}\right)^{e}
$$

outside exceptional circles the sum of whose radii is less than $\omega \delta r_{n} / 2$. Returning to the function $f(u)$, wee see that asymptotically

$$
\begin{equation*}
\ln |f(r)|>\left[h(1)-\delta-\left(K_{0} K^{\prime}+2\right) \delta(2+\ln (2 e / \omega))(1+2 e \delta)^{e}\right] r_{n}^{e} \tag{2}
\end{equation*}
$$

is satisfied for $(1-\delta) r_{n} \leq r \leq(1+\delta) r_{n}$ except perhaps for intervals the sum of whose lengths is less than $\omega \delta r_{n}$. Since $f(u)$ is of type σ, for δ sufficiently small (depending only on σ),

$$
\sigma\left[1-\frac{1}{(1+\delta)^{\varrho}}\right]<(\varrho+1) \sigma \delta
$$

and hence

$$
\frac{\ln |f(r)|}{r^{\varrho}}>\left[h(1)-\sigma \delta(\varrho+1)-\delta-\left(K_{0} K^{\prime}+2\right) \delta(2+\ln (2 e / \omega))(1+2 e \delta)^{\varrho}\right]
$$

holds wherever (2) holds.
Q.E.D.

Lemma 4. If $f(u)$ is holomorphic in the circle $|u| \leq e r$ with $f(0)=1$ and if $n(r)$ is the number of zeros of $f(u)$ of modulus less than r, then $n(r) \leq M(e r)$.

Proof. This is an easy consequence of Jensen's formula (cf. [4, p. 15]).
Lemma 5 (Cartan estimate). Given any number $H>0$ and complex numbers a_{1}, \ldots, a_{N}, there is a system of circles in the complex plane the sum of whose radii is $2 H$ such that for all u lying outside these circles, $\prod_{i=1}^{N}\left|u-a_{i}\right| \geq(H / e)^{N}$.

Proof. See [4, p. 19].

Lemma 6 (Carathéodory inequality for the circle). If $f(u)$ is any function holomorphic on the circle $|u| \leq R$ and

$$
A(r)=\max _{|u|=r} \operatorname{Re} f(u), \text { then } M(r) \leq[A(R)-\operatorname{Re} f(0)] \frac{2 r}{R-r}+|f(0)| \quad(r<R)
$$

Proof. See [4, p. 17].
Proof of theorem. The proof, which is quite long, will be divided into several parts.
(i) Let $\zeta>2$ be some fixed number to be specified later and let $\varepsilon=\left\|w-w^{\prime}\right\|$ be so small that

$$
\begin{equation*}
\varepsilon^{1 / 5}<\min \left(\frac{1}{12}, \delta_{0}\right) \tag{3}
\end{equation*}
$$

where Lemma 3 is satisfied for $\delta \leq \delta_{0}$. Then by Lemma 3, by choosing $\delta=\omega=\varepsilon^{1 / \zeta}$, we can find a sequence $r_{n} \rightarrow \infty$ such that $h_{r}(w)-g\left(\varepsilon^{1 / \zeta}, \varepsilon^{1 / \zeta}\right) \leq r^{-Q} \ln |f(r w)|$ for $r_{n} \leq r \leq\left(1+\varepsilon^{1 / 5}\right) r_{n}$ except perhaps on a set of measure at most $\varepsilon^{2 / \zeta} r_{n}$. Thus, for r_{n} sufficiently large, we have for $r_{n} \leq r \leq\left(1+\varepsilon^{1 / 5}\right) r_{n}$

$$
\begin{equation*}
h_{r}(w)-h_{r}\left(w^{\prime}\right)-g\left(\varepsilon^{1 / \zeta}, \varepsilon^{1 / \zeta}\right)-\varepsilon \leq \frac{\ln |f(r w)|}{r^{\varrho}}-\frac{\ln \left|f\left(r w^{\prime}\right)\right|}{r^{o}} \tag{4}
\end{equation*}
$$

except perhaps for a set of measure at most $\varepsilon^{2 / /} r_{n}$.
(ii) Since $f(z)$ is of type σ, there is a constant $C \geq 1$ such that

$$
|f(z)| \leq C \exp \left(\sigma+\frac{1}{2}\right)\|z\|^{e}
$$

For $\|\xi\|=1$, we define the functions $n_{\xi}(r)$ to be the number of zeros of $f(u \xi)$ for $|u|<r$. By Lemma 4, $\quad n_{\xi}(r) \leq \ln M(e r) \leq \ln C+\left(\sigma+\frac{1}{2}\right) e^{Q} r^{a} \leq(\sigma+1) e^{g} r^{e}$ for r sufficiently large. In what follows, we shall always assume that r_{n} is so large that this inequality holds for $r \geq r_{n}$.

In the complex line $\left(u w^{\prime}\right)$, we construct concentric circles $C_{i n}$, centered at the origin, of radial increment $6 \varepsilon^{2 / \zeta} r_{n}$, with the radius of $C_{0 n}$ being r_{n} and all the radii less than or equal to $\left(1+\varepsilon^{1 / 5}\right) r_{n}$. This defines a set of annuli, and at least one of the annuli will not contain "too many" zeros of the function $f\left(u w^{\prime}\right)$. The number of annuli is $\left[\frac{\varepsilon^{1 / \zeta} r_{n}}{6 \varepsilon^{2 / \zeta} r_{n}}\right]$ (where [] means "greatest integer in"), and since by (3), $\frac{1}{6 \varepsilon^{1 / \zeta}}>2$, we have $\left[\frac{1}{6 \varepsilon^{1 / \zeta}}\right]>\frac{1}{12 \varepsilon^{1 / \zeta}}$. Since there are at most $(\sigma+1) e^{\rho}\left(1+\varepsilon^{1 / 5}\right)^{\rho} r_{n}^{\omega}$ zeros inside the circle $\left(1+\varepsilon^{1 / 5}\right) r_{n}$, at least one of the annuli has no more than $(\sigma+1) e^{e}\left(1+\varepsilon^{1 / \zeta}\right)^{e} r_{n}^{Q} 12 \varepsilon^{1 / 5}<12(\sigma+1)\left(2 e r_{n}\right)^{\rho} / \varepsilon^{1 / 5}=T_{3} \varepsilon^{1 / \zeta} r_{n}^{Q}$ zeros of the function $f\left(u w^{\prime}\right)$. We shall select one such annulus and designate it Ω_{n}.
(iii) Let the zeros of $f(z)$ be the hyperplanes ($1-\sum_{i=1}^{N} c_{i m} z_{i}$) and let $A_{m}=$
$\sum_{i=1}^{N} c_{i m} w_{i}^{\prime}$. Let $\Pi^{\prime}\left(1-A_{m} u\right)$ be the product over those indices m for which $f\left(u w^{\prime}\right)$ has a zero in Ω_{n} (at most $T_{3} \varepsilon^{1 / S} r_{n}^{e}$). By Lemma 5, there is a set of circles the sum of whose radii is $\varepsilon^{2 / 5} r_{n}$ such that for all n lying outside these circles, $\Pi^{\prime}\left|u-1 / A_{m}\right| \geq\left(\varepsilon^{2 / t} r_{n} / 2 e\right)^{\lambda}$ (where λ is the number of zeros). Since $1 /\left|A_{m}\right| \leq$ $r_{n}\left(1+\varepsilon^{1 / 5}\right) \leq 2 r_{n}$, for u lying outside these circles

$$
\begin{equation*}
\left|\Pi^{\prime}\left(1-A_{m} u\right)\right|=\Pi^{\prime}\left|A_{m}\right| \Pi^{\prime}\left|u-\frac{1}{A_{m}}\right| \geq\left(\frac{\varepsilon^{2 / 5}}{4 e}\right)^{\lambda} \geq\left(\frac{\varepsilon^{2 / 5}}{4 e}\right)^{T_{3 s^{1 / 5 r_{n}^{Q}}}} \tag{5}
\end{equation*}
$$

Thus, we can find an $r, r_{n} \leq r \leq r_{n}\left(1+\varepsilon^{1 / \zeta}\right) r_{n}$ for which $r w^{\prime} \in \Omega_{n}$ such that (4) and (5) hold simultaneously and such that the circle Q_{n} centered at r (in the complex line (uw')) of radius $\varepsilon^{2 / \zeta} r_{n}$ is contained in Ω_{n}.

Let us now consider such an r.
(iv) We have $f(r w)=f\left(r w^{\prime}+\left(w-w^{\prime}\right) r\right)$. Let $\phi(u)=f\left(r w^{\prime}+u\left(w-w^{\prime}\right) / \varepsilon\right)$. Then $\phi(\varepsilon r)=f(r w)$ and $\phi(0)=f\left(r w^{\prime}\right)$, and $\phi(u)$ is a holomorphic function of the single complex variable u, so $\ln |\phi(u)|$ is subharmonic; thus

$$
\begin{equation*}
\ln |f(r w)|-\ln \left|f\left(r w^{\prime}\right)\right|=\ln |\phi(\varepsilon r)|-\ln |\phi(0)| \leq \max _{|u|=s r}\{\ln |\phi(u)|-\ln |\phi(0)|\} \tag{6}
\end{equation*}
$$

We also have

$$
\begin{equation*}
|\phi(u)|=\left|\phi\left(r w^{\prime}+u \frac{\left(w-w^{\prime}\right)}{\varepsilon}\right)\right| \leq C \exp \left(\sigma+\frac{1}{2}\right) 2^{e} r^{e} \tag{7}
\end{equation*}
$$

for $|u| \leq r$.
(v) Let $D_{m}=\sum_{i=1}^{N} c_{i m}\left(w_{i}-w_{i}^{\prime}\right) / \varepsilon$ and let $H(u)=\Pi^{\prime \prime}\left(1-A_{m} r-D_{m} u\right) /\left(1-A_{m} r\right)$, where the product $\Pi^{\prime \prime}$ is taken over all indices for which $\left(1-A_{m} r-D_{m} u\right)$ has a zero for $|u| \leq \varepsilon^{2 / \zeta} r$. If $f_{0}(v)=f\left(v\left(w-w^{\prime}\right) / \varepsilon\right)$ is the function f restricted to the complex line $\left(v\left(w-w^{\prime}\right)\right)$, then the numbers D_{m} are just the reciprocals of the zeros of $f_{0}(v)$. We shall use this fact to get estimates on the numbers D_{m}. We assume, without loss of generality, that the subscripts are so arranged that $\left|D_{m}\right| \leq\left|D_{m^{\prime}}\right|$ for $m \geq m^{\prime}$.

Let $\psi(u)=\phi(u) / H(u)$. Then $\psi(u)$ has no zeros in $|u| \leq \varepsilon^{2 / 5} r$; hence, for $|u| \leq \varepsilon^{2 / 5} r$, it can be written $\psi(u)=\exp \mu(u)$, where $\mu(u)$ is holomorphic in $|u| \leq \varepsilon^{2 / 5} r$. We have

$$
\max _{|u|=\varepsilon^{2} / / \zeta_{r}}|\psi(u)| \leq \max _{|u|=r}|\psi(u)| \leq \max _{|u|=r} \frac{1}{|H(u)|} \max _{|u|=r}|\phi(u)| .
$$

Since $\left(1-A_{m} r-D_{m} u\right)$ has a zero for $|u| \leq \varepsilon^{2 / \zeta} r, \quad\left|1-A_{m} r\right|-\left|D_{m}\right| \varepsilon^{2 / \zeta} r \leq 0$ or $\quad 1 / \varepsilon^{2 / 5} r \leq\left|D_{m}\right| /\left|1-A_{m} r\right|, \quad$ so $\quad\left|1-D_{m} u /\left(1-A_{m} r\right)\right| \geq\left|D_{m}\right| r| | 1-A_{m} r \mid-1 \geq$ $r / \varepsilon^{2 / \zeta} r-1 \geq 1$ for $|u|=r \quad$ by (3). Thus $\max _{|u|=\varepsilon^{2 / L}}|\psi(u)| \leq \max _{|u|=r}|\phi(u)| \leq$ $\exp (\sigma+1) 2^{a} r^{\sigma}$ by (7). Since $\ln |\psi(u)|=\operatorname{Re} \mu(u)$ for $|u| \leq \varepsilon^{2 / \zeta} r$, we have by Lemma 6,

$$
\begin{align*}
\max _{|\boldsymbol{u}|=\varepsilon r}\{\ln |\psi(u)|-\ln |\psi(0)|\} & \leq A_{\mu-\mu(0)}\left(\varepsilon^{2 / \zeta} r\right) \frac{2 \varepsilon r}{\varepsilon^{2 / \zeta} r-\varepsilon r} \leq \tag{8}\\
& \leq \frac{4(\sigma+1) 2^{e} r^{\sigma} \varepsilon^{1-2 / \zeta}}{\left(1-\varepsilon^{1-2 / \zeta}\right)}=T_{4} r^{Q} \varepsilon^{1-2 / \zeta}
\end{align*}
$$

(vi) Since $\phi(u)=H(u) \psi(u)$,

$$
\max _{|u|-\varepsilon r} \ln |\phi(u)| \leq \max _{|u|-\varepsilon r} \ln |H(u)|+\max _{|u|=\varepsilon r} \ln |\psi(u)|
$$

and since $H(0)=1$,

$$
\begin{equation*}
\max _{|u|=\varepsilon r} \ln |\phi(u)|-\ln |\phi(0)| \leq \max _{|u|=\varepsilon r} \ln |\psi(u)|-\ln |\psi(0)|+\max _{|u|=\varepsilon r} \ln |H(u)| \tag{9}
\end{equation*}
$$

It remains to estimate $\max _{|u|=s r} \ln |H(u)|=\max _{|u|=\varepsilon r} \ln \left|\Pi^{\prime \prime}\left(1-A_{m} r-D_{m} u\right) /\left(1-A_{m} r\right)\right|$. If m is such that $\left(1-A_{m} u\right)$ has a zero in Ω_{n}, we have by (5)

$$
\left|\Pi^{\prime \prime \prime}\left(1-A_{m} r\right)\right| \geq\left(\frac{\varepsilon^{2 / 5}}{4 e}\right)^{T_{s} \varepsilon^{1 /\left[/ r_{n}^{Q}\right.}}
$$

(where $\Pi^{\prime \prime \prime}$ is taken over all indices in $\Pi^{\prime \prime}$ for which this is true). Hence

$$
\begin{equation*}
\ln \left|\frac{1}{\Pi^{\prime \prime \prime}\left(1-A_{m} r\right)}\right| \leq T_{3} \varepsilon^{1 / \delta} r_{n}^{o} \ln \left(\frac{4 e}{\varepsilon^{2 / \zeta}}\right) \leq T_{3} \varepsilon^{1 / \zeta} r^{o} \ln \left(\frac{4 e}{\varepsilon^{2 / \zeta}}\right) . \tag{10}
\end{equation*}
$$

Since $\left(1-A_{m} r-D_{m} u\right)$ has a zero in $|u| \leq \varepsilon^{2 / \zeta} r$, say at q_{m},

$$
\left|\left(1-A_{m} r-D_{m} u\right)\right|=\left|D_{m}\right|\left|u-q_{m}\right| \leq 2 \varepsilon^{2 / 5} r\left|D_{m}\right| \leq\left(1+2 \varepsilon^{2 / \zeta} r\left|D_{m}\right|\right)
$$

and

$$
\ln \left|\Pi^{\prime \prime \prime}\left(1-A_{m} r-D_{m} u\right)\right| \leq \sum^{\prime \prime \prime} \ln \left(1+2 \varepsilon^{2 / 6} r\left|D_{m}\right|\right)
$$

For all other m in $\Pi^{\prime \prime}$, either $1 /\left|A_{m}\right| \leq r-\varepsilon^{2 / 5} r_{n}$ or $1 /\left|A_{m}\right| \geq r+\varepsilon^{2 / 5} r_{n}$.
In the first case, $\quad\left|1-A_{m} r\right| \geq\left|A_{m}\right| r-1 \geq \varepsilon^{2 / 5} r_{n}\left|A_{m}\right|$ and since

$$
\frac{1}{\left|A_{m}\right|} \leq r_{n}\left(1+\varepsilon^{1 / 5}\right) \leq 2 r_{n}, \quad\left|1-A_{m} r\right| \geq \frac{\varepsilon^{2 / 5}}{2}
$$

In the second case, if $\left|A_{m}\right| \leq 1 / 2 r_{n}$

$$
\left|1-A_{m} r\right| \geq 1-\left|A_{m}\right| r \geq 1-\frac{r}{2 r_{n}} \geq 1-\frac{\left(1+\varepsilon^{1 / 5}\right)}{2} \geq \frac{\varepsilon^{2 / 5}}{2}
$$

by (3) and if $\left|A_{m}\right| \geq 1 / 2 r_{n}$,

$$
\left|1-A_{m} r\right| \geq 1-r\left|A_{m}\right| \geq \varepsilon^{2 / 5} r_{n}\left|A_{m}\right| \geq \frac{\varepsilon^{2 / \zeta}}{2}
$$

In any case, for $|u| \leq \varepsilon r$

$$
\ln \left|\frac{\left(1-A_{m} r-D_{m} u\right)}{\left(1-A_{m} r\right)}\right| \leq \ln \left|1+\frac{\varepsilon\left|D_{m}\right| r}{\left|1-A_{m} r\right|}\right| \leq \ln \left(1+2 \varepsilon^{1-2 / 5}\left|D_{m}\right| r\right)
$$

for these m.
By Lemma 4, there are at most $(\sigma+1) e^{\rho 2^{e} r^{e}}$ values of m for which $1 /\left|A_{m}\right| \leq 2 r$ and at most $(\sigma+1) e^{\alpha} 2^{\sigma} r^{Q}$ values of m for which $1 /\left|D_{m}\right| \leq 2 r$. If $\left|A_{m}\right| \leq 1 / 2 r$ and $\left|D_{m}\right| \leq 1 / 2 r$,

$$
\left|1-A_{m} r-D_{m} u\right| \geq 1-\left|A_{m}\right| r-\left|D_{m}\right| \varepsilon^{2 / 5} r>0 \text { for }|u| \leq \varepsilon^{2 / 5} r,
$$

so there are at most $2(\sigma+1) e^{e} 2^{o} r^{o}=T_{5} r^{o}$ values of m such that ($1-A_{m} r-D_{m} u$) has a zero for $|u| \leq \varepsilon^{2 / 5} r$. Hence

$$
\begin{equation*}
\max _{|u|=\varepsilon r} \ln |H(u)| \leq T_{3^{\prime}} \varepsilon^{1 / S_{S}} r^{a} \ln \left(\frac{4 e}{\varepsilon^{2 / \zeta}}\right)+\sum_{m=1}^{\left[T_{5} r^{2}\right]} \ln \left(1+2 \varepsilon^{1-2 / \zeta_{r}} r\left|D_{m}\right|\right) . \tag{11}
\end{equation*}
$$

(vii) Let $A(r)=\sum_{m=1}^{\left[T_{5} r_{1}\right]} \ln \left(1+2 \varepsilon^{1-2 / S_{r}}\left|D_{m}\right|\right)$. We now estimate this sum. We choose m_{0} so large that $\ln C<m / 2$ for $m \geq m_{0}$. Since $1 /\left|D_{m}\right|, m=1,2, \ldots$ represents the zeros of $f_{0}(v)$, we have by Lemma 4

$$
\ln C+\left(\sigma+\frac{1}{2}\right) e^{o} \frac{1}{\left|D_{m}\right|^{\varrho}} \geq m
$$

and for $m \geq m_{0}$,

$$
\left(\sigma+\frac{1}{2}\right) e^{o} \frac{1}{\left|D_{m}\right|^{\varrho}} \geq \frac{m}{2}
$$

or

$$
\left[2\left(\sigma+\frac{1}{2}\right) e^{Q}\right]^{1 / e} m^{-1 / e}=T_{6} m^{-1 / e} \geq\left|D_{m}\right|
$$

'Then
$A(r) \leq \sum_{m=1}^{m_{0}} \ln \left(1+2 \varepsilon^{1-2 / \zeta}\left|D_{m}\right| r\right)+\sum_{m=m_{0}+1}^{\left[T_{\varepsilon_{r}} r\right]} \ln \left(1+2 \varepsilon^{1-2 / \zeta}\left|D_{m}\right| r\right) \leq o\left(r^{0}\right)+A_{1}(r)$,
where

$$
A_{1}(r)=\int_{m_{0}}^{T_{5} r^{2}} \ln \left(1+2 \varepsilon^{1-2 / \zeta} x^{-1 / \varrho} T_{\mathrm{o}} r\right) d x
$$

Let $y=r x^{-1 / Q}$. Integrating by parts, we have

$$
\begin{gathered}
A_{1}(r)=r^{\varrho} \int_{r m_{0}-1 / \varrho}^{T_{5}-1 / e} \ln \left(1+2 \varepsilon^{1-2 / \zeta} T_{6} y\right) d\left(y^{-\varrho}\right) \\
\left.=r^{\varrho}\left\{\ln \left(1+2 \varepsilon^{1-2 / 5} T_{6} y\right) \cdot y^{-\varrho}\right]_{r m_{9}}^{T_{5}-1 / e}\right\}+r^{\varrho} \int_{T_{5}-1 / e}^{r m_{0}-1 / e} \frac{2 \varepsilon^{1-2 / \zeta} T_{6} y^{-\varrho}}{\left(1+2 \varepsilon^{1-2 / 5} T_{6} y\right)} d y
\end{gathered}
$$

and since $\ln \left(1+2 \varepsilon^{1-2 / 5} T_{6} T_{5}^{-1 / g}\right) \leq 2 \varepsilon^{1-2 / \zeta} T_{6} T_{5}^{-1 / \ell}$, we have

$$
\begin{equation*}
A(r) \leq r^{\varrho} 2 \varepsilon^{1-2 / \zeta} T_{6} T_{5}^{\frac{Q^{-1}}{Q}}+r^{Q} \int_{T_{5}-1 / Q}^{r_{0}-1 / e} \frac{2 \varepsilon^{1-2 / \zeta} T_{6} y^{-\varrho}}{\left(1+2 \varepsilon^{1-2 / \zeta} T_{6} y\right)} d y+o\left(r^{Q}\right) \tag{13}
\end{equation*}
$$

For $\varrho<1$,

$$
\begin{align*}
& \int_{T_{5}-1 / \varrho}^{m_{0}-1 / \varrho} \frac{2 \varepsilon^{1-2 / \zeta} T_{6} y^{-\varrho}}{\left(1+2 \varepsilon^{1-2 / \zeta} T_{6} y\right)} d y \leq \int_{0}^{\infty} \frac{2 \varepsilon^{1-2 / 5} T_{6} y^{-\varrho}}{\left(1+2 \varepsilon^{1-2 / \zeta} T_{6} y\right)} d y \tag{14}\\
& \leq \varepsilon^{\varrho(1-2 / \zeta)}\left(2 T_{6}\right)^{\varrho} \int_{0}^{\infty} \frac{w^{-\varrho}}{(1+w)} d w \leq \varepsilon^{\varrho(1-2 / 5)}\left(2 T T_{6}\right)^{\varrho} \pi \operatorname{cosec} \varrho \pi
\end{align*}
$$

since $\int_{0}^{\infty} w^{-\varrho} /(1+w) d w=\pi \operatorname{cosec} \varrho \pi$ for $\varrho<1$.
For $e=1$,

$$
\begin{align*}
& \int_{T_{6}-1 / e}^{r m_{0}-1 / e} \frac{2 \varepsilon^{1-2 / 5} T_{6}}{y\left(1+2 \varepsilon^{1-2 / \zeta} T_{6} y\right)} d y=2 \varepsilon^{1-2 / /} T_{6} \int_{T_{5}-1 / e}^{r m_{0}-1 / Q}\left\{\frac{1}{y}-\frac{2 \varepsilon^{1-2 / 5} T_{6}}{\left(1+2 \varepsilon^{1-2 / 5} T_{6} y\right)}\right\} d y \\
& \left.=2 \varepsilon^{1-2 / 5} T_{6}\left\{\ln \left(\frac{y}{1+2 \varepsilon^{1-2 / 5} T_{6} y}\right)\right]_{T_{5}-1 / e}^{r m_{0}-1 / e}\right\} \\
& =2 \varepsilon^{1-2 / 5} T_{6}\left\{\ln \left(\frac{r m_{0}^{-1 / e}}{1+2 \varepsilon^{1-2 / \zeta} T_{6} r m_{0}^{-1 / e}}\right)-\ln \left(\frac{T_{5}^{-1 / e}}{1+2 \varepsilon^{1-2 / 5} T_{6} T_{5}^{-1 / \varrho}}\right)\right\} \\
& \leq 2 \varepsilon^{1-2 / 5} T_{6}\left\{\ln \left(\frac{1}{3 \varepsilon^{1-2 / \zeta} T_{6}}\right)+\frac{1}{\varrho} \ln T_{5}+\ln \left(1+2 \varepsilon^{1-2 / 5} T_{6} T_{5}^{-1 / e}\right)\right\}
\end{align*}
$$

for r sufficiently large.
For $\varrho>1$,

$$
\begin{gather*}
\left.\int_{T_{5}-1 / \varrho}^{r m_{0}-1 / \varrho} \frac{2 \varepsilon^{1-2 / 5} T_{6}}{\left(1+2 \varepsilon^{1-2 / 5} T_{6} y\right) y^{\varrho}} d y \leq 2 \varepsilon^{1-2 / 5} T_{6} \int_{T_{5}-1 / \varrho}^{r m_{a}-1 / \varrho} \frac{d y}{y^{\varrho}} \leq 2 \varepsilon^{1-2 / 5} T_{6}\left\{\frac{y^{-\varrho+1}}{1-\varrho}\right]_{T_{5}-1 / \varrho}^{m_{0}-1 / e}\right\} \\
\leq \frac{2 \varepsilon^{1-2 / 5}}{\varrho-1} T_{6}\left\{T_{5}^{\frac{\varrho-1}{\varrho}}-r^{1-\varrho} m_{0}^{\frac{\varrho-1}{o}}\right\} \leq \frac{2 \varepsilon^{1-2 / 5}}{\varrho-1} T_{6} T_{5}^{\frac{1-\varrho}{\varrho}} \tag{14"}
\end{gather*}
$$

By collecting the estimates (4), (6), (8), (9), (11), (12), (13), and (14), (14'), or ($14^{\prime \prime}$) (as the case may be), we have

$$
h_{r}(w)-h_{r}\left(w^{\prime}\right) \leq k(\varepsilon)
$$

where $k(\varepsilon)$ involves terms in $\varepsilon^{1 / \xi}, \varepsilon^{1-2 / \zeta}$ and for $\varrho<1$, $\varepsilon^{\varrho(1-2 / \xi)}$ (times logarithmic terms). Thus, for $\varrho \geq 1$, we choose $\zeta=3$, and for $\varrho<1$, we choose $\zeta=2+1$ ϱ. Then
where

$$
\begin{gathered}
h_{r}(w)-h_{r}\left(w^{\prime}\right) \leq T \varepsilon^{\beta} \ln \frac{1}{\varepsilon} \\
\beta=\min \left(\frac{1}{3}, \frac{\varrho}{2 \varrho+1}\right)
\end{gathered}
$$

By reversing the roles of w and w^{\prime}, we get

$$
\left|h_{r}(w)-h_{r}\left(w^{\prime}\right)\right| \leq T| | w-\left.w^{\prime}\right|^{\beta-\gamma} \text { for any } \gamma>0
$$

Q.E.D.

Corollary. Under the same hypotheses as in the theorem, we have

$$
h_{c}^{*}(z)=h_{c}(z)
$$

and

$$
\left|h_{c}(w)-h_{c}\left(w^{\prime}\right)\right| \leq T\left\|w-w^{\prime}\right\|^{\alpha} \text { for }\|w\|=\left\|w^{\prime}\right\|=1
$$

Proof. $h_{c}(z)=\sup _{\theta} h\left(z e^{i \theta}\right) \quad$ [3, p. 288].
One is interested to ask what kind of a function can have a non-continuous indicator. It is clear, at any rate, that such a function cannot be constructed by taking the product of functions depending on one variable.

References

1. Gruman, L., Entire functions of several variables and their asymptotic growth. Ark. Mat. 9 (1971), 141-163.
2. Lelong, P., Fonctions entières de type exponentiel dans \mathbf{C}^{n}. Ann. Inst. Fourier (Grenoble) 16, 2 (1966), 269-318.
3. -»- Non-continuous indicators for entire functions of $n \geq 2$ variables and finite order. Proc. Symp. Pure Math. 11 (1968), 285-297.
4. Levin, B. JA., Distribution of zeros of entire functions. Translations of Mathematical Monographs, Vol. 5, Amer. Math. Soc., Providence, R. I. (1964).

Received April 5, 1971
Lawrence Gruman
1, rue Lebouis
F-75 Paris 14^{e}
France

