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1. Introduction 

With a symmetric space of non-compact type there are associated certain spaces 
called boundaries and to each boundary there corresponds a Poisson integral. A 
natural question is then to ask for convergence theorems of Fatou's  type. Helgason 
and Kors [8] have proved ~)radiab convergence for Poisson integrals of L ~- 
functions, and for symmetric spaces of rank one Knapp [9] has proved ))radiab 
convergence for Poisson integrals of measures. These results have been extended 
in [10], [11], [12] and [13] to convergence with respect to generalized ~mon-tangentiab) 
domains (admissible convergence). The purpose of this paper is to prove Fatou's  
theorem for LP-functions, /9o < / 9  ~ ~ ,  where /9 0 depends on the symmetric 
space and the boundary (Theorem 6.2). This result is still unsatisfactory since 
/9 0 > 1 and /9o tends to inf ini ty with the rank. For the m~ximal boundary of 
SL(1 ; R)/SO(1 ; R) we obtain Po = 1 -- 2 (Theorem 7.1). 

We now sketch the proof of our general result in the simplest ease when the 
boundary is the maximal one. We represent the symmetric space as G/K, where 
G is a semisimple Lie group and K c G a maximal compact subgroup. Let G 
KAN be the Iwasawa decomposition, let 0 be the Caftan involution, write ~7 = 
ON and let M be the centralizer of A in K. The Poisson integral is defined 
as an integral over K/M but our first step consists of transferring it to an integral 
over 2V. This leads us to consider the integral 

F(~oaK ) -~ f f(~oa~a -1) ~(~)d~, f e LP(~), (1.1) 

where y) is a certain Jacobian. Set M*f(~)= SUPaeA IF(~aK)l. Fatou's  theorem 
will follow from the estimate 

IIMVIIp ~ c~ Ill lip for /9 >/90, 0,2) 
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To prove this inequality we need an estimate of ~. In w 5 we shall prove that  

f _ l+e ~(~) < C 1~1 -~ and ~(n) ~ d~ < ~ (e > 0). (1.3) 

N 

l~ere I " I is a certain ~morm~) on N; the ball of radius R will be denoted by B(R). 
In the maximal botmdary case (1.3) follows from some results of Harish-Chandra 
[6]. We shall also need a result due to Knapp and Williamson [10] and Kor~nyi 
[13] which states tha t  a certain maximal function M f  on N satisfies IIMfllp 
Cp[If[Ip, ~P > 1. To prove (1.2) we now split the integral (1.1) into a sum of integrals 
over the sets A, where 2-J < y~(~)~ 2 -j+l, then use H61der's inequality and 
(1.3). This gives 

[F(~aK)I _ Const. ~ ((2-J+~)~-~/~-~) ~/~ (meas B(2Z~))~/. (M(/~)(~))~/~. 
j=t 

When ~o > P0 the sum is convergent and we obtain 

M*f(~) <_ C~ (M(fp)(a) )~/~' , p > Po , 

from which (1.2) follows. The details are given in w 6. 
In  w 7 we consider SL(I ; R)/SO(I ; R). Using the explicit formula for W we 

shall obtain a better result than Theorem 6.2 by covering the sets Aj with finite 
unions of rectangles. 

I am indebted to A. W. IZ_napp and E. M. Stein for the vMue of Po in Theorem 
7.1. My original value was worse, but during the final preparation of this manuscript 
they communicated to me that  they had obtained Theorem 6.2 for maximal bound- 
aries and Theorem 7.1 some two years ago. Their results were never published, 
however. This inspired me to rewrite my original proof of Theorem 7.1 by inserting 
Lemma 3.3 thus being able to get their value of ~o o . This also simplified notationally 
the proof of Theorem 6.1. 

I would also like to express my thanks to L. Carleson and S. I-Ielgason for helpful 
conversations in connection with this paper. 

2. Notation 

Let G be a connected semisimple Lie group with finite center, K a maximal 
compact subgroup and X ~- G/K the corresponding symmetric space. Let g and 

be the Lie algebras of G and K, let g = ~ + ~p be the Cartan decomposition and 
let a be a maximal abelian subspace of p. We denote by ~ a Cartan subalgebra 
of g containing a and consider the eomplexifieations g~ and I) ~ of g and 1). 
The set of non-zero roots of g~ with respect to h' will be denoted by A and the 
corresponding root spaces by g~ (~ e zJ). The roots are real-valued on a @ ~+, 



:FATOU~S THEOI~ElYI :FOI~, SYI~METI~IC SPACES 35 

where i~ + ---- ~ f] ~, so we fix a lexicographic ordering of A by  choosing a basis 
in a and in I) +. Denote by  A + the set of positive roots and by  X the set of  
simple roots. Let  r: (l)c)*-~ a* (* denotes ~)the dual of))) be the restriction map  
a-->c~I~ and set /~-----r(A)~{0}, S----r(X)~{0}. The elements of R are called 
the restricted roots of ~ with respect to a. The ordering of A induces an ordering 
of R under which S is the system of simple restricted roots. 

For each E C S  we set 

~(E) ~ { H E ~ ; ~ ( H ) - ~ 0  V c r  and 

a+(E) = {H e a(E) ; ~(H) > 0 V ~ e S \ E } .  

We consider the adjoint representation of a(E) on 9 and denote by  R(E) the  
set of all non-zero weights, by  ri~(E) (a E/~(E) ) the corresponding weight spaces 
and by  ri0(E) the weight space for 0. Then ri is the direct sum of the weight spaces 

.q~(E), a e R(E) U {0}, and ~ E R(E) if and only if there exists a fi E R such tha t  
a = fihl(E) r 0 .  Denote by  R+(E) and R-(E) the set of all positive respectively 
negative weights. Set 

u(E) -~ ~ 9~(E) , ~(E) = ~ 9~(E) ; 
~eR+(E) ~eR--(E) 

these are nilpotent subalgebras of g.  
ri0(E) is a reductive subalgebra of 9; we denote its semisimple part  by  fl~. Set 

~ r i E N ~ ,  ~ F : ~ E N o ,  a E = r i F r l a  and m(E)=r i0(E)Fl~.  Then fE____~E~_~E 
is a Caftan decomposition, a E is a maximal abelian subspace of pE an4 fE is COn 
rained in re(E) (the centralizer of a(E) in ~). 

Denote by  2A the sum of the roots in A +, by 2Az the sum of all ~ C A +  
such that  ~la(E) e R + ( E ) ,  and put  9 = AI, and 9E---- A~]a" 

The analytic subgroups of G corresponding to a ,  a(E),  u(E), K(E), l~ and 
a ~ will be denoted by  A, A(E), N(E), ~(E) ,  K ~ and A E. Finally, let M(E) be 
the centralizer of a(E) in K, i.e., M ( E ) - ~ { k e K ; A d k ( H ) = H  V H e a ( E ) } .  
M(E) centralizes A(E), normalizes ~V(E) and contains K E. 

I f  E = 0 we have ct(E) = a, B(E) = R, K ~ = A E = {e}, eE -~ e, and in this 
case we shall write 9~, u, u, N, N, M instead of ri~(E), u(E), ~(E), N(E), _N(E), 
M(E). 

By the Iwasawa decomposition theorem there exists a uniquely defined 
continuous function G--> K • a • N,  g--> (u(g), H(g), v(g) ), such t ha t  
g : u(g) (exp H(g)) v(g) for all g E G. 

The spaces K/M(E) (E C S) are the boundaries of X in the sense of Fursten- 

berg [4] und Satake [14]. Denote the cosets ]r by k and the identity coset 

{K} of X ~ G/K by  o. G acts on K/M(E) by  g(~) ~ z(gIc). The Poisson integral 
P~ f  of a function f E LI(K/M(E))  is defined by  
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where d/~z 

PEf (g " o) = f f(g(~))d#E(~) , 
KIM(E) 

denotes the normalized K-invariant measure on K/M(E). 

3. Semirestricted admissible convergence 

We shall consider the beh~viour of the Poisson integral PEf(x) when x tends 
to a boundary  point. Following Kors [13] we define the following notion of 
convergence. 

Let C C X be compact with non-empty interior and invariant under M(E), 
let T E a(E) and pitt 

d T ( k ) : ( k a . x ; a E A ( E ) ,  l o g a ~ T ,  x E O } ,  

where log a ~ T means log a -- T E a+(E). ~T(~) is called a truncated semi- 

restricted admissible domain at k E K/M(E). 
A function F on X is said to converge to the number r at ]~ ( K / M ( E )  

admissibly and semirestrictedly if for all compact M(E)-invariant sets C C X with 

non-empty interior and all e > 0 there exists ~ T E a(E) such that x (~4T(k) 
implies I F ( x ) -  r] < s. We say tha t  F converges to a function f on K/M(E) 
admissibly and semirestrictedly a.e. if F converges to f(k) in the sense just des- 

cribed at almost all ~ E K/M(E). 
In the case of the maximal boundary, i.e., E ---- O, semirestricted admissible 

convergence coincides with unrestricted admissible convergence as defined in [11]. 

By the Bruhat lemma the map ~: N ( E ) - ~  K/M(E) defined by ~(~) -~ z(~) 
is an injeetive analytic map of N(E) onto an open dense subset of K/M(E) whose 
complement has measure zero (see [13]). This allows us to transfer the Poisson 
integral to an integral over N(E), i.e., there is a function ~z on N(E) such tha t  

/ "  

PEf(g" o) = ] f(g(~({))) ~E({) d{ .  

I f  the I~aar measure d~ on N(E) is normalized so that  f~(~)  

(see [11]). 
t~or any g, h E G we denote by gh the element hgh -1. If  no E N(E), m E M(E) 

e -2eE("(~)) d~ = 1 then 

(3.1) 
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and a E A we have ~(goman(g)) = ~('~o~mam). I t  follows that  (~oma)~(~) ~-- 
�9 (go~m"). t~ence 

P d  (no ma " o) : f f o ~(~o ~'~") ~o~(~) d~ . (3.2) 

~(~) 

The map ~ amounts to transforming the Poisson integral from the disc to the  
upper halfplane in the classical case. The main reason for going over to ~he group 
2V(E) is that  the action of the group A on the points ~(~) is so simple and this 
makes all computations manageable. We now define the substitute for the non- 
tangential domains of the halfplane and then state a lemma which connects semi- 
restricted admissible convergence with these new domains. 

~'or any ~ E N ( E ) ,  T E a ( E )  and for any compact sets U~Tf f (E) ,  V c A  E, 
let /,s,r(~) ={r ~.o;  a E A ( E ) ,  log a ~ T ,  a~E U, m E K  ~ ,a 'E  V}, 

= U ; T e a (E)} .  

LEMMA 3.1. (Kors [13]). Let ~ E IV(E). A function F on X converges to 
the number r at ~(~) semirestrictedly and admissibly i f  and only i f  for all s > 0 
and all compact U ~ ~(E) ,  V c A E with non-empty interiors there exists T E a(E) 
such that x E F T, r(it) implies iF(x) --  r I < e. 

We stlall also need the following result from [13]. 

L~)~MA 3.2. Let 1 ~_ p ~_ o~. I f  for all f such that f o ~ E LP(N(E)) the Poisson 
integral of f converges admissibly and semirestrictedly a.e. to f ,  then the same is true 
for all f E Lv(K/M(E)  ). 

In  the classical case there is no difference between raclial convergence and non- 
tangential convergence of Poisson integrals. We shall now give an analogous resul~ 
for the general case. 

For compact sets U ~ N(E),  V c A E we define the operators M* by  U, V 

M~T, vf(~) = sup [PEr(x)[, f E LI (K/M(E)  ), ~ E N(E).  
xeFu, v('~) 

Put  M* = M~)O ~ *  , where e is the identity of G. 

L~M~xA 3.3. For all compact sets U c N~(E), V ~ A E there is a constant C such that 

M *  vf  (~) ~ C.  (M* If[ (~)) 

for all f e L~(K/M(E) ) and ~ E N(E).  

Proof. Let ~, n0E2V(E), a E A ( E ) , n l E  U, ate V and r e E K  E. Set n2 
a ' - 1  m - 1  n l  1 m~a' .  Since the map n --> n"' has Jacobian e -2-~176 we obtain 
from (3.2) after a change of variables: 
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Set g----a ' -~m -~7~ -~m. Then 

:By (3.1) 

PEf(~oa~lma' " o) ~ PEf (~o~maa '  . o) 

= f f o 1:(~o "~m") We(~2) e 2~EO~ d~,. 

~(E) 

~ = g~a' and it follows that  

H(r -~ H(gx(~) ) -q- H(r -]- log a ' .  

~VE(~2) e--2eE (l~ ~ ~OE(~ ) e - 2 e E ( H ( g ~ ( ~ ' ) ) )  . 

When  ffa, a ' , m  and ~ run through U, V, K E and S(E) ,  respectively, 
s tays  in a compact set. I t  follows that  there is a constant C, depending on 
and  V, only, such that  

~/)E (n2) e2QE(l~ ~ C ~)E(n) . 

~-~ence 

[PFf (noah1 m a ' '  o)] < C f Ifo v (g0~)[  ~vE(~)d~ C (PElf[ (~o ma"  o) ) .  

~(~) 

This proves the lemma. 

g~(~) 
U 

m 
4. A maximal theorem Ior N(E) 

We choose a basis X1, X2 . . . . .  X~ in ~(E) such that  
(i) for each 1 < j < r  there exists an a i E R  + such that  X j E g _ ~ , i ,  

(ii) [X~, Xi] e ~ik-~ R Xk  for all i, j .  
L e t  1t i be the linear space spanned by  X1, X2, �9 �9 �9 , Xi .  Then 1l 0 : {0}, 111, 113 . . . .  , 
ur : n(E) forms an increasing sequence of nilpotent ideals in ~(E) with In(E), 11j] 
(:: 1t/_1. We conclude (see [2, p. 513]) that  the map 

~: (xl, x2, . . . , x,) --> (exp x ,X , ) "  ... �9 (exp x2X2) (exp xiX1) 

is an analytic homeomorphism of R" onto 2V(E). 
Let H o E a  +(E) be the element such that  a ( H 0 ) =  1 for all c c E S ~ E .  We 

introduce a norm on 2V(E) by  putting for ~ = ~(x 1 . . . . .  xr) 

I'll : max [Xj[1/~J(HO. 
l_<j_<r 

For  every R >  0 we define the sets B ( R ) = { ~ E 2 7 ( E ) ; [ ~ [ < R } .  This norm 
has the following properties. 
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LEM~A 4.1. (i) [~exp t//o] = e-t [~] for all t E R, ~ E ~(E) .  
(ii) There is a constant C such that 

I ~ [  < C (l~] § I~l) for all ~bl, ~2 e N(E) .  
(iii) There is a constant C such that 

I~"l ~ C ]~] for all m E M(E), ~ E N(E). 
(iv) meas B(R) = .R ~'~(H') meas B(1) for all R > O. 

Proof. Let = q ( x  1 , . . . , x ~ ) .  For a E A  we have 

~a = (a(exp x,X,)a-1) �9 . . . .  (a(exp x~X~)a-1)(a(exp xlXl)a -~) 

= q(Ad a (xxX~) . . . .  , Ad a (x,X~)) 

= ~0(Xl  e - a ~ ( l ~  , �9 . �9 , X r e - - a r ( l ~  

This gives (i), and (ii) is an easy consequence of (i) (see [11, Lemma 2.3]). The map 
(m, ~) ---> ~", M(E) • N(E) --->~V(E), maps compact sets onto compact sets. Hence 
there is a C such that  I~l < 1 implies I~=l < 0 for all m E M(E). I f  ~ E 2i(E) 
is arbitrary we choose t such that  d =  I~[. Then ]~oxp ,Ho] = 1 and e-'l~al = 
](~z)o~p mo[ = [ (~p ,~o)~] < C, i.e., 1~1 _ C I~l. This proves (iii). Since B(d) = 
B(1) ~ (iv) follows from the fact that  for a E A the map ~ - +  ~ of N(E) 
onto N(E) has Jacobian e -2~(l~ 

Let D be the family of all sets o~=~( I~  • / 2 . . .  • L) where I i c  R are 
open symmetric intervals around 0. We note that  B(R) ~ E g2 for each a E A and 
each R > 0. For f E Llo~@(E) ) we define the maximal function M f  by 

i f  Mf(~) = ~e~sup meas@) If( ~ ~')L d~', ~7 ~/W(E). 
60 

The following maximal theorem is a special case of Theorem 3.1 in [13] (cf. 
also [10]). 

T~EORE~ 4.2. ~or each p > 1 there exists a constant Cp such that 

[IMfNp <~ Cp[]f[jp for all f E Lp(~(E) ). 

The proof in [13] gives the estimate C p = 0 ( ( p - -  1) -r) as p - + l .  
We shall also need the maximal operator M" defined by 

1 / 
= sup If(  R>0 meas B(R) 

BCR) 

• (E) .  

I t  is well known that  21/' is of weak type  (1,1) (see e.g. [3]). 
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5. The behaviour of ~ at infinity 

In this section we shall prove some results on the behaviour of YJE at infinity. 
In the case E = 0 they are essentially due to Harish-Chandra [6], and the ex- 
tensions to the general case are straight-forward. We first recall some facts about 
representations (see e.g. [15, Ch. VIII for details). 

Let  a be an irreducible representation of g" on a finite-dimensional vector 
space V. Since the symmetric space X is uniquely determined by  fl we may assume 
that  G is imbedded in the complex simply connected Lie group that  corresponds 
to the Lie algebra fl~. The representation aI.~ then lifts to a homomorphism a: 
G ~ SL(V) given by  ~(exp X) ---- e ~ X E ft. I t  is possible to introduce an inner 
product on V so that  ~(]c) becomes unitary for each k e K and JT(a) becomes 
self-adjoint for each a E A. Vectors belonging to different weight spaces of ~(a) 
are then orthogonal. I f  o denotes the highest weight of a and $ is a unit vector 
belonging to the corresponding weight space then, using the Iwasawa decom- 
position, we obtain 

]J~(g)$1 = e~('(~)) for all g E G, 

because a ( X ) ~ = 0  for all X E u ,  a ( H ) ~ = w ( H ) ~  for all H E a  and ;~(k)~] = I~] 
for all ]c E K. Let  for each a E A the vector H :  E [fl;, fi~_:] be determined by  
a(Ha) = 2. There exists an irreducible finite-dimensional representation of highest 
weight ~o if and only if eo(H~) is a non-negative integer for each cr E X. 

For the purpose of this section we introduce the following notation. 

A++(E) ---- {~ E A+; ~]~(~) E R+(E)}, A+~ = {~ E A+; ~l~(~) =- 0}, 

X(E) = X f~ A++(E) , ZO(E) = Z 17 A+O(E). 

Obviously, A+~ -~ ~+~A++(E) and Z~ = Z ~ X ( E ) .  

J~EMMA 5.1. There exist irreducible finite-dimensional representations of highest 
weight A and 2 A~ .for each E c S. 

Proof. Denote by  s: (~ E X) the Weyl symmetry given by  s : i  = 2 -- ),(Ha)~. 
s: leaves A+~{a} invariant whereas s:~ =- - -~ .  Hence s:A = A - - ~ ,  which 
implies --A(H~) = s~A(H~) = A(H~) -- a(H~), i.e., A(H~) = 1. 

Suppose a E2:~ Then s~[~(s) = k]a(E) for each ~ EA. Consequently, 
a s leaves the set A++(E) invariant. Hence s~A E = AE, i.e., AE(H~)= O. 

Suppose a E X(E). I f  Z E A+~ then ~ = ~ezo(E) n~ fi with non-negative 
integers n~, and since fl(H~) is a non-positive integer if  ~, .8 C X, ~ ~ ,8, we obtain 
s~Z ~ ~ + mzc~ where mz is a non-negative integer. Hence s~(A -- AE) = (A -- 
AE) + �89 (Z~ed+0(E)m~) a, which yields 2 AE(t tJ  = 2 A ( H J  + ~ m~ = 2 + ~ m~. 
Thus 2 AE(H~) is a positive integer in this case. 
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L ~ ) I A  5.2. Let ~o be the highest weight of an irreducible finite-dimensional repre- 
sentation a. Then: 
(i) r > 0 for all ~ EN(E) .  
(ii) I f  co(H~) > 0 for all ~ E X(E), then there is a constant (~ > 0 such that 

e ~(H(~)) >_ ~ I~l for all ~ E/V(E). 

Proof. Let  ~ be a ~nit  vector belonging to the weight co. Le t  21 < ~2 < �9 . .  < 2r 
be the  elements in A++(E); then  ~(E) = ~}=1 (fi~-;./0 g). F ix  a basis X 1 , , . .  , Xr 

in ~(E) by  choosing X/Efl~_a/fl g; then  each ~ E ~ ( E )  can be wri t ten ~ = 

(exp xlX1) �9 . . .  �9 (exp x~X~) and 

r 

j=l  (5.~) 
1 1 , 

j . . . . . .  Z j ~ . = 0  j l  ~ " " " " " ~ X{1 " . �9 . "  XJrr ( Y ( X 1 )  7~"  . . .  ' ( 7 ( X r )  j r  ~ ,  

where the sum is actual ly  finite. 
Le t  Pk, 0 < ]c < r, denote the orthogonal projection of V onto the weight 

space corresponding to the weight ~o --  2k, where we pu t  20 = 0. F rom (5.1) we get 

P0(~(g)~) = ~ and 

1 1 
- -  . . o Pk(7~(s . . . . S ~ . x { ' . . . . . x i ~ a ( X ~ ) ~ '  . . . a ( X ~ ) i ~  ( l < k < r )  

where the sum is taken  over all r-tuples (j~ . . . . .  fi) such tha t  ~:=~ j , t ,  : 1~; from 
the ordering of the roots it  follows tha t  j~+~ . . . . .  j~ : 0 and j~ : 0 or 1. 
Obviously, 

For  /~ = 0 we obtain e ~ ~ [~] -= 1, and this proves (i). 

The norm I " ] on ~r(E) defined in w 4 depends on the choice of basis elements 
in n(E) but  different choices give rise to equivalent  norms. (This follows easily 
from L e m m a  4.1 ( i ) . )  Therefore, we m a y  assume tha t  the basis is the one chosen 
above and then  L e m m a  5.2 (ii) amounts  to proving 

e~J (H&~ ~ ~ Ixj] , 1 < j <_ r . (5.2) 

We first  note t ha t  a(Xi)~ V: 0 for each j. Indeed,  the assumption about  w(H~) 
implies t ha t  ~o(Hz) > 0 for all ~ E A++(E) so if  we choose I7i E g~'i such tha t  
[ Yj, Xj] = H~.j t hen  

~( ~)~(x~)~ = ~ (&~)~  + ~(&)~( ~.)~ = ~o(H~.~)~ # o . 

We now prove (5.2) by  induction.  Assume (5.2) proved for j < /~ .  Then 
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/Pk(~(77)~)t ~ Ixk(~(Xk)$l - -  ~ j l  ~I. " ' ' "  jk -1  ! x~' " " " " " ~k--11 6(X1)J~ " " (~(Xk-~)ia-~ 

Const. Ix~l - Const. ~ Ix~li~-... �9 lx~_xI ~-~ 

Const. [x~I - Const. ~ e (i~~('~ +"" +Jk-l~k-l(tt~176 , 

where all sums are taken  over the ( k - - 1 ) - t u p l e s  (j~ . . . . .  j~_a) such tha t  
k--1  " ~.=~ 3.2. -- ~ .  Hence 

IP~(7~(~)~)l _ Const. lx~I - Const. d ~(".)~('(~)) 

and it  follows tha t  

lx~l < Const. (e ~(~(~)) + e ~gm)~ < Const. e a~(~o)~(H(~)), 

and this completes the proof of (5.2). 

L]~MMA 5.3. (i) 0<~0~(~)__<1 for  all ~ C N ( E ) .  
(ii) There is a constant C such that 

~0E(n ) ~ C ]n1-1 for  all ~ e 7~(E) 

and ~p(~) ~ C ]~]-2 for  all ~ C N .  

Proof.  L e m m a  5.3 is nothing but  L e m m a  5.2 wi th  w = A and  co ~ 2Az; it  
follows from the  proof  of L e m m a  5.1 t h a t  the hypothesis  of L e m m a  5.2 (ii) is then  
fulfilled. 

~ e m a r k  1. L e m m a  5.2 (i) occurs in [6] as Lemmas  2, 35 and  43. For  E = 
L e m m a  5.3 (ii) can also be deduced from L e m m a  40 and an inequal i ty  on p. 290 in [6]. 

t~emarlc 2. lq'or symmetr ic  spaces of rank  one Helgason [7] has obtained an 
explicit formula for ~ from which i t  follows tha t  ~o(~) < C [~1-4~('~ However,  
in general the es t imate  for to of L e m m a  5.3 is best possible as c~n be seen by  con- 
sidering ~qL(3;R)/S0(3;R). 

LEMMA 5.4. For  each E C S there is a constant YE < 1 

f ( ~ E ( ~ ) ) ~ d ~ <  ~ /f > Y YE. 

When  E - ~  O ,  YE~-- �89 

such that 

Proof.  Obviously, there is an open h~lfspace Q in a which is bounded by  a 
hyperplane passing through 0 E a and such tha t  {~ E R+; ~[~(~) C R+(E)} 
{~ e/~+; H a e Q} ( = / ~  say). Therefore, by  a theorem of Gindikin and Karpe-  
levi6 [5], i f  ~ is a real-valued linear functional  on a then  
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/ ,  

I(v) == [ e -(~+e)(u(~)) d~ < 
i g  

if and only if v(H~) > 0 for all a E R~. Now consider vr : 2 y ~ s  - - ~  . l~or y : 1, 

I(v~) = f ~vs(~ ) d~ = 1. Hence v~(H~) > 0 for all ~ E R~. By continuity there 
exists a VE< 1 such tha t  v~(H~)> 0 for all ~ E R ~  and y > y s .  Hence l(vv) 
< ~ for y >  Ys. When E =  ~ we can take y~.=  �89 since ~(H~) > 1 for all 

ER  +. 
When E = t3 another proof of the above lemma can be found in [6, Lemma 45]. 

6. The boundary behaviour of Po i sson  integrals  

Let H0 E a+(E) be the element such that  ~(H0) : 1 for all ~ E S ~ E  and set 

~0 E ~--- 

2Q(Ho)-- I ,  if E = D  

2 Qs(Ho) -- Ys 

1 - -  ~'E 
, otherwise, 

where yz is the constant of Lemma 5.4. 

T~t~oI~E~I 6.1. Let U G N(E) and V C A s be compact. For each p > Ps there 
exists a constant Cp (depending on U and V) such that 

IIM*.vfll~, < Q, IIfo sl]~ 

for all f e L~(K/M(E) ). 

Proof. In view of Lemma 3.3 it suffices to prove the estimate of Theorem 6.1 
with M* instead of M*,v .  Assume fo ~ E LP(N(E) ), otherwise there is nothing 
to prove. Set A i = { ~ E 2 V ( E ) ;  2 - J<y~s(~)<2-J+ l} ,  j =  1 , 2 , . . . .  Choose p' 
sneh tha t  Ps < P' < P and let 1/q' + lip' = 1. Let  ~o E N(E), a E A(E), m E Ks; 
by (3.2) 

IPsf (Gain'o), ~ f If o~ (~O~'~a)l ~OS(~ ) d~ = ~ f 
J j=l d 

N(E) ~J 

~j~=l I f  [f~ lip" I f  (~E(~))q'd~] l/q' 

By Lemma 5.4 there is, for each y > Ys, a constant Cr such that  

= C~ (?_-j+i)r 



44 LAI:r -AI~IE L I N D A H L  

]By a change of  variables we obtain  

f If ~ ~c (~o ~ma) V / d~ : e 2oEo~ f If ~ -c (~o a) [ / d~ , .  
Aj .,4ma 

J 

(6.1) 

B y  L e m m a  5.3, A j c B ( C 2  i~E) where ~ : � 8 9  if E :  D and ~ L  1 otherwise. 
Using L e m m a  4.1 (iii) we then see tha t  there is a cons tant  C 1 such tha t  A~ c 
B(C 1 2J~E), : Bj say, for all m E K E. Thus the right hand  side of (6.1) is majorized 
by  

P 
e 2-~176 ] ]f o z (~0~)] e' d~ _< 

e :eE0~ meas (B]) M ( f  o z)/(no) = 

= meas (Bj) M ( f o  z)/(n0) --< C2 22J~Ee~(H~ M ( f  o r ) / (n0) .  

We conclude tha t  

SO 

oo 

M * f  (~o) <-- 2 Cr C 2 ( ~ 2 - ' j )  (M( f  o ~)/(~0) )l/g, 
j = l  

where ~ = 1 - - 7 / q ' - -  2~E~E(Ho)/p'. Since p ' > p z  we can choose y >  YE 
t ha t  the  sum is convergent .  Hence  

M * f  (~o) <-- C3 (M( f  o ~)/(~o) )l/g. 

Applying Theorem 4.2 we obtain  

I[M*flle _< Czll (M(f  o -r)/)'/p'I1 ~, : C, ([IM(f o T)P'l[y/p,) l'/p" 

C 4 ( H ( f o  T)P'Hp/p,) lip" : C 4 lifo "flip. 

This finishes the proof. 

THEORE~ 6.2. I f  ~9 > PE and f E Lv(K/M(E) ) then the Poisson integral of f 
converges admissibly and semirestrictedly to f a.e. 

Proof. B y  vir tue of  L e m m a  3.2 it is enough to consider the case where f o ~ C 
LP(_~(E)) and since the theorem holds for cont inuous functions,  this ease follows 
from Theorem 6.1 and L e m m a  3.1 by  classical methods  (cf. [9]). 

Remark. For  symmetr ic  spaces of rank one we use R e m a r k  2 following L e m m a  
5.3 instead of  L e m m a  5.3. This gives the est imate 

M*f(g) < C o n s t . . ( M ' ( f  o 3)(~)) . 

Since M '  is of weak t ype  (1,1), it follows tha t  M* is of  weak type  (1,1) and we 
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conclude t h a t  ~'atou's theorem holds for p > 1 in this case. (This proof  is due 
to Kors  [12].) 

Even  for spaces of arbi t rary  rank  we can sometimes get sharper results t h a n  
Theorems 6.1 and  6.2 by  looking at  the  explicit formula for ~ .  We shall i l lustrate 
this wi th  X -= SL(I;R)/SO(I;R) in the  next  section. 

7. SL(1 ; lt)/SO(l ; 1t) 

We shall f irst  consider the Poisson integral corresponding to the maximal  
boundary  of SL(1;R)/SO(I;R). N consists then  of all lower t r iangular  matrices 
wi th  units  in the diagonal 

~b = ( X i j ) l i , j  = 1 , X i i  = 1 and xq = 0 if  i < j .  

This parametr izat ion of ~ is in accordance with  the decomposition of N in w 4. 
Le t  ~1, ~2, �9 �9 �9 , & denote the column vectors of g and let D i, 1 < j  < l, be the 
Gram determinant  formed by  the vectors ~t, ~ , . . . ,  ~i, i.e., 

Dj = det (($1, ~). . . . .  (~1, ~') t .  �9 

\(~J, g~l) . . . .  (~J, ~:J)/ 

Then ~o(~) ~- (DID2.. . . .Dt_~) -x 

(cf. [1]). :From the  in terpreta t ion of ~ as the  volume of the  parMlelepiped span- 
ned by  ~1, ~2, " "" , Sj it  follows easily t h a t  Dj _> I~j[ 2 ---- 1 -~ xj~kl, j 2  _~_ . . . . 2 1 -  X21,j" 
I-~ence 

~(~) _< (1~111~2t " . . . "  I~,_11)% 

and we conclude t h a t  ~o(~) > R -2 implies the inequalities 

]xiil < R ,  l <<_j < i < l,  
~-k (7.1) 

Ij'~=lXJ+k,jI<R, k = 1 , 2  . . . .  , / - - 1 .  

Le t  e > 0 be given and  f ix a na tura l  number  s > l~/s. Let  ~4 be the f ini te  
collection of all tuples cr = (a~j), where the ali are chosen from among the 
numbers  I/s, 2/s . . . . .  1 and  such t h a t  "~-2~1~+k,i  = 1 + (l - -  k - -  1)Is ,  k = 1, 2 . . . . .  
l - -  1. Le t  co(c~,R) ~ _ ~  be the subset given by  [xij] < R~q. I t  follows from 
(7.1) t ha t  

{~ e ~ ; ~(~) > R -S} c U ~ ( ~ ,  R ) ,  
a e y  

and, obviously, meas ~(~, R) < _R l-x+~. Thus, if 
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A j = { ~ q ~ ; 2  - j < ~ v ( ~ ) _ < 2 - j + ~ } ,  t hen  

f lf ~ z (~o~~ P d~ <_ ~ ] l f o  ~ (~o~)! ~ d~ < 
/ ,  

a e y  J 
Aj ~o(~,2J/2) 

< (card ~/ )  (2J/z) t-l+~ M(f  o ~)~(no) �9 

Using this we conclude as in w 6 tha t  for every  y > �89 there  is a constant  Cy,~ 

such t ha t  

IPf(~0a" o)1 ~ ~,~ (~  (2-J) ~-~/~-(~-~+*)/~) (M(fo z)P(~7o))~/P 
j = l  

( l i p +  1/q= 1). I f  p > I - - 2  we can choose s and  y so t h a t  the sum is con- 
vergent ,  i.e., there  is a constant  Cp suck t h a t  M*f(~o) <_ Cp (M(f o z)P(n0) )l/p. 
B y  The o r e m 4.2 i t  follows t h a t  3 I*  is of strong type  (p, p) for p > 1 --  2. Lem-  
mas 3.1, 3.2 and  3.3 now give the  following 

T H E O ~  7.1. For the maximal boundary of SL(1; R)/SO(I; R) the Poisson integral 
of an Le-function converges unrestrictedly and admissibly a.e. whenever t) > l -- 2. 

_Remark. For  SL(3;R)/SO(3;R) the  above proof  gives the  est imate  IIM*f]Ie 
_<Cpl[f  ~ wi th  C p = O ( ( p - - 1 )  -5) as p - - > l .  This allows us to  conclude 
t ha t  Fa tou ' s  theorem holds for functions belonging to the  class L(log + L) 5 (cf. 
[16, Ch. Xli]). 

We shall f ina l ly  consider the  l -  1 boundar ies  of SL(I;R)/SO(I;R) which 
correspond to  those sets E for which S ~ E  consists of one element.  

T H ~ O l ~  7.2. For these boundaries Fatou's theorem holds for Ll-functions (and 
for measures) (semirestricted admissible convergence). 

Proof. Take  for instance the  set E for which /V(E) consists of the  matr ices 
with c o l u n ~  vectors  ~1 = (1, x 1, x~ . . . . .  Xl_l), ~2 ~ (0, 1, 0 . . . . .  0), $3 -~ (0, 0, 1, 
. . . ,  0) . . . . .  ~ = (0, 0, 0 . . . . .  1). Then  ]~l = maxl_<j_<~-i [xj[, e E ( H o )  = ( l  - -  1)/2 and 

2 ~ E ( ~ )  = I~1[ - t  = (1 ~ xl -~ . . .  ~ x~_l) -I/~. Hence  ~vE(~) _< InL -l  and  it  follows 

easily t ha t  

M*f(~) ~ Const. (M'(fo T) (~) )  for all ~ e 5V(E). 

Thus  M*  is of  weak  t ype  (1, 1) and this proves the  assert ion for Ll-funct ions.  
(l~or measures el. [9].) 
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