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1. Introduction 

In the first part of this paper we show that the capacity of a compact subset of 
the n-dimensional Euclidean space can he characterized by means of distributions 
(in the sense of L. Schwartz) which are carried by the set and which have hounded 
potentiMs. 

In the second part  we consider compact subsets of the real line with the property 
tha t  no non-trivial function can locally be in the class of Fourier transforms of 
Ll-functions and yet  be constant on the intervals of the complement of the set. 

Using the result from the first part  we shall show tha t  a sufficient condition 
for a set to have this property is that  it has logarithmic capacity zero. This improves 
a result by Kahane and Katznelson [4, p. 21] concerning Cantor sets. 

I t  will Mso he shown tha t  a necessary condition is tha t  the set has capacity zero 
with respect to all kernels (log+ 1/]x[) 2+~, d > 0. 

The author is very grateful to prof. L. Carleson for his many valuable suggestions. 

2. Notations and definitions 

We denote the n-dimensional Euclidean space by R =, its points by x 
2~1/2 @ l , . - - , x - )  and we write IxI = ( x ~ + . . . + x n )  . 

By A 1~ we mean the space of all functions f on R ~ ~dth the property tha t  for 
each x E R n there exists a neighbourhood V of x and a function g, whose 
~o~rier transform is an integrable function, so that  f = g in V. 

The Fourier transform of a function, measure or tempered distribution S is 

denoted by S. 
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B y  a kernel  we mean,  in the  case when n > 2, an integrable  funct ion on R n, 
with compact  support ,  of  the  fo rm K ( x ) =  H(cf(x)), where H is a non-negat ive ,  
continuous,  increasing and  convex  funct ion on R and  where ~0 is a fundamenta l  
solution of Laplaee 's  equat ion,  i.e. 

1 
log - -  , n = 2 

~(x) = Ixl 

[xl 2 .n  , n __ > 3 

W h e n  n = 1 we mean  b y  a kernel  an even, in tegrable  and  posi t ive funct ion 
~vith compac t  suppor t  on I t  which is convex on (0, oo). 

We shall t h roughou t  this paper  let  K~ be a kernel  which in a ne ighbourhood 
of  the  origin equals Ix] -~ when ~ > 0 or log l / ix [ when ~ = 0 and  which more-  
over  is inf ini te ly  differentiable for  x :~ 0. 

We define as usual  the  capaci ty  Cx~(E) of  a compact  set E with respect  to  a 
kernel  K b y  

(CK(E)) -~ = i n f  ( s u p  U~'(x)) 
t~ I t  n 

where the  in f imum is t aken  over  all posi t ive measures on E of  mass 1. For  the  
other  basic concepts  of  classical potent ia l  t h eo ry  we refer  the  reader  to  [2]. 

3 .  D i s t r i b u t i o n s  w i t h  b o u n d e d  p o t e n t i a l s  

Let  S be a dis t r ibut ion (in the  sense of  L. Schwartz)  on R". We define the  
potent ia l  of  S wi th  respect  to  the  kernel  K as the  convolut ion of S and  K 
and denote  it  by  U s = - - S * K .  

D e n y  [3] has in great  detail  s tudied potent ia ls  of  dis tr ibut ions with f ini te  energy 
and has e.g. shown t h a t  a set of capaci ty  zero wi th  respect  to  some kernel  cannot  
car ry  a non-zero dis t r ibut ion wi th  f ini te  energy  wi th  respect  to  the  same kernel.  
In  the  special case when n = 1 and  for kernels K~ this was also p roved  for ~ ---- 0 
in an lJppsala lecture b y  Beurl ing in 1940 and  la ter  b y  ]3roman [1] for  0 < ~ < 1. 

Our aim is to  s tudy  distr ibutions whose potent ia ls  are b o u n d ed  funct ions  and  
we shall obta in  some analogous results. 

T H n O I ~  1. Let E be a compact subset of 1t" and let S be a distribution with 
support on E. I f  the potential of S with respect to a lcernel K is a function U s 
and i f  furthermore S ( 1 ) =  1 then 

ess sup ]US(x)] > (C~(S))-I  
x E l l  n 
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Proof. Let  s > 0 be given and let % be the equilibrium measure of the  set~ 
E~ ----- {x E R"; diet (x, E) < s}. Le t  fur thermore k E C~ be a positive funct ion 

wi th  support  in the  n-dimensional uni t  bull and assume f kdx = 1. Wri te  k~(x) = 
8 - n k ( X l / F ~ ,  . . . , X n / , 9 )  and let S = S �9 k~. 

We now easily obtain the  following inequalities b y  using wellknown propert ies  
of  the  equilibrium measure. 

IUSl > sup  ( [USl  * k J  > sup  I Us  * k,I = s u p  IU s~] > . f  IUS~Id~ > ess  s u p  

B u t  CK(E~)--+CK(E) as s-->0 a n d f r o m  S ( 1 ) ~ - 1  i t  follows t h a t  fS f lx= 1 
which proves the theorem. 

We are latex" on going to use this theorem in the classical cases of logar i thmic  
capaci ty and a-capacity,  i.e. capaci ty wi th  respect to the  kernels K a. For  these  
kernels we can prove the  following corollary. 

COROLLARY. A compact set E C R ~ has positive ~x-capacity ( i f  ~ ~ 0: logarithmic 
capacity) for max (0, n -- 2) < cr < n i f  and only i f  it carries a non-zero distribution 
whose potential with respect to Ka is a bounded function. 

Proof. Assume t h a t  S # 0 is carried by  the  set E and  tha t  S * K~ is a b o u n d e d  
function. 

It is by the theorem sufficient to find a distribution S O which satisfies the 

same assumptions as S and which in addition has the property that S0(1 ) ~: O_ 

If S is non-vanishing there must exist Y0 C R ~ such that S(e I('' Y~ r O. We 

shall prove that the distribution S o ~ e~("Y~ has the required properties. This 

follows hnmedia te ly  if  we can show t h a t  S(y)(K~(y --  Yo) --  Kc~(Y)) is the Four ie r  
t ransform of a bounded function.  

We claim t h a t  we can write 

K~(Y - -  Yo) - -  K~(Y) = K~(y)(P(y) + Q(y) + R(y)) (1) 

where P ,  Q e LI(Rn), R e L2(Rn). 

Since /~(y)  = C[yl ~-n + O(Iyl -N) for any  N as [Yl--> ~ we have t h a t  

K~(y --  Yo) -- K~(y) ~- K~(y) IY -- Y01 ~-~ --  1 + 0(lyl -N) 

--/(~(Y)( ~ Pk(Y)ly1-2~ + 0( ly[- [-~] -~ - )) 
1 

where p~ are certain polynomials of degree k. 
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We can wi thou t  loss of  genera l i ty  assume th a t  Y0 ~ (1, 0 . . . . .  0) and wri te  

Ks(Y --  Yo) - -  I~c~(Y) = Ka(Y)( ~ ~ ~xtkY~IY1-2k ~- O(IYl -[-~] -1)) 
k = l  120 

We claim t h a t  we can f ind  an Ll- funct ion  such t h a t  the behaviour  of its Four ier  
t r ans fo rm at  inf in i ty  is close to  the  behav iour  of  the  sum in the  last member  above.  

Consider therefore  one term,  y~ly] -:k and  let  P l k e C ~ ( R ~ { 0 } )  be some 
funct ion  wi th  compac t  suppor t  which in a ne ighbourhood of  the  origin equals 
(--  i O/~xl)~Ix[ 2~-'~ when n # 2k or ( - -  i a/axl)t log 1/]x] when n ~ 2k. Then  

))lk(y) -~ Clyt-Sky~ -}- O([yl -N) for all N as l y ] -+  oo and  Pll, eLl (R") .  
B y  adding cons tan t  multiples of  such funct ions P,~ we f ina l ly  obta in  a funct ion 

P eLI(R ~) which satisfies ~5(y) _ ~p~(y)tyi-2~ _= O(lyl-~) for all N as lyl--~ oo 
and  i t  is easily seen t h a t  Q and /~ can be chosen so t h a t  (1) holds. 

Since S~/~ and  S ,  K s are bounded  funct ions and  since S * K~ e L2(R ") it  
now follows t h a t  N * K s �9 (P  ~- Q ~ / ~ )  is a bounded  funct ion which proves the  
suff iciency par t  of the  corollary. The necessi ty follows direct ly  f rom the  def ini t ion 
of capaci ty.  

I t  seems probable  t h a t  the  corol lary also holds for  general kernels K a l though 
we have  not  been able to  prove  this.  

Le t  us now end this section b y  showing how the corollary could be used to prove  
the  classical resul t  (see e.g. [1, ch. VII])  t h a t  a set is >>removable>> for bounded  
harmonic  functions i f  i t  has capaci ty  zero wi th  respect  to / ~ - 2 .  

Le t  therefore  D c 1t =, n > 2, be a bounded  region whose b o u n d a ry  /7 is 
a smooth  surface and  let  E C D be a closed set s t r ic t ly  conta ined inside / ' .  Assume 
t h a t  E has capaci ty  zero wi th  respect  to K~_2 and  let u be a bounded  and harmonic  
funct ion on D ~ E .  We claim tha t  u can be ex tended  to the  whole of D. 

Choose a funct ion v wi th  compac t  suppor t  which coincides wi th  u on some 
ne ighbourhood of  E and  which is inf in i te ly  differentiable outside E .  

Then  A v - ~  S Jr ~, where S is a d is t r ibut ion carr ied b y  E and where ~ E C~. 
B u t  the  potent ia l  of  S wi th  respect  to  K~_ 2 is 

S * K n _  2 - - m -  ZIv *K,~_ 2 - -  ~ *K,,_2-=- v*  A K , , _ 2 -  ~ *K,_2  ~- v -~ v ,~v - -  ~ *K,,_2 

where ~ C C~. 
We thus  have  t h a t  U s ---- S * K._2 is a bounded  funct ion which b y  the  corol lary 

implies t h a t  S = 0 and  hence t h a t  u can be ex tended  as claimed. 

4. A class of thin sets 

L e t  E be a compac t  subset  of  the  real line and  assume t h a t  f E A 1~ is eonstan~ 
on each in terval  of  the  complement  of  E.  
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Our aim is to t ry  to characterize the sets E for which no nontrivial function f 
can have the properties just stated. 

Kahane and :Katznelson [4, p. 21] have given an example of a Cantor set with 
the above property. The following theorem contains their result. 

T ~ o n E ~  2. Let E c R be a compact set of logarithmic capacity zero. I f  f E A ~~176 
is constant on each interval of the complement of E then f equals a constant. 

Proof. Let f be an arbitrary function that  fulfills the hypothesis. Then there 
exists a function g which satisfies: 

(i) ~ ~ L~(R). 
(ii) g-----f on some interval I ~ E .  

(iii) g ~ 0 outside some neighbourhood of i .  
(iv) g is infinitely differentiable outside I. 
Let S be the derivative of f in the sense of distributions and let U s be the 

logarithmic potential of S. 
Then S = dg/dx ~- ? where ~ C C ~  and U s =  U g" + U ~. 
But (Ug ' )~ (x )~  iz~(x)l~o(x ) e L~(R) since ~0(z)---- 1~Ix ] ~-O([xl -N) for any 

N as x -+ ~ and hence U g' is a bounded function. This is also true for U ~ and 
S is thus a distribution on E with bounded logarithmic potential. 

By the corollary this leads to a contradiction unless S--~ 0 and hence the 
theorem follows. 

Our next theorem shows tha t  this result is the best possible in the sense tha t  
logarithmic capacity cannot be replaced by capacity with respect to any larger 
kernel. 

Before we state the theorem we give the following lemma. 

LEMMA 
c~ 

and {m~}~ are some given sequences. Write l,  = ~n+lm~rr 

(m n ~  1 ) l ~ < l l n _ l  for n =  1,2 . . . . .  
Then E has capacity zero with respect to a kernel K i f  

]-T (m, + 1)-iK(l ) = 
n : l  1 

f: 1 K(t) dt < CK(x),  x :/: 0 then the condition is also necessary. I f  x 

co r 
2 . . L e t  E : { x e R ;  x : ~ l  ~ir" s ~ :  O, 1 . . . . .  m,} where {r,} 1 

and assume that 

Proof. The proof of the lemma is, apart from minor modifications, identical to 
the proof given in e.g. [2] of the corresponding theorem concerning the ordinary 
Cantor set (i.e. the case when m i ----- 1, i = 1, 2 . . . .  ) and is therefore omitted here. 

The last condition in the lemma is clearly satisfied for all kernels Ks, 0 < ~ < 1. 
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TH~OlCE~ 3. Let K be a kernel such that lim~+0K(x)(log 1 / Ix] ) -1= ~ .  Then 
lhere exists a compact subset of R with capacity zero with respect to K and a non- 
zero measure carried by the set whose primitive function is in A ~~162 

Proof. Let  E be a set of the form {x = ~ eirl, es = O, 1 . . . .  , mi} and 

assume t h a t  E has positive logarithmic capaci ty and choose a measure /x on E 
wi th  f ini te  energy with  respect to the logarithmic kernel. Let  v = # �9 # and  let 

J(x) =--./idv. The support  of v is obviously a subset of 

I V = E - ~  E = { ~ u , r  ,, U i = 0 , 1  . . . . .  2mi}.  
1 

T h a t  the energy of /x is f ini te  implies t ha t  

f I ; (y)  I < + 
Iyl-> 

B u t  f(y) = ~(y)/iy = (~(y))2/iy and hence f E A ~~162 
We now claim t h a t  we can choose {r~} and {m~) in such a way  tha t  

n 

(]'-[ (m i ~- 1)) -1 log I/t. < oO (2) 
1 1 

(]"[ (2m i + 1)) -1 K(2/,) = ~ (3) 
1 1 

where In ~ n + l  m i r i .  

Both  these relations are satisfied if  we e.g. choose {r~) and  {ml) so t h a t  

(i) l o g l / 1 , = n  - 2 ] - [ ~ ( m , ~ -  1), n ~ -  1, Z , . . .  

(ii) K(2/n) >__a nlogl / In ,  n - ~  1 ,2  . . . .  

(iii) mi -+ ~ ,  i -+ 
(iv) (2mnA- 1)ln < l n _ l / 2 ,  n =  1,2  . . . .  
Since ln+ ~ = In - -  mn+lrn+~ it  is clear t ha t  this choice can be done. 
Using Lemmas  2 and  3 it now follows from (2) and (3) t h a t  E (and thus  F)  

has positive logarithmic capaci ty  and t h a t  F has capaci ty zero wi th  respect to 
K which proves our theorem. 

The next  theorem gives a necessary condition in terms of capaci ty for a set 
to  be in our class of th in  sets. 

THEOREM 4. Let E C R be a compact set of positive capacity with respect to the 
kernel (log + 1/]xD 2+~ for some ~ > o. Then E carries a (positive) measure # whose 
primit ive function is in A 1~162 
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Proof. P u t  K(x) = (log + 1/Ix[) 2+~ and  let # be a measure on E with  finite 
energy with  respect to K.  

I t  is easy to show that (log ]y])l+~Iy[-l(I~(y))-i tends  to a constant  as [y[ -~  oo 
and  it  therefore follows t h a t  

f [~(Y)[~ 
lYI Iyl-> 1 

- -  (log [y])I+~dy < oo 

[ *  

By Schwarz's inequal i ty  this implies t ha t  ] ]~(y) l[yI-ldy < oo and hence 
g~y I>_i 

f: t ha t  f ( x ) =  d/~ E A 1~ which proves the theorem. 

I t  is possible t h a t  any  set E of positive logari thmic capaci ty  carries a non-zero 
distr ibution wi th  a primitive funct ion in A l~ The following result shows t h a t  such 
a distr ibution could not  always be chosen as a positive measure and  the necessary 
construction would therefore probably  have to be complicated. 

THEOREM 5. There exists a (~ ~ 0 and a compact set E~ c R of positive capacity 
with respect to the kernel K(x) -= (log + 1/Ixl) 1+~ such that i f  f E A l~176 is non-decreasing 
and constant on each interval of the complement of E~ then f equals a constant. 

oo 
Proof. Let  E~ be the Cantor set {x E R; x - =  ~'1 e~r~, e~ ~ 0 or 1} where 

~n+l  r~ ~ exp (-- 2"/(I+~)), n = 1, 2 , . . .  and  where ~ ~ 0 is a number  to be f ixed 

later. E~ has positive capaci ty  with respect to a kernel (log + 1/tx[) I+' if  and  only 
if  0 < t < 6 .  

Assume t h a t  f is a funct ion t h a t  fulfills the hypothesis.  I t s  derivative in the 
sense of distributions is a positive measure # wi th  support  in E~. Consider the  
convolution v = # �9 # which is a measure on F~ ~ E~ ~- E~ and  suppose we know 
t h a t  ~ has bounded energy wi th  respect to  the kernel (log + l/ lxl) 1+3~" for some 
number  ~' > ~. 

This assumption is equivalent  to  

f l;(y)1 
]Yl lyl >_ l 

- -  ( l o g  ]y])3~" dy  < o~ 

f 0  ~ 
and, since d# E __A ~~176 we also know t h a t  

f lg(y) l - ~ d y <  ~ .  
lyl >_ l 
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l~rom these two inequalities it  follows by  means of I-I61der's inequal i ty  t h a t  

lY] (log [yl) a' dy < oo 
]y] el 

i.e. t ha t  # has f ini te  energy with respect to the kernel (log + 1/[XI) 1+~' where ~' > ~. 
Bn t  this  is impossible unless # = 0 and  hence the theorem follows as soon as 

we have proved the  following lemma. 

L]~MA 3. Let E~ be a Cantor set as above and let _F~= E,~ ~ E~. Let # be a 
positive measure on Ez with bounded logarithmic potential. Then, i f  ~ > 0 is suffi- 
ciently small, there exists d' > (~ such that the measure r = /t * tt has f inite energy 
with respect to the kernel (log + l/Ix[) l+a~'. 

Proof. B y  means of a simple est imate we see t h a t  /~(I) ~ C(log 1/1I[)-1 for all 
intervMs I of length ]I[ less t han  1. 

We also observe t h a t  ~a = n~  ~ Fn where each set ~n is the union of  3" intervals 
co  

I (n) of length In = ~,+~ 2rr and  with left endpoints x(~ "), k = 1 , . . . ,  3 ~. 
oo t ! 

Each point  x @ can be wTitten x(k " ) = ~  (e~+e,)r~, with ~, ~ = 0  or 1, 

in N~  ) different ways.  Le t  q be the number  of indices i for which 
W = s~ -~ s'~ = 1. I t  t hen  follows tha t  x~) can be obtained in N~  ) = 2 q different 
ways as a sum of two points in Ea. ~or  a f ixed q there are (~)2 "-q such points 

n 

x(~ ") in Fa. We f ind  t h a t  ~k (N(k"))2 = ~q=0 (~)2"-q" 22q = 6~" 

Le t  ~(") be the measure whose restriction to any  interval  I(k ") is uniformly 
dis tr ibuted and  whose mass on any  interval  I (") equals v(I@). I t  is easy to see 
t ha t  v(n) converges weakly to v as n--> oo and  it is therefore sufficient to prove 
tha t  the energy of v(") is bounded uniformly in n. 

The energy of v(~) wi th  respect to the kernel (log+ 1/Jxl) l+aa" is b y  definit ion 

ff(,o + 1 k., Ix --  y I/ dv(n)(x)dv(")(Y) " (4) 
, i  o)• n) 

Let  us define 

f f (  Dn ~ ~ log+ - dv(n)(x)&@(y) 
Ix yl/ 

We claim t h a t  

n 

E(~ <n)) < C ~ D=. 
0 

(5) 
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To prove this, le$ Q=, 1 _~ m < n, denote the sum of all terms in the right 
hand member of (4) that  correspond to pairs of intervals with a mutual  distance 
less than I~_~ and greater than �89 l~_~. 

In other words, Q= is the sum over the set T= consisting of all indices (k, l) 

such that  @) -~  ~!') for 0 < i < ~n --  I and ~2) :/: ~ (where x(p ~) = ~ :  ~!V)r,). 
Then 

1 ~I+3a" 
- - /  ~" r176 < Q~ < C log 1~_1/ ~ 

< C(Iog 1 )1+3a'~ 

I t  is obvious that  we get all terms in (4) by  summing over m and adding D.  
and hence (5) follows. 

]~ut since ~(")(Ip)) < CNp)(log 1/1.) -2 and since 

1 n lrt 

1 ~1 +3,V 
t _ U z~ > - y i/ dx~y < c 

0 0 

we have that  

D,, < C log T.] Z (NP)) z = C log T./ 6" < C7" 
k 

where y = 6 �9 2 -(3-3a')/(l+a) (since l= = 2 exp (-- 2"/(1+a))). 
Choose now ( ~ > 0  so that  3 (1 - -  8)/(1 -4- 8) >21og6  (i.e. 5 < 0 . 0 7 4 . . . )  and 

n 
choose 3 ' >  ~ so that  y <  1. Since E(v (n))_~C~0y~ the lemma follows. 
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