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1. Introduction 

I n  classical po ten t ia l  t h e o r y  it  is well k n o w n  t h a t  a mass  d is t r ibut ion  o is 
un ique ly  de t e rmined  b y  its po ten t i a l  U" a n d  t h a t  its ene rgy  11o[[ can van i sh  only 
when  o ~- 0. I n  this  p a p e r  we shall  consider different  ways  of  m a k i n g  these  fac ts  
more  precise.  I f  a is a s igned mass  d i s t r ibu t ion  we shall  e s t ima te  the  mass  o(B) 
on cer ta in  t es t  sets B b y  means  of the  po ten t i a l  U" and  the  ene rgy  []a]l. The  
d i s t r ibu t ion  o will h a v e  i ts  suppor t  in a c o m p a c t  set  K in R% such as a c o m p a c t  
surface  or a ball ,  and  our  es t imates  will involve  the  values  of  U ~ on this  set only.  

F o r  posi t ive  measures  # in K it  is t r iv ia l  t h a t  

a n d  t h a t  in R", n ~ 3 ,  

# (K)  < C,II#II 

/t(K) < C 2 sup U" . 
K 

Here  we can let C1 = %/" cap K and  C~ = (diam K)  "-2. I f  o is an  a r b i t r a r y  signed 
measu re  o(B) canno t  be  e s t i m a t e d  in a n y  s imilar  way ,  no t  even  if  we a d m i t  only 
v e r y  regular  t es t  sets B c K ,  as is easi ly seen f rom examples .  Therefore  we shall  
impose  a condi t ion do + < M dm on the  pos i t ive  (say) p a r t  a + of  o. He re  M < 
and  m is a vo l um e  or a rea  measure  on K .  I t  will also be  a s sumed  t h a t  the  to t a l  
mass  of  o is 0, which  seems to  be the  in te res t ing  ease in m a n y  appl ica t ions .  

Kle ine r  [5, 6] has  found  es t imates  of a in t e r m s  of tlall. I n  [5] he assumes  t h a t  
a lies on a s imple  p lane  curve  /" of  class C 1 and  sat isf ies  0(/") = 0 and  ]0[ < v, 
where  v is a pos i t ive  measure  on /" wi th  f in i te  energy.  Def in ing  

[a] ~- sup  la(B)l , 
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where the  sup is t aken  over  all subarcs B of  F, Kle iner  es t imates  [~] in t e rms  
of  11~11 and  a modulus  of  con t inu i ty  of  ~. In  case v is e.g. the  are length measure  
of  -P he f inds t h a t  

1 
[ ~ ] _ C l I o l l l o g  I - ~ '  C = C ( r ) ,  

i f  Ilall is small enough.  Kle iner  [6] also generalizes this to  n _~> 3 dimensions. I n  
this  ease the  suppor t  of  ~ is conta ined in a compact  surface F and [~] is t he  
sup of  the  mass on cer ta in  subsets of  /~ which are ~)eontractive and  near ly  one-to- 
one~> images of  a f ixed  ball in R ~-~ (for this concept  see Kleiner ' s  paper).  The  
q u a n t i t y  [a] is t hen  es t imated  as in the  two-dimensional  ease, and  when ~ is 
the  area measure on F the  resul t  is 

[~] < Cll~ll ~/~, d = C ( F ) .  

His p roof  can be modif ied  to  hold also in the  case when one has only  a one-sided 
bound  on a : a + < r .  

The  Corollary of  our  Theorem 2 is a resul t  of  this t y p e  for classical and I~iesz 
potent ia ls  and  wi th  the  dis t r ibut ions lying in a ball in R ~. 

As to  est imates  of  d using the  potent ia l  of  ~, Ganelius [3] has p roved  the  
following result:  

T ~ o ~ .  Let # be a positive mass distribution of total mass 1 on the unit  circle 
E and let dv = d~ /2z  be the equilibrium distribution of  total mass 1. Then for  any  
arc B c E 

I#(B) - -  ~(B)I _< Clinf  U,] ~/2 , 
E 

where C is a numerical constant. 

Since U ~ - - 0  on E,  

]inf U ~] ~ sup U ~-~ . 
E E 

Notice  t h a t  we have  the  sup of  the  po ten t ia l  difference and  no t  its L + norm.  
This makes  the  theorem yield a nont r iv ia l  resul t  even when # contains point  masses. 
Fo r  example,  i f  # consists of  N poin t  masses 1IN one obtains an earlier resul t  
due to Erdhs  and  Turs  [2] abou t  the  dis t r ibut ion of  zeros of  polynomials .  

As is men t ioned  in Ganelius 's  paper  the  t heo rem holds for more  general  curves, 
and in an unpubl ished manuscr ip t  Y. Bennu l f  has p roved  i t  for  analyt ic  curves. 
We shall generalize the  theorem to less regular  plane cttrves and  to  surfaces in n _> 3 
dimensions (Theorem 1). In  Theorem 3 we give a similar es t imate  for  Riesz potentials .  

The  idea of  the  proof  of  these two theorems  is t aken  f rom a paper  b y  Beurl ing 
and Malliavin [1] in which t h e y  s tudy  the  closure in L2( - r, r) of  sets {e ~x  }. 
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I n  an auxi l iary  resul t  (Theorem I ' )  the  au thors  consider the  logari thmic potent ia l ,  
sui tably  defined,  of  a posi t ive measure # on the  real axis, and  compare  # wi th  
the  measure  v, dv = kdx.  T h e y  es t imate  1#(o)) - -  v@)l for  intervals  co b y  means  
of  the  values on the  real axis of  the  potent ia l  of  # - -  v. 

The au tho r  would like to  t h a n k  Prof.  T. Ganelius for suggesting the  topic of 
this  paper  and  for his valuable  help and  advice dur ing its prepara t ion .  

2. Prel iminaries  

I f  # is a measure,  or mass d is t r ibut ion,  wi th  compac t  suppor t  in R ~, n > 2, 
its classical po ten t ia l  is def ined as follows in the  sense of  dis tr ibut ions (cf. Schwartz  
[8, in par t icu lar  p. 214]): 

1 
U ' - ~ l o g ~ - , , u  i f  n = 2  

1 
- - i x l . _  ~ , #  if  n > 2 .  

B y  l" ] we mean  the  o rd inary  Eucl idean no rm in 1t =. There  is an inverse formula  

# = - - c = A *  U '~, 

where c 2 - ~  ( 2 ~ )  - 1 ,  6 .  = ( (~t  - -  2 ) 0 ) . )  - 1  i f  n > 2, and  the  Laplae ian  should be 
in te rpre ted  as a dis tr ibut ion.  Here  ~o~ is the  area of  the  uni t  sphere in R ~. 

F o r  0 < c~ < 2 we define M. Riesz 's  c~-potential of # b y  

I 
U~ - -  * ~ , 

and  we also wri te  U~ for the  classiCal po ten t ia l  U% I f  0 < a < 2 the  inverse 
formula  is 

1 
= T~ �9 U~,  T~ = c. ,~ P f  .[xi .+~ , (2 .1)  

where cn, ~ is a cons tant  and  the  dis t r ibut ion P f  1/[x] "+a is def ined b y  

1 f ~(x)  - ~ (o)  
P f  ix i,~+ ~ �9 ~ = lim J dx  (2.2)  

~ o  Ixl "+~ 
Ixl>~ 

for a ny  tes t  funct ion  ~ 6 5~. Analogously  we p u t  T~ = - -  c,A. 
In  classical or Riesz potent ia l  t h e o r y  the  equi l ibr ium dis t r ibut ion of  a compac t  

set K c R ~ having posi t ive capac i ty  is the  dis t r ibut ion of  K whose potent ia l  
is 1 on K except  for a set of capac i ty  zero. 
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For  s > 0 define the  funct ion  w in R ~ b y  w(x) ---- 1 - -  (2~2)-1Ixl  2 f o r  Ixl < ~, 

---= (2e2)-X(Ix I - -  2e) 2 for ~ _< Ix] < 2s, and = 0 for Ix] _> 2s. B y  e l emen ta ry  
means the  following l emma follows. 

LEMMA 1. The funct ion w defined above has a Lipschitz continuous gradient and 
satisfies 

w(x + h) = w(x) + (h, grad w(x)) + R 

with lgradw(x)l  < 1/~ and IRI <IhI2/e 2. 

F r o m  Widman ' s  paper  [9] we shall need the  following theorems (2.4 and  2.5 
in [9]) and par t  of thei r  proofs. 

T ~ E 0 ~ M  A. Let u be a harmonic funct ion in a L iapunov-Dini  region 9 ,  con- 
tinuous in ~ ,  and with the property that to every x o E ~ 9  there is a linear polynomial  

L~o(x) such that 

In(x) --  L~o(x)l < ~l(lx - -  Xol)lx - -  Xol, x C a g ,  

where the Dini  funct ion r ) satisfies the additional condition that Q(t)/t ~ is monotonic 
for some 7, 0 < y < 1. Then au/Ox~ are continuous in ~ .  I n  particular, i f  9 
is a L iapunov  region and sl(t ) ~ kt ~, then the functions au/0xl are ~-HSlder con- 
tinuous in ~2. 

T ~ E O R ~  B. Let G(x, y) be the Green function of a Liapunov-Dini  region 9 .  
Then for f ixed y E 9 there is a constant c > 0 such that 

~n~ G ( x , y ) > _ c ,  x E a 9 .  

F or  the  exact  meanings of  the  words Liapunov-Din i  region in R ~ and  Dini 
funct ion see [9 J / In  our  appl icat ions the  b o u n d a r y  of 9 will be of  class C I'~ and 
we shall have  ~l(t) ---- const, t. 

3. Regularity of test sets on surfaces 

I n  R', n _> 3, we consider the  b o u n d a r y  S of  a bounded  domain  91 such 
t ha t  the  complement  9 2 of  ~1 is also a domain  with b o u n d a r y  S. We assume 
S to be a surface of  class C ''~. I t  is known (Gunther  [4, p. 17]) t ha t  Green's  formulas  
hold for such S, and so do Widman ' s  Theorems  A and B. 

We need a general izat ion of  the  subarcs B used in Ganelius 's  theorem as tes t  
sets to  compare  the  measures # and  v. I t  is clear t h a t  some restr ict ion on B is 
necessary,  and the  following is wha t  is needed in our  proof. 
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Definition. B c S is said to have K-regular boundary (K > 0) if for any 
d > 0  

f dS <_ K d ,  (3.1) 

B'j 

where 

2 "  = {x e s : e(x, B*) < d}. 

Here B* is the boundary of B in the relative topology in S, while ~ means 
distance in l~ n. The measure dS is the ( n -  1)-dimensional area of S. 

I f  n = 3 and B* is a rectifiable closed curve in R s of length l, then B 
has (Cll + C2)-regular boundary,  where C 1 and C 2 are constants depending only 
on S. This is easily proved by  dividing the curve into subarcs of length ~ 2d 
as Kleiner does in [6]. Then spheres of radii 2d centered at the endpoints of the 
subarcs are considered. 

As an example shows, the corresponding statement is not true in higher dimen- 
sions. For  let n --~ 4 and suppose S contains a 3-dimensional cube of side l. 
On one of its faces F we place p2 points in a square lattice, the distance between 
any two of these points being > lip. With the normals to /~ at these points as 
axes we choose cylinders reaching from F to the opposite face and with so small 
radii tha t  their total  2-dimensional area is < 12, say. Now let B consist of the 
cube except the points inside the cylinders. Then 2 "  contains the whole cube for 
d = 21/19 and for large p the volume of Bd* is not bounded by Kd for any fixed 
K, although the boundary of B has bounded 2-dimensional area as p--> oo. 

4. Estimation of measures on surfaces 

In  this section C and c will denote various constants, all of which are < co 
and > 0, respectively, and depend only on the surface S which was introduced 
in Section 3. 

The following Theorem 1 holds also in the plane for a simple closed curve of 
class C 1' ~ and can be proved similarly, but for the sake of brevi ty we assume that  
n > 3 .  

TI-IEOREM 1. Let /~ and v be positive mass distributions on S with f d# = f dr. 
Suppose that # is absolutely continuous with respect to the area measure on S and 
that for some M 

d# 
dS- -< M (4.1) 
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on S. Then i f  B c S has K-regular boundary 

I#(B) - -  v(B)] < C(MK) ~/2 [sup (U" -- U~)] x/2 . 
S 

(4.2) 

Again notice t h a t  we have  SUps U "-~ and  no t  sups ] U ' - ' I .  La t e r  we shall see 
t h a t  the  equi l ibr ium dis t r ibut ion satisfies the  condit ion imposed on #. 

Proof. There  is a ~ =  i f ( S ) > 0  such that i f  x 0 E S  and Z2e is a ball wi th  
center  x 0 and  radius 2r t hen  S N  Z~a, can be described b y  a funct ion  ~ 
F(~I . . . .  , ~n-1) in a local coordinate  sys tem x 0, ~t, �9 �9 ~n whose ~ -ax i s  is the  
normal  to  S at  x o. This 0 can be t aken  so small t h a t  a n y  two normals  to  this 
pa r t  of  the  surface form an angle ~ ~/10, say. 

P u t  a = # - - v  and  U :  U ~ The value  of  e, 0 < e < ~ ,  will be de te rmined  
later,  and this  value  is also used in the  def ini t ion of  the  funct ion w in Sect ion 2. 
L e t  ZB be the  character is t ic  funct ion of  B, def ined on S. We s ta r t  b y  approx imat -  
ing ZB wi th  more  regular  funct ions f~ .  

F o r  this purpose  the  character is t ic  funct ions of  B U B2* and  B ~ B *  will 
be called, respect ively,  Z+ and  Z-. Now for x E S define the  funct ions 

I• = f X• -- y)dSx, 
S 

A(x) ----- f w (x-- y)dSy , 
q t l  

S 

I• 
f •  A(x) " 

T he n  i t  is easily seen t h a t  f• approx imate  ZB in the  following sense: 

0 G f_  < X. --<f+ G 1 

on S, and  

{x e s : s  # z.}cB*+. 
We shall use the  le t ter  Z below in s t a tements  val id  for  bo th  Z+ and  Z~, and 

similarly for I and  f .  Since e < ~, the local regula r i ty  of  S implies 

o < ~(x) <_ A(x) <_ f dS, <_ C~ ~-' (4.8) 
y ~ S  

[y -x [  -< 28 

and  

A(x) > �89 f dS~ > c~ "-1 , 
y E S  

l y -x l  --- 

(4.4) 



ESTII~IATES OF MASS D I S T R I B U T I O N S  F R O M  T H E I R  P O T E N T I A L S  A N D  E N E R G I E S  65 

for w ( z ) ~  1/2 if [ z [ <  e. The regularity of w (see Lemma 1) now implies 
corresponding properties of I ,  A, and f, namely 

I (x  ~c h) -= I(x) -~ (h, grads I(x)) ~- R ,  (4.5) 

where x and x @ h E S ,  and 

grad s I(x) = f Z(Y) grad w(x --  y)d@ . (4.6) 

S 

Here we have the estimates 

[grads I(x)] < Ce ~-~ and ]R[ _< Clhl:e ~-a . (4.7) 

The vector grads I(x) as defined by (4.6) need not be the gradient of I considered 
as a function on the imbedded manifold S and migh~ have a non-zero component 
orthogonal to S at x. The function A satisfies the same condition (4.5--7) as 
I does. 

As to f,  we use these Taylor expansions of I and A together with (4.3--4) 
in f ( x @ h ) ~ I ( x ~ - h ) / A ( x + h ) ,  x and x - ~ h e S .  After some simple cal- 
culations this gives, at least for ]hl/s <_ c, 

where 

and 

f ( x  -[- h) = f ( x )  -t- (h, gradsf(x)) -}- R ,  

A grad s I -- I grad s A C 
lgrads fI • A 2 <-- --s 

(4.s) 

Ihl 2 
LRI < C  ~-V 

The restriction Ihl/e ~ c can be removed after a suitable change in the value of 
the constant C in the estimate of R. 

Following Beurling and Malliavin [1], we now use f~: as boundary values for 
Dirichlet's problem in t? 1 and D~. This gives us two functions which will also be 
called f~ or f and which are continuous in 1t ~ and harmonic in f21 U X2~ U { oo}. 
Thus 

f(x)  = O(Uixl ~-2) a s  x ~  o o .  

By Theorem A the regularity (4.8) of f implies that  grad f is continuous in D1 
and t02. But if Of/On 1 and Of/On~. are the normal derivatives of f on S into 
t91 and X22, respectively, we cannot expect Of/On 1 = --  Of/Onz. 

With our condition on f more precise information can be obtained from 
Widman's proof of Theorem A (see [9, p. 23--25]). Letting u in Theorem A be 
f we can take L,o(x) =f(x0) ~- (x -- x0, gradsf(Xo) ) and put el(t ) = Ct/e ~, t > O. 
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The  coefficients of  L~0 are no t  grea ter  t h an  C/e, and lf(xo) [ ~_ 1. F ix  xo E S. 
I f  we, following Widman ' s  proof,  sub t rac t  L~, f rom u ~ f ,  t hen  we do not  change 
grad u more t h a n  C/e, and  wi th in  a distance of  s f rom x 0 the  values of  u are 
not  changed more  t h a n  C. 

Considering a ball  Z of  radius  ~1/2 and  center  x0, W i d m a n  f inds tha~ for 
any  y E ~  ( =  Q1 or ~22) on the  normal  of S at  x o and wi th  ly - -x01  small 
enough 

~/2 

Igradu(y)l  ~ C f e~(t) dt + C~i -~ sup lu(x)l . 
t [~-~01 -< ~ 

0 

I f  we use our  expression for el(t ) and pu t  Q1 ~ e, we get 

C 
lgrad u(y) l ~ - -  . 

Therefore  

Of ~ - -  on S, i =  1,2,  and  f = f = ~ .  (4.9) 

L E M M A  2. 

1 
ixln_ 2 * ( - -  CnA * f )  = f , 

where the two sides are to be considered as distributions in ~ ' .  

Proof. The left  side exists since - - c n A  * f  has compact  suppor t  C S. :By 
L a n d k o f  [7, L e m m a  1.11] the  equa t ion  holds if  f ( x )  ~- O(1/lxl~-~), x ~ ~ ,  and 
fl ~ 0, 2 + fi ~ n. Since f (x )  ----- O(1/IxI n-2) this proves the  lemma in case n ~ 4. 
For  n ~ 3 or 4 we expand  f close to  t h e  point  a t  inf ini ty:  

f ( x ) -  ixl,,_ ~ + [xl-~- + 0 X - - - ~  O~) , 

Here  a E R and b C R n. E v i d e n t l y  the  lemma holds wi th  a/Ix] n-2 ins tead of  f .  
B y  La ndko f ' s  l emma the only  remaining di f f icul ty  is the  t e rm (x, b)/]x[ n when 
n ~ 3. Consider for example  xl/[xl3. This dis t r ibut ion equals - -  O/ax 1 �9 l/Ix], so 

rx-  * - �9 - �9 

This completes the  proof  of the  lemma.  



E S T I M A T E S  OF MASS ] ) I S T I ~ I B U T I O N S  FI:COiVI T H E I R  P O T E N T I A L S  A N D  ENEI~,GIES 6 7  

Following Schwartz  [8] we write T �9 F for the scalar p roduc t  of  the  dis t r ibut ion 

T and funct ion ~, puZ T r F - - ~ ( 0 )  and  ~ ( x ) =  ~0(--x), and  define T b y  

~ ' - ~  ~ T .  ~. The following calculat ion will be made  precise below. 

a ,  f = Tr  a �9 f : T r  a �9 �9 ( -  c,A , . f )  = Tr  U �9 (--  c,A �9 f )  = 

---- U .  (--  c~Af) . (4.10) 

Since. f is cont inuous a . f  exists and equals f s f d a ,  and the distribution1 

a * f is a conti1~uous fur:ction whose t race  is ~ .  f .  L e m m a  2 gives the  second 
equa l i ty  and  the  th i rd  one is trivial.  Le t  us determine the  dis t r ibut ion A , f .  

As grad f is co~tinuous in $)1 and D2, the  Green formula  can be used, jus t  
as in Schwa.rtz [8, p. 44], to  show tha t  - -  c,A �9 f is a measure T on S of  dens i ty  
c,(af/an 1 q- Of/an2) with respect  to  dS. 

We know t h a t  the dis t r ibut ion U * T = a * is a cont inuous funct ion  T 1 
and  mus t  ver i fy  t ha t  it coincides with the  funct ion W 2 def ined b y  

T~(x) = f U(x q- y)dz(y) . 

B y  the  reciproci ty  theorem 

T2(x) = f U~(y - -  x )da(y) .  

But  U ~ is seen to be cont inuous in R ~, so the funct ion  W 2 is continuous.  B y  
Fubini ' s  theorem the  dis t r ibut ion def ined b y  T~ is U ,  ~, so t h a t  W 1 and ~2 
mus t  be equal  everywhere ,  and 

f Tr  U * �9 = Tr  T 2 : U(y)d'r(y) . 

Thus  our calculation (4.10) is complete ly  verif ied,  and we have  

S 

Therefore  by  (4.9) 

f fd(~ ~ - -  IU[dS. 
C 

5 

(4.11) 

L ~ A  3. The equilibrium distribution ,~ on S 
respect to dS  and satisfies 

c < _ ~ < c .  

is absolutely continuous with 
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P r o @  The potent ia l  U z equals 1 in ~1 a n d  is in D 2 the solution of Dirichlet 's  
p rob lem wi th  the  b o u n d a r y  value 1 on S. Therefore  Theorem A direct ly  implies 
t h a t  3U;'/3n 2 exists and  is cont inuous and bounded  on S. E x c e p t  for  a cons tant  
fac tor ,  however ,  this der iva t ive  equals the dens i ty  of 2. Thus we have  the second 
inequa l i t y  of  the  lemma.  

L e t  G(x, y) be Green 's  funct ion for D2, Then  

1 

G(x, y) - -  ix - -  yl "-2 - -  uy(z) 

where  uy is the solution of  I) ir ichlet 's  problem in Y2 2 wi th  b o u n d a ry  values 
u~(x)  = l / I x  - -  y F  -2 ,  x e S.  Therefore  Iyl"-2G(x, y) --> 1 - -  u(x)  as y - ~  0% where 
u(x )  is the  solution of  Dirichlet 's  problem in D 2 wi th  u(x)  = 1 on S, so t h a t  
' t t ~  U 2. 

Now Theorem B says t ha t  for  a f ixed  y C s9 2 there  is a c such t h a t  

On 2 G ( x , y )  > c 

for  all x C S, where O/0n~ is t aken  wi th  respect  to x. B y  t{arnack 's  inequa l i ty  
and  the  m a x i m u m  principle there  is a c for  which 

a 
lyl~ 2 ~ a(~, y) _> c 

for  all x E S and  all large IYl. I f  we examine Widman ' s  proof  of  Theorem A we 
see t ha t  

a 0 
lyF -~ ~ a (z ,  y) -~  ~ (1 - ~(z)) as y - ~  ~ .  

T h u s  

~U ~ 
< - - c  oll S ,  

~n 2 - -  

which  proves  the  remaining f i rs t  inequal i ty  of the lemma. 
Now the  inequa l i ty  (4.11) and L e m m a  3 imply  

f fd~ 

B u t  b y  the reciproci ty  theorem 

< - f U l d 2 .  

S 

f = f U da - o,  

so t h a t  
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f f d a  < 2 - -  U+d2 <_ - -  sup U .  (4.12) 
C ~ 5 

Here U + = max  (U, 0). Wi th  this inequali ty,  which holds for f+ and  f_, we can 
est imate a(B): 

fz.d =ff_a + f(zo - -  f _ f l a .  (4.13) 

B FI B~e 

The second te rm is no t  greater t han  

f f_)@ < f @ < M f dS < 4 MK,, 
s n BL BL ~'4~ 

Here we used (4.1) and the fact  t h a t  B has K-regular  boundary.  Thus we obta in  
frond (4.12--13) that 

f )~Bda <_ - -  sup U + 4 M K s  . 
S 

Using f+ instead of f_  in a similar way,  we get an  est imate in the other direction, 
so t h a t  in fact  

C 
Ia(B) l < - -  sup U + 4 M K e  . 

S 

(s F v)+ 
s = \ M - K  / ' 

If we can take 

we obtain the claimed inequal i ty  (4.2). 
This choice of s is possible only if  

- ~ /  < @ -  (4.14) 

In  the opposite case we observe tha t ,  except in the trivial cases when B is S 
or 0 ,  B* is non-empty,  and if  we let d ---- diam (S) in the  defini t ion of K-regular  
boundary ,  we can conclude 

area (S) 
K >  - - c .  

- -  diam (S) 

H e n c e ,  

/ sup  U~X�89 

( M K ) - ~ 6 u o  U)�89 > M K  ~ >_ M c  q , (4.15) 
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sir~ce we assumed the contrary of (4.14). But  

I~(B)I _< u(B) = #(B)  < C M .  

Since ~ ~ c, (4.15--16) imply (4.2) if we choose a suitable 
This completes the proof of Theorem 1. 

C. 

(4.16) 

5. Measures in balls and other sets 

Let K~ be ~he ball (x :  Ix[ <_r} in R ", n > 2 .  We consider classical and 
l~iesz potentials of mass distributions in a fixed b~ll KR and so let 0 ~ ~ ~ 2. 
For 0 ~ ~ ~ 2 the equilibrium distribution 2~ of K~ is absolutely continuous 
with density---- const. (r 2 -  Ix]2) -~/2, Ix] ~ r. I f  ~ ~ 2 the distribution L is 
of co~rse (co~r)-adS on the sphere S : ] x  I = r. The condition imposed on test 
sets will be slightly changed. I f  B c R "  we put B* = ( x E R  " : e ( x , B * ) ~ d }  
for d ~ 0, where B* is the boundary of B in R n. 

Definition. B C R n is said to have K-regular boundary in K~, K ~ O, if for 
all d ~ 0 

f dx ~ Kd o 

K R f~ B~l 

(5.1) 

This concept is defined similarly for other bounded sets than KR. We see tha t  
cC B - R ' ~ B  has K-regular boundary in KR if and only if B has. To give an 
example, there is a K depending only on ~ and n such tha t  all circular cones 
with vertices in the origin have K-regular boundaries in KR. 

In this section C will denote several different constants which depend only 
on n, a, and R unless otherwise explicitly stated. 

TI4EO~M 2. Let 0 ~ or ~ 2 

~ .  with f d~ -- f d~. Assume 
dx and that for some M ~ 

and let ~ and ~ be positive mass distributions in 

that # is absolutely continuous with respect to 

d# 
< M (5.2) 

dx 

in KR. Then for any B c R n having K-regular boundary in KR 

1 

t#(B fl KR) -- v(B fl KR)I ~ C(MK)  1+~ lU~-~ldx) �9 

K R 

(5.3) 
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Proof. We use the idea of the proof of Theorem 1 and start  by  letting e > 0. 
Normalizing the function w from Section 2, we get a new function w t such ~ha~ 

f w ( )dz = 1. For any continuous function ~0 defined in t l  '~ we put  

f ~(x,r) -- , - i  ~(x + y)doy, r > O. 
(oar 

I yl =~ 

From Lemma i it then follows ~hat 

Now put  

and 

Then f•  

and 

l ~ ( x ,  r) - w~(x) l ~ C~-~-:r:  �9 

B+ = (B U B*~) N Kn+2~, 

B -  = (B~B*,) f) KR+2~, 

f •  = x %  * w l  �9 

approximate ZB in KR in the following sense: 

O<f--~ZB<__f+<__l in KR,  

sl lppf• C KR+4~, 

f d ~  

where as before we have put  

(5.4) 

(5.5) 

*f.  Suppose 0 < ~ < 2. Our formulas (2.1--2) 

IT~ *f(x)I = C f <](x, ~) - f ( x ) ) r -~ -~dr  

0 
e 

<_ c f e-2r2r-l-~dr -~ C f r -1 ~dr = Ce -~ , 

0 e 

(5.8) 

We mus% therefore estimate T~ 
for Ta imply 

{x E Kn :f•  r Z-} c Kn Cl B*~. 

We find from (5.4) that  f a  have a similar regularity property and satisfy 

l)(x, r) - - f (x )  l ~< Ce-2r 2 , f = f •  (5.6) 

Now, since f, i.e., f+ or f - ,  has compact support, it easily follows from Lemma 
1.11 in Landkof [7] that  

= f U~(T~ . f ) d x ,  (5.7) 
J 
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where we have used the inequalities (5.6) and  0 _<f  __< 1. Except  for a neighbour- 
hood of the  origin, T~ is an in tegrab le  funct ion C]x[ -n-~, and f vanishes outside 
KR+4~, so for I x [ > _ R + 4 e  we see t h a t  

[T~ *f(x)[ ~ C([x[ - - / ~  --  4e) -n-~ . (5.9) 

We can improve this  es t imate  near  KR+a~. I f  Ix] --  R --  4e = t > 0, we h~ve 

T~ �9 f(x) = f 
f(~ Y) 

[yl~+~ dy, 

x -- Kn+a~. Now If[ --< 1, so the  integral is no t  where we only integrate  over 
greater t h a n  

f dy l y [  o §  

t aken  over {y : ]Yi >~ t}, which equals Ct -~. Thus we f ind  t h a t  

ITs *f(x)Z < C ( I x I  - -  R - -  4 ~ )  - ~  , ( 5 . 1 0 )  

i f  Ix l >  R + 4 e .  
We need a generalization to l~iesz potentials  of the  Poisson formula.  In  La n d k o f  

[7, p. 156--157] we f ind t h a t  

u (z) = f U~(y)PR(y, x)dy, [x I > R ,  (5.11) 

[yT<n 

where 

( Ix l  ~ - .R2) c~/2 1 
PR(Y, x) = C (R 2 -  ]yi2) ~/2 [ x - - y l  ~ 

Here C depends only on n and  c~. I f  r >  R, we conclude from (5.11)that .  

f ]U~ldo < C / IU~(y)I dy (r ~ _ R2)~/2 f dox 
(R 2 --  [yI2F/2 Ix -- y[n 

$ 

[ x l = r  l y ! < n  IxE=r 

But  b y  the  ordinary  Poisson formula 

f dox Cr Cr < 
ix -- YI" r2 -- lYl 2 r2 -- 1~2 

l~l = r  

and  therefore 

f f a ~--1 1U~(y) ] dy r(r 2 /72) 2 [V~ldo < C (R 2 _ ] y l 2 ) ~ / 2  - -  . 

I~1=~ ryl<n 

(5 .12 )  
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f o r  

5s >_ R we only need two parts.) This gives us 

To estimate ffd  we split the right side of (5.7) into three parts and use (5.8) 
lxl < /~  § 5~, (5.10) for /~ -? 5e < Ix] < 2R, and (5.9) for 2R < Izl, (If 

f fd(r <_ Ce -~ f [U~(x)]dx § C f IU~,(x)[(]x] -- R -- 4e)-~dx § 
]xI <R + 5e R + 5e<Ix],~2R 

§ c _/ [U~(x)[~x - R -- 4~)-"-~dx. 
[xl>2n 

I f  we write the fi~s~ ~erm of the righ~ side as 

f+ f 
I~I<R R<I~I<R+5~ 

We get a sum 11 § 12 -4- Ia + Ia. Now write I:,3,4 wi~h polar coordinates and 
use (5.12) to estimate these integrals: 

I2.3 < C~ -c4z f IU~[cl,tR 

I 

l~emember tha t  d2, = C(R 2 -- Ixl2)-~/2dx is the equilibrium distribution in KR. 
Thus we have 

'f ] f f fda <_ Ce -~ ]U~[dx § C~ -~/2 IU~]d2R. (5.13) 

K R 

This is true also iu the classical case ~ = 2, since (5.6) implies tha t  Af, taken 
in the sense of distributions, is a function satisfying 

IAf[ <~ Ce -2 �9 

Now f = 0 outside KR+4~ , s o  

f frier < C e  -2 f l~ldx. 
KR+4e 

By use of the exterior Poisson formula we obtain (5.13) also in this case. 

LEM~A 4. 

f [U~,Id2R <_ CM 2(1~) ]U~[dx ) ~(5~) . 
K R 
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Proof. Again suppose a < 2. Using the generalized Poisson kernel, we put  for 
any 9 > 0 

P~q~(x) = f q~(y)P~(y, x)dy if [x] > 
lyk<~, 

= ~ ( x )  if Ix] _~9,  

where ~ is any function for which the integral exists. By  the reciprocity theorem 

jU~ld;.R = 2 (Us) d~R, 

since f = 0 and so f = O. 
We now use properties of P o to be found in Landkof  [7, p. 157-160] .  Since 

~ _ 0 ,  

P ~ U ~ _  U; for 9 < R ,  (5.14) 

and if /~e is # restricted to K ,  9 < R ,  then 

P U% .-o (5.15) 

Pu t  #' ~ # -- #,,~ and let 9 ~ ]xl ~ R. By changing the order of integration we 
find that  

~t' Uet" 0 _ < U s ( x ) - P ~  ~ ( x ) =  

= l x - y l  ~ P ~ ' I y - . I  "-~ (x) d / ( y ) _ < ~  f ( )~y, 
e_<ly/_<R 

the last inequality because of (5.2) and the non-negativity of the integrand. But  
for 9 < lYl < R we have the inequality dy < C(R -- 9ff/2d2R(y), so 

Uf(x) "" f -- P oU~ (x) ~ C(R -- 9)~mM ( )d2R(y), 

where we have the same integrand as before. We can extend the integration over 
the whole of KR ~ithout affecting the value of the integral. Now change the order 
of integration again: 

Vf(x) / -- PQU~ (x) ~ CM(R -- e)~m(1 -- (P~l)(x)) 

since the potential of 2n is 1 in KR. The function PQ1 coincides with the potential 
of 2o, and using the explicit expression for this distribution one finds that  its 
potential belongs to Lip~,/2, even close to the boundary of Ke. Therefore we 
conclude ~hat 

uf(z) / - -  P o U ~  (x )  ~ CM(R - -  9)~/~(Ixl - ~o) ~/~ (5.16) 
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Our relat ions (5.14--16) together  imply  

U~,(x) ~_ Pe U~,(x) d - C M ( R -  @)~/2(lx [ - -  @)~/2, 

and  hence, 

(U~(x)) + < PelU~I(x) + C M ( R  -- @)~/2(lx ] - -  @)c~72 

Let  us now in tegra te  this inequal i ty  over  the  sphere Ix] = r, @ < r < J~, and use 
the  calculat ion t h a t  led us to  (5.12): 

(U~) do < C(r --  @)~ IU~ld2, + C M ( R  --  @)~/:(r --  . 

Hence,  if  we mul t ip ly  b y  (R 2 - -  r2) -a/2 and  in tegra te  wi th  respect  to  r f rom @ to 
R, we f ind  t h a t  

(U~(x)) + 
dx < 0 + O M ( R  - -  @)1 

<- I< <_R 

I f  @ > R/2, say, this implies 

f f i + - -  

(Us) d2R < C ]U~ld2 ~ + C M ( R  -- @) 2 

with  ~ new value  of  the  f irs t  cons tant  C. L e t  us in tegra te  wi th  respect  to  @ from 
R - -  t to R, where 0 < t < / ~ / 2 ,  and use our known expression for the  dens i ty  

of  ~o: 

f ~ 
o _ L  _ _  o -  . t (U~) d2R < Ct ~ ]U s l d x +  C M t  2 + ~ 

I f  

we can take  

(f )1 IU~ldx/M <_ R/2  , 

K R 

(f :; i+~ 
t = 1 U ~ I & / M  

K R 

and  obta in  the  inequal i ty  claimed in the  lemma.  Otherwise the  lemma is t r ivial ly  

t rue,  since f IU~,Id,~R is bounded  b y  

f o + _ f . _ f o  , 2 (Us) dAR < 2 U,~d2~ < 2M U J 2 R  < C M  

where qn is Lebesgue measure  in K m 
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The case ~ = 2 can be handled similarly, and so the lemma is proved. 
We now conclude the proof of Theorem 2 by first using Lemma 4 in (5.13): 

f f fda  ~_ Ce -~ ]g~ldx + CMW+=) ~ ~ [U~idx 2(T~) . 

K R K s 

The proof then runs like tha t  of Theorem 1. This time there is no restriction on 
the value of s, and to obtuin (5.3) in the final step we choose 

(f 1' o- l + ( x  I U~ldx 

I K. ! ~ = \  M~ / 

This completes the proof of Theorem 2. 

COROLLARY. Under the same assumptions, 
a 2 

]/~(B Cl Ks) -- v(B rl KR) ] < C ( M K )  2+~. I )*  - ~ll~ + ~  , 

where I[al] ~ ---- (f Uad~) 1/~ is the energy norm. 

Proof. Using Theorem 2 with a/2 instead of ~ and then Cauchy's inequality 
we get 

[#(B n KR) -- v(B N KR)[ ~ C ( M K )  2 ~  [U;/2Idx ~-+~' <_ 
K R 

K R 

However, as can be found in e.g. Landkof  [7, F- 105--106], 

( U~/2) dx = C U~d~. 

The corollary is proved. 

THEOREM 3. Let 0 < o~ < 2 and let N be a compact set in R". I f  # and v 
are positive mass distributions with supports contained in N and such that 

f d . =  f d, and 
d# ~_ M dx 

in N ,  then for any B c R ~ having K-regular boundary in _N 

o~ 1 

I#(B f'l N)  - -  v(B n N)l  < C ( M K )  ~+~ (sup ~;'~-~+~ C = C(N, ~x) 
N 
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Remark.  As simple examples show this  is no t  brae for ~ = 2. I t  would  no t  be 
t rue  wi th  R ~ ins tead of  2V, even after  a suitable definit ion of  K-regular  b o u n d a r y  

in R ~ (this could mean  allowing only  d < 1, say). 

Proof. Take R so great  t h a t  N c KR. Since dx < Cd2R, it follows from the 

inequal i ty  (5.13) t h a t  

/ o  f i f d  < Ce ~ IU~ldi~, 
1 - 

if  we assume tha t  e <  1. 

Now f U~dIR = O, so, just  as in the  proof  of  Theorem 1, we conclude tha t  

c~ 1 

]a(B)I _< C ( M K )  1+~ (sup U~) 1+~ . 
K R 

B u t  because of  ~-harmonic i ty  (see L a n d k o f  [7]) 

sup U~ = sup U~. 
K R N 

This completes the proof  of  Theorem 3. 
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