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i .  Introduction 

This paper deals with spectral decomposition of the following differenfial 
operators 

~p, ~ : d~/dt 2 -~ g . d/dt 

where g ( t ) =  19. coth t ~ -2q .  coth 2t, with iD and q positive real numbers and 
t contained in the open interval ]0, oo[. 

The radial part  of the Laplace-Beltrami operator on a symmetric space of rank 
one is of the form cop, ~. Here (p, q) are certain pairs of non-negative integers. 
See I-[arish-Chandra [11], p. 302, Araki [1]. 

The main result in this paper is Theorem 4, which generalizes the classical 
Paley-Wiener theorem, characterizing the Fourier transform of C+-functions with 
compact support, and the theorem tha t  the set of Schwartz-functions is mapped 
onto itself by the Fourier transform. The results in Theorem 4 (i) and (ii) are well 
known for symmetric space, see Gangolli [8], Harish-Chandra [11], [12], Helgason 
[14], [15], Trombi and Varadarajan [23]. However our proof does not use the theory 
of Lie groups and symmetric spaces at all. Theorem 4 (iii) is probably only known 
in a special case, see Ehrenpreis and Mautner [6]. 

The main difficulty in the proof of Theorem 4 is getting the best possible estimates 
for the eigenfunctions of Mp, g. This is done in Theorem 2. In our proof we use 
heavily the fact tha t  the eigenfunctions of ~p, q are essentially hypergeometrie 
functions. I t  seems, however, that  similar results should be obtainable for other 
differential operators havi~g the same type of singularities as mp, q. In  fact if 
~) + q < 1 some results of Dym [5] can be applied to c%. ~ and give a Paley-Wiener 
theorem which however is weaker than ours. Note also tha t  the classical Hankel-trans- 
form is a spectral decomposition of the differential operator r ~ = d2/dt 2 ~- k �9 t - l d /d t ,  
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which has the same type  of singularity at zero as c%, ~ (for k ----- p + q). For the 
Hankel transform it is quite easy (using well known facts about  Bessel functions) 
to prove a Paley-Wiener theorem. A prelimenary version of the proof of Theorem 
2 used perturbation theory relating eigenfunctions of wp, q to eigenfunctions of co ~. 

Results of Ehrenpreis and Mautner [6], Gasper [9], Muckenhoupt and Stein [20], 
and Schwartz [21] suggest that  one should develop further harmonic analysis with 
respect to c%, q. 

I would like to express my  thanks to prof. S. Helgason for taking interest in 
this work, and to prof. L. Carleson for his hospitality at Inst i tut  Mittag-Leffler. 

2. Statement of results 

1. Eigenfunctions of a)p, 

The singular points for ~o ---- cop, q are 0 and ~ .  The function g(t) has the form 
g(t) -~ (p -~ q)t -1 -]- G(t), where G(t) is analytic in the closed interval [0, ~ [  and 
limt+ + g(t) = p -+- 2q. D~fine 0 = 2-1(p + 2q). Well known results about  solutions 
of singular second order differential equations [3], Chap IV, w 8, [18], w 7, give the 
following facts about  the equation: 

% , ~  + (2 3 § 0~)~ = 0 on ]o, ~ [  (2.1) 

There exists a unique solution ~(t)  satisfying q~x(0) =- 1 and ~(0) = 0, and 

it follows that  ~x(t) is analytic for t E [0, ~ [  and that  ~x(t) = q~_x(t) and ~(t)  =- 
~(t). There exists a linearly independent solution behaving at zero, for p + q r 1 
like t '-(P+~), and for p + q - - ~  1 like logt. 

For Im 2 ~ 0 there exists a unique solution ~bx(t) satisfying 

~ ( t )  = em-~)'(1 + o(1)) as t - +  

and it follows that  Ok(t ) is analytic for t 6 ]0, ~ [  and that  Cx(t) = r 
There exists a linearly independent solution behaving at ~), for 2 ~: 0 like 

e (-iz-~)', and for 2 = 0 like te -% 

PROPOSITION 1. For each f ixed t 6 ]0, oo[, as funct ion of 4, ~x(t) is an entire 
funct ion;  and Ok(t ) is holomorphic in the upper half plane, and extends to a holo- 
morphic funct ion in t~ = C ~ { - -  iN}. For all 2 E Y2 q~(t) is a solution of (2.1) 
and satisfies 

~b~(t) ---~ e('~-e)'(1 -~- o(1)) as t ~ ~) .  

For 2 r 0, such that  4, --  2 6 12, q~z and r are linearly independent 
because of their behaviour at  oo. Hence there exist c+(2) and c-(2) such that  
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q~x(t) : c+(2)O~(t) ~- c-(2)r 

Obvious ly  c+( - 4) ---- c-(~), so we de f i ne  c(4) ---- c+(4) a n d  h a v e  e(~) -~ c ( - -  ~ .  

THEOREI~ 2. 

(i) !'or all n E Z + there exists K .  ~ 0 such that for all 2 ~ ~ ~ i~ E C, t E [0, ~ [ :  

(ia) ~ 9~(t) ~_ K~(1 + 141)~(1 + t)e (l~l-*)' 

I d~ ~(t) (ib) ~ 7  _< K,~(1 q- t)~+~e <l'l-~)' 

(ii) For all c ~ O, s ~ 0 and n E Z + there exists K .  ~ 0 such that for all 
4 = ~ - i ~ E C  with ~ ~ - - e [ ~ [  and all tE[c ,  ~[:  

d~t ~ t) O~(t) = e(~-~)t(1 -~ e-:'O(4, t)) and 0(4, ~ K~ 

(iii) For all s ~ O there exists K ~ O such that for all ~ - ~ - ~  i v E~  with 

>_ - siC: 

]4c(-- X)] < K(1  ~- [~I)~-=-! (~+q) 

to( -  4)I -~ _< K(~ + I~1) =-'<~+~) 

2. Generalized l~ourier transform 

Not i ce  t h a t  fo r  p: ...... q ~- 0, we have  9x(t) --~ cos 4t, #;,(t) = e i;', c(4) = 1/2, 
0 (4 ,  t )~ - -0 .  I n  th i s  case t h e  e s t ima te s  a re  t r iv ia l ,  b u t  no t  essen t ia l ly  b e t t e r .  
R e s t r i c t i n g  ou r  a t t e n t i o n  to  even  f u n c t i o n s  f on R, t h e  classical  F o u r i e r  cosine 

t r a n s f o r m  ](4)  ~ (2/~) 1/2 f o  f(t) cos ~tdt a n d  t h e  i nve r s ion  f o r m u l a  f(t) = 

( 2 / 2 ~ )  1/2 f0 f (4)  cos ~td2 is a spec t ra l  d e c o m p o s i t i o n  o f  o~o, o = d2/dt2. W e  shall 

n o w  discuss t h e  s imi lar  ~)Fourier t r a n s f o r m ,  r e l a t ed  to  c%. q. 
F i r s t  no t e  t h a t  

%,~ = A(t) -1 -~- Aft) ~ w h e r e  A(t) = (e' - -  e- ')P(e 2' - -  e-2') q , 

a n d  t h u s  c%,q is f o r m a l l y  se l f -ad jo in t  w i th  r e spec t  to  t h e  m e a s u r e  A(t)dt on 
[0, oo[. T h e  o p e r a t o r  in  L2(A) d e f i n e d  b y  cop, q w i t h  d o m a i n  

D~,q = {u E LZ(A)Iu a n d  u '  a re  a b s o l u t e l y  c o n t i n u o u s  a n d  ege, qu E L~(A)} 

can  be  r e s t r i c t e d  to  a d o m a i n  De, q, such  t h a t  c%, q becomes  se l f -ad jo in t .  D~,q 
con ta in s  a t  leas t  f unc t i ons  in  Dp ~ q wh ich  are  d i f f e ren t i ab le  a t  zero.  F o r  th i s  see 
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e.g. [16], p. 208 or [18], w 9, c%,q has l imit-point  at  oo; and  at  zero there is limit- 
point  if  Iv A- q > 3, and  limit-circle if  p -F q < 3. In  this last case D~, ~ # D ~ 
and  choosing %1 E C with  I m  2~ > 0 we can define 

Dpq, = {u C D~ lim (A(t). (q3~(t)u'(tj -- cf~,(t)u(t))) = O} . 
t --->0 

PRO~OSXTION 3. For f C L2(A) and 2 e R + define 
oo 

] (J , )  = (27t:) -1/2 f f(t)cp~(t)A(t)dt 

0 

the integral converging in L2(Ie(~t)I-2). f - ->]  is a linear, normpreserving map of 
L2(A) onto L2(Ic(2)1-~), the inverse given by 

o 

the integral converging in L2(A). A function f C L2(A) belongs to De, q if and only if  
().~ + 02)f(~t) e L~(le(,~)1-2) and in that case 

%, J('D = - (Z  + e @ , D .  

3. Paley-Wiener theorems 

For  all 2 C C for which the  integral  converges we denote also 

oo 

= f f(t)gJ (t)A(t)dt. 
o 

Let  us define the  following funct ion spaces: 

~R = { e v e n ,  C ~ on R, support  contained in [ - - R ,  1%]} for 0 < R <  oo 
S = {even, rapidly  decreasing on R} 
9" = { ( c o s h t )  -2el'.G} for 0 < r _ < 2  
9d R = {even, entire, rapidly decreasing of exponent ial  type  R t h a t  is: for all n 

P~(T) = sup~ec I(1 + ~n)e-~[~[T(,~)[ < + oo} 
For  0 < r < 2  let D,={~§ ~<(2r-1- -  1)~} 

c)~, = {even, holomorphic in the  interior of D,, C ~ in D,; rapidly  decreasing, 
t h a t  is: for all m, n Pa. , , (T)  = suPxeD" [(1 + 2")dm/dZ"T(~)[ < + a3}. 

Now notice t h a t  c)/~ = 5 and  t h a t  9" c: L'(A) and if  r < s t h e n  ~" C ~" c L~(A) �9 
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Give '0 R the topology of uniform convergence of all derivatives, cX n the 
topology defined by  the semi-norms P. ,  and 9g" the topology defined by  the 
semi-norms P~,~. Then S = cx~ has the usual Schwartz-topology, and 

2 

= (eosh t ) - ;  ~ �9 

shall be given the topology from S. Clearly 9 R 
co = ~op, q, and we notice tha t  the semi-norms 

Q . ( f ) =  sup Ioff(t)l 
tei0,nl 

are continuous on 9R; the seminorms 

are continuous on 
b y  the semi-norms 

and ~ are invariant under 

Q.,,~(f) = sup [(cosht):o/~(1 +t)~omf(t)l 

9"; and that  the topology on ~ can equivalently be defined 

P ~  = sup d - ~  ((Z ~ + e~)~T(~))  . 
)~ E D  r 

Note that  all the spaces are Frechet spaces. 
Now let % = [in>0 9R and c )g  = [.JR>0 9dR both given the inductive limit 

topology. And define 
~ocX = {entire; even; slowly increasing functions of exponential type, that  is: there 

exist N E N, R > 0 such that: suPxec (1 + 12])-Ne-nlvllT(~ + i~])] < + ~ } .  
Let  ~g denote the set of all even C~funetions on 1t, given the topology of 

compact convergence of all derivatives. 
The dual spaces ~ ' ,  (92) ' and ~ '  shall be called respectively the distributions, 

the tempered distributions and the distributions of compact support  (with respect 
to the density A). A function f is identified with the distribution: 

co 

g ~ f g(x)f(x)~(x)dx g e 3 .  
0 

Similar definitions hold on the Fourier transform side for distributions with respect 
to the density Ic(2)l -s. 

T~EO~EM 4. The Fourier transform f --+ f defines a linear, bijective map between: 
(i) 95, the space of even C~-functions of compact support, and c~oo, the space 

of even, entire, rapidly decreasing functions of exponential type. 
(ii) 9 r and cX" for 0 < r < 2. 

(iii) ~g' and c~. 
I n  (i) and (ii) the map is also bieontinuous. 
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(i) and (iii) are the generalized Paley-Wiener theorem. 
For r ~- 2, (ii) generalizes the theorem about  the Fourier transform of Schwartz 

functions. For the dual spaces (~) '  and 8 '  we define the Fourier transform 
as the transpose of the inverse Fourier transform. And thus we have that  the 
tempered distributions correspond under the Fourier transform. Note also that  
�9 c (~a)', and that  the definition of Fourier transform agree on the two spaces, 
due to the Parseval equation. 

4. Convolution structure 

I t  is natural to consider a convolution structure associated with this type of 
eigenfunction expansions. Roughly speaking, the convolution of two functions should 
be defined by  means of the pointwise product on the Fourier transform side. 

As T. I(oornwinder pointed out to the author it is a simple consequence of the 
results in [10] and [19] that  this convolution is defined by  means of a positive 
kernel. In a joint paper with T. Koornwinder this convolution structure will be 
discussed further. Here we just state without proof the following easy result: 

TtIEORE~ 5. 
(i) Let ]c, l, r be positive numbers or oo, such that 1/Ic ~- l / l - -  1 = I/r, then, 

for f e Lk(A) and g E LI(A), f �9 g is well defined as a function in L'(A) and 

] i f *  gilt _< IJflI~ilgll, �9 

(ii) When ever well defined the following holds 

f �9 --- 

(iii) (LI(A), *) is a semi-simple Banaeh algebra. 

Using Theorem 5, we shall prove the following theorem, part  of which is needed 
in the proof of Theorem 4 (iii). 

T~EORE~ 6. There exists an approximate identity {v~}~> o in the convolution 
algebra ~ ,  which also acts as approximate identity in: 

L~(LJ) for O ~ r ~ o~ and ~ for 0 ~ r ~ 2 .  

In the case of a symmetric space, this convolution is just the convolution on 
the corresponding semi-simple Lie group. 
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3. The proof of Proposition 1 and Theorem 2 

F r o m  now on we always assume t h a t  p -}- q > O. Making in (2.1) the  change 
of  variable z = - - ( s i n h t )  ~ we get z E ] - -  oo, 0[ 

z(z  - -  1)~0"(z) + {(a -4- b -~ 1)z - -  c}~'(z) @ abe(z)  = 0 (3.1) 

a = a(2) = 2-1(0 + i~), b = b(/~) = 2-1(~ - -  i l ) ,  c = 2-1(p -}- q -}- 1) 

this is the  hypergeomet r ic  differential  equa t ion  and  it  follows t h a t  

q~x(t) = F(a ,  b, c; z) 

F being the hypergeomet r ic  funct ion.  We state  a couple of  well-known formulas  
for  F ,  [7]: for  z Q ] - -  m, 0] i f  R e ( b ) > 0  and R e ( c - - b ) > 0 :  

1 

F(a,  b, c; z) = F(c )F(b ) - IF(c  - -  b) -1 f t5-1(1 - -  t)~-5-~(1 - -  z t ) -"dt  (3.2) 

0 

d 
dz E(a ,  b, c; z) = abc- lF(a  -97- 1, b -~ 1, c ~- 1; z) (3.3) 

Note  t ha t  i f p l = p ,  q l = q + 2  then  we get  a l = a ~ -  1, b l = b @  1, c l = c ~ -  1 
and  Q I =  ~ - 2 -  Set t ing G(p,  q, Z; t) = F(a ,  b, c; z) = ~).(t) we have 

d 
d-~ G(p, q, 2; t) = --  2-1(p -~ q @ 1)-1(2 2 -~ (2-1/9 ~- q)2) sinh2t G(p, q + 2, ~; t) (3.4) 

The  funct ions qs. can be considered as a cont inuous  or thogonal  sys tem.  T h e  
discrete analogue of  this sys tem is given b y  Jaeob i  polynomials  P (a 'P )wi th  
0r - -  l ( p  ~_ q _ 1), fl = �89 - -  1). We  m a y  call the  funct ions  Jacob i  funct ions.  

T. Koornwinde r  [19] has der ived an  integral  represen ta t ion  for  Jaeobi  poly-  
nomials which has an analogue for Jacob i  functions.  I t  takes  in our  no ta t ion  the  
following form: 

F o r  all t E [O, ~ [  and  ~ C C we have for  

p > 0 ,  q > O ,  

wi th  

//  q~z(t) = ~(F'~)(t) = "~(p, q) a(t, r, O)~d~(O)dv(r) 

0 0 

T ( p ,  q )  = ~:7~--1/2/~(2-1(p -}- q --~ 1) ) ( / ' (2 -1 io )F(2-Jq) )  -1 

a(t, r, O) = 2-1(cosh2t -}- 1 @ (cosh2t - -  1)r 2 @ 2 sinh2t �9 r cos0) 

d#(0) = (sir~O)q-'dO, d~,(r) = (1 - -  r3) p/2-1, rqdr 

y : - -  2-1(2-1P -{- q -t- i~) 

(3.5) 
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p = O ,  q # O ,  

with 

19~=0, q - ~ 0 ,  

+.,(,) = + f =(t ,  
0 

~(0, q) ----- ~-112/"(2-1(q + 1))/"(2-1q) -1 

(3.6) 

~o?,o)(t) = ~o.p)(~-lt) ~ r f ~(2-1t, 1, O)2~dgO) (3.7) 
0 

These formulas are explicit forms of I-Iarish-Chandras formula for the spherical 

functions: ~0~(t) ~ f K e x p  ( i ~ -  q)(tk)dlc in the case of symmetric spaces, see 
l-Ielgasons book [13], p. 432. Formula (3.6) is well known [7], formula 3.15 (22). 

For convenience of the reader we give an elementary proof of formula (3.5) by  
using (3.6) and a fractional integral for hypergeometrie functions. The idea of the 
proof in the similar case of Jacobi polynomials, see [19], is due to prof. R. Askey. 

Proof. By analytic continuation with respect to complex y we find from formula 
(2.11) in Askey and Fitch [2] that  for y < 0, /~ > 0, c > 0. 

(--y)~+'-~(1 -- y)~-~F(a, b + #, c Jr #; Y) = 
0 

-= l'(c -t- /z)(F(c)F(lu)) -~ f (x -- y)'-~(1 --  x)~-~-'( - x)~-~F(a, b, c, x)dx.  

Y 

Now using 

~0~e'q)(t) ~- 2 ( - -  y, y -{- q + l p ,  �89 + �89 + �89 _ (sinh t) e) 

we find that  

(sinh t)P+q-a(cosh t)-(2r+q+~)q~P'~)(t) ~--- I'((�89 -j- q -J- 1))(_7'( l(q ~- 1))/"(�89 -1- 

( ~  0 ~ 

f ((sinh t) ~ -- (sinh s)~)�89 s)-(2r+P+q+l)(sinh s)q-l~(~ s) ~ 

0 

using formula (3.6) for ~0(~ and making the change of variables 

r = sinh s cosh t (sinh t cosh s) -1 

formula (3.5) follows. Q.e.d. 
For the s tudy of ~bz(t ) the easiest is to write formally: 

~ ( t )  = e ('~-~)' ~ /"~(~)e - ' ~  . 
m ~ 0  
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Inser t ing in the  differential  equat ion  one f inds the  following recursion formula  for 
_rz(x): 

n - - 1  

F 0 : 1, /W2n_l = 0 and 4n(n --  iX)F:= : ~ (2r - -  i). -Jc- 0)(XP + (5:4q)Fx, 
r ~ 0  

where  ~,~=-0 for r ~ n - t -  1 (mod 2), ~ , ~ :  1 for r~_~n (rood 2). 

L ~  7. Let D c C be one of the following sets: 
(i) D is compact, contained in 

(ii) D = {~ + ivl ~ >_ - -  e[~[} for some e > O. 
There exist constants K and d > 0 such that 

IF~(X)[ <__ K(1 -~ m) ~ for all m E Z +, X E D .  

Proof (see Helgason [14]). For  

and  inductively:  

XE~9 and  f E Z  + define 

c,(X) = 4fir - -  iX[; ?,(4) = 4el2r --  iX -t- ~1 

tt--11 

b0(x) = 1, bn(X) = co(X)-1 ~ b,(~)7,(X) 
r ~ 0  

then  clearly [Fan(X)[ ~ bn(X ) for all n E Z +, X E YX. 

n- -2  

b.(X)e~(X) = ~ b.(X)r,(X) + b.21(X)r~_l(X) = bo_,(X)c._~(X)(1 + y._~(X)cn_,(2) -1) = 
r~O 

n--1  

. . . . .  bl(X)Cl(X ) ]-'[ (1 + y,(X)c,(X)-I). 
r ~ l  

We claim tha t  for each set D there  exists a c > 0 such tha t  for all 

~,(X)c,(X) -1 __< c .  r -1 . 

Take 

(r)',(X)c,(X)-l) ~ = ~2((2r -t- Q + ~)2 @ ~)((r  ~- V)2 -~ ~2)-1 = a(r, 4) . 

For  ~ > _ 0  or ( 2 r - f - e - ~ V ) _ < 0  it is clear tha t  

( 2 r + e ~ - V ) 2 < k ( r - 4 - V ) 2  for some k > 0  

and  so ~(r, 4) is bounded.  I f  ~ < 0  and 2 r - t - ~ - ~ > 0  then  

c~(r, 4) < K(((2 -~ ~)r -t- ~)2 ~_ ~)((r  -t- ~)~ -i- ~)-1 = fl(r, 2) .  

Now in case (i) fl(r, 4) is cont inuous  on the  compact  space N 19 { o o } x D ,  
thus  bounded.  In  case (ii) fl(r, 2) = fl(1, r-12) 
bounded  on D. This proves  (3.8). No w since 
conclude tha t  for n E N: 

tEN,  X E D :  

(3.8) 

and  
and  is b o u n d e d  since fl(1, 4) is 
l o g ( 1 - l - x ) < x  for x > 0 ,  we 
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also 

n--I n--I 

]7" (1 -4- ~'~(4)c,(4) -1) __< exp (c ~ r -x) < e ~. n ~ 
r = l  r = l  

b1(4)c1(4)c~(4) -1 = ~IQ -- i41 ]n(n --  i4)[ -1 

is bounded  for n E N and  4 E D. This completes the  proof  of L e m m a  7. Q.e.d. 

F rom L e m m a  7 i t  follows t h a t  the  expansion for r converges uni formly  on 
sets of  the  form {(t, 2) E [c, oo[• where c is a constant  greater  t han  zero. 
This shows, t h a t  for all 2 E ~2, ~b~(t) is a solution of (2.1) sat isfying 

q)~(t) = (1 q- o(1)) exp (i4 --  e)t as t--> oo. 

Proposi t ion 1, and  Theorem 2 (ii) now follow easily. 

L~MMA 8. With notation from (3.1), c(4) is given by 

2 % p ( e ) r ( i 4 )  

c(4) = F(e --  b)F(a) 

4c(- -4)  is holomorphic in Q, and the zeros of 4c( - -4)  
set - - i [e ,  co[ for some s >  O. 

is contained in the 

Proof. The Wronski -de te rminant  of ~z and  O k is independent  of t so we get: 
t 

W(Qgz, ~z) = A(t)(99'z(t)qbz(t) - -  cfz(t)Oz(t)) = 
(3.9) 

= lim A(t)c(-- 4)(~b'_~(t)Oz(t) -- qb_z(t)qb'z(t)) = --  2i2c(-- 2) 
t --~ O0 

this  proves t h a t  2c(-- 2) is holomorphie in #2. 
For  ~ > 0  we get 

lira e(~+Q)'q~z(t ) = lim (e(~;'+e)'c(4)e (~z-~)' --}- e(iZ+~)'c( - 4)e (-~'-~)') = c(-- 4) 
t --~ r t --~oo 

Now assuming ~ 7 > 0 ,  R e ( b ) > 0  and  l ~ e ( c - - b ) > 0 ,  t h a t  is 0 < ~ ? < p q - } ,  
then  by  (3.2): 

1 

f c(-- 4) = ,+-limoo ( -  4z)a ff(b)F(e --  b) tb-l(1 --  t)*--b-l(1 -- zt)-adt = 
0 

1 

22at(c) f 
- -  T'(b)F(c b) tb_l(1 __ t)c_b_lt_,dt = 2~a-F(c)/'( - i4) 

- _ r ( b ) _ r ( e  - -  a )  
0 

this  formula  holds for all 4 E Y2~{0} by  analyt ic  continuat ion.  The rest is now 
clear. Q.e.d. 
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COROLLARY 9. Given e ~ 0 there exists K > 0 such that 

12c(-- 2)] < K(1 -~ 1,~1) x-m-~(~+q) 

[c(-- ~)[-i < K(1 -q- I~1) ~-a(p+~) 

for all 2 = ~ -q- i~ 7 with ~? > -- el~l. 
Proof. Since 2c(-- 2) and  c(--  2) - i  are continuous for n ~ -- e]~] we just  

have to consider the  behaviour  at ~ .  Stirling's formula [22], p. 151, gives t ha t  
for any  c~EI3 and  any  8 > 0  

tog .N(~ + z) = (z + a - -  2 -1) log z - -  z + 2 -1 log 2~ -~ 0([z I-l) 

uni formly in {z[ larg (z)[ < z ~ -  ~} as [z[--> oo. 
Corollary 9 follows by  using this in the  formula for c(2). Q.e.d. 

This proves T h e o r e m  2 (iii). 
I n  the  proof  of Theorem 2 (i) we t rea t  the  case (3.5), the  o ther  eases are easier. 

The proof  consists of  a series of lemmas.  
Let  2 = ~ - ~ i  hE13, since ~z( t )=~_~( t )  we assume for the  most  ~ 0 .  

dr* 

L]~=~A 10. a(n)(t, r, O) = ~ ~x(t, r, O) satisfies 

(i) c~ ~) -~ 4a (~-~) for n ~ 3 
(ii) 2"e - 2 ' < a ( ~ )  ~ 2 " e  2t for n ~ - O ,  1 , 2 , . . .  

Proof. Obvious. 

L v , ~ x  11. For all 2 E C and rE[o ,  m[ we have: 
(i) I~(t)l <~,,(t) 

(ii) In[ >-- q ~ [~~ l --< e(l'l-e)' 
(iii) [ ~ l - - < q ~  lq~z(t) l~l  

Proof. (i) and  (ii) follows f rom (1) by  taking absolute values inside the  integrat ion,  
using !~e (~) = 2-1(U --  Q) >__ 0. (iii) follows f rom (ii) using the  m a x i m u m  modulus  
principle on {21 [~[ ~ e}. Q.e.d. 

L ~ M A  12. There exists K > 0 such that for all t E [0, ~[ :  

0 < ~o(t) < K(1 + t ) e  - ~ '  . 

Proof. This follows f rom the  discussion just  before Proposi t ion 1. Tha t  (1 q- t) 
cannot  be avoided, can be seen f rom the  fact  t h a t  ~0o(t ) and  C0(t ) are l inearly 
independent ,  of. (3.9). Q.e.d. 
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LEMM_~ 13. There exists K > 0 such that for all .1 E C and t E [0, m[: 

[~,(t)l < K(1  q- t)e (l'l-e)' . 

Proof. For ,t E 11 it follows from Lemma 11 (i) and Lemma 12. Phragm6n- 
LindelSf's theorem [22], p. 177, applies for fixed t to the function e~'q~x(t) in 
the domain {.11 ~ > 0} and gives the result. Q.e.d. 

L ~ M ~  14. There exists K > 0 such that for all .1 E C, t E [0, oo[ and n E Z+: 

- ~  ~(t) ~_ t~qh,(t) ~_ K(1 ~- t)~+~e @l-e)' . 

Proof. 

f f  d*1" %.(t) = ~(p, q)(-- 2-1i)" o~-2-1(~+~)(1~ ~ 
0 0 

From Lemma 10 (ii) follows that  [log oc(t, r, 0) 1 <_ 2t, thus the lemma follows by  
taking absolute values, and using Lemma 13. Q.e.d. 

L~MMA 15. For each n E Z + exists K ,  > 0 such that for all .1 E C and t E [0, m[: 

q~(t) < K,(1 q- t)(1 -k I*11)% (j'l-o)' �9 

Proof. Using Lemma 10 (i) we find with certain constants K,,~: 

d n 
d-~ qg~(t)= 

X az 

k 
e =  max(0,2s-- n} 

Ks,ey(y -- 1 ) . . .  (y --  s q- 1). ~-'(o;')e(oc")~-'d#(O)dv(r) 

0 0 

Taking absolute values we find using Lemma 10 (ii) 

~-~ ~v~(t) < K(1 q- 1*1[)% (['t+~)' . (3.10) 

Thus we can apply Phragm6n-LindelSf's theorem for fixed t to the function 
e~a(i ~ ,1)-ndn/dtnq~x(t ) in the domain {2[ ~ >_ 0} and the lemma follows when we 
have proved the estimates for 22 E R: 

1. I*11_<K, t E [ 0 ,  m[ the proof  is reduced to the case n = 0 .  Using (3.4): 
For certain constants Ke,, and K ~  we get 



I~ALEY-WIENER TYPE THEOI~EMS F01~ A DIFFEI~ENTIAL OPEI~AT01~ 155 

I I a = O  r = m a x { 0 , 2 a - - n }  

<_ ~ K~,,e~ 2~,,(1 + t)e (Inl-(2-1P+~+2~))t <__ K(1 + t)e (l'fl-~)t 
o~, r 

2. Xf iR ,  t E [ 0 ,  K] i t  follows from (3.10). 
3. I~1 >- K and  t e [ K ,  ~ [  i t  follows from 

~(t) = c(~)r + ~ ( -  ~)~_~(t) 

and theorem 2 (ii) and  (iii). 1 ,  2. and  3. prove the  lemma for 2 fi R. Q.e.d. 
This finishes the  proof  of  Theorem 2 (i), and  thus  Theorem 2 is proved. 

K~,,(cosh 2t)~-'(sinh 2t)'lG(p, q + 2o~, ~, t)l 

Q.e.d. 

4. The proof of Proposition 3, Theorem 4 and 6 

Proposit ion 3 is contained in the  general spectral t heo ry  of differential  operators. 
l~eferring to Dunford  and  Schwartz [4], also for nota t ion,  we give a short  outline 
of the calculations leading to proposit ion 3. Where  [4] uses 2 we shall use #, and  
we take  /~ = (~2 + e2), and  assume t h a t  I m  1 > 0. 

Transforming the  differential  equat ion (2.1) by  ~(t) = A1/2(t)~(t) we get 

# 
dt---~ y~ + {(~t 2 + e ~) --  h}~ = 0 .  

Here h is the  funct ion 

d 
h(t) = 2 -1 ~ g(t) + 4-1g(t) 2 . 

Le t  ~ be the  differential operator  

d 2 

"~ = 7:1,,~ = - -  dt ~ + h ,  

t hen  the solutions of W ~ #~v is given by  ~p = A1/2 9, where %,q~v = --  (~2 + ~)~0. 
F rom [4], X I I I ,  3, theorem 16, and  (3.9) we f ind  the  Green's funct ion related 

to T, for s < t :  

K(t ,  s, #) = --  (2i2c(-- 2))-iA1/2(t)q~x(t)A~/2(s)q~x(s). 

Firs t  we take  [4], X I I I ,  5, theorem 18, corollary 20 wi th  

A = ] - -  oo, e2[, U = { R e # < ~ 2 }  and  

al(t, 2) = A1/2(t)qx(t), a2(t, 4) = A1/2(t)q~z(t) 

This gives 0 + =  (2i~c(--2)) "~ and  O + = 0  for ( i , j ) #  (2,1). Now since {0 +} 
is analyt ic  in U and  real in A then  {@(A)} = 0. 
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Secondly we take  A = ] ~ 2 - - s ,  oo[, U = { R e # >  e 2 - - e }  and  

adt ,  4) = A~J2(t)9~(t) 
a2(t, 4) = A~/2(t)i4(c(4)q~)x(t) --  c(-- 4)#_~(t)), 

this gives 

K(t, s, #) = -- (2i4c(-- 4))-l((2c(4))-lax(t , 4) -]- (2i4c(4))-~(~(t, 2))al(t, 2) 

and  thus  

0 + = --  (4i4c(4)c(-- 4)) -1, O + ---- (442c(4)c( - 4)) -1 and  O + = O + = 0 .  

Now since {0+(/,)} is cont inuous in the  intersection between U and  the closed 
lower ha l f  plane, O + is real on A, and  O + is real on ] ~ 2 _  s, ~2], we f ind  

e,AA) = 0 f o r  if, j) # (1, 1) and e n ( ] e  ~ - ~, e~]) = 0 ,  

and for #_>~2 or equivalent ly  4 > 0  

d~n ---~ (47~4c(4)c(-- ~))-ld/t ---- (47~]c(4)[2)-1d4. 

Now Proposi t ion 3 follows from [4], X I I I ,  5, theorems 13, 14 and  16. 

We now tu rn  to the  proof  of  Theorem 4. This proof  follows ra ther  closely the  
ideas of  Chap. I in HSrmander ' s  book [17]. In  the  following we shall often use 
Theorem 2, and  Proposi t ion 3 w i thou t  reference. Le t  K denote a suitable constant ,  
which every  t ime it  occurs m a y  have a new value. 

1. We take  f e a R .  f =  f~f(t)qJ~fl)A(t)dt is clearly entire and  even, and  

co7(~--~ ) = (--  (2 a -[- Q~))"f~2). We f ind  

R 

l(1 + 4)=nf(4)I < K f I~nf(t)q~;.(t)A(t)ldt < KQn(f)e Rt~I . 

0 

This shows t h a t  f E  % and  t h a t  f--->fi is continuous. 
2. We take  ~ E c)/RI The inverse Fourier- t ransform is for t > 0 given by: 

cO cO 

0 --cO 

by  Cauchy's  theorem, and  the  fact  t h a t  the  in tegrand is well behaved a t  ~ ,  we 
f ind  

cO 

f T(t) T(~ + i~)c(-- ~ - -  i~)-lr for ~ > 0 

- - c O  
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thus 
oo 

I~(t)[ ~ Ke (-~-~)* f + 
- - o o  

P + q  

i~)1( 1 + l~ -4- i~l)-Y-d~ <_ Ke "(R-') �9 

Since this holds for all ~ / >  0, we find tha t  T(t) = 0 for t > R. In  order to see 

that  ~(t) is C ~, we consider for r e [ 0 ,  oo[ 

r co 

0 0 

this shows that  ~(t) is C ~ and that  

IT(),)(I -t- ~)"+P+q[d2, < + oo 

o~  

dn f d~ 
dr-- d T(t) -~ T(2) - ~  

0 

~ ( t )  It(Z)I-~dZ �9 

Thus • e ~, .  Since f - ->]  is continuous from ~R onto c~R, and D R and 9/R 
are Frechet spaces the map is bicontinuous. 

This finishes the proof of Theorem 4 (i). 
2 

3. We take f e ~  r, f(t) = (cosht)-;~g(t) with g ES.  For ;~ ~ i~ / eD , ,  tha t  
is lV[ ~ ( 2 r - 1 -  1)p, we find 

2 (~rt  

g(t)(cosh t) -;Q ~(t)A(t) dt < K ]g(t)(1 ~- t)~+l[dt < 
d~n 

0 0 

O 0  . 

This shows tha t  ](4) is C ~ in Dr and holomorphic in the interior, and tha t  

dn / dn 
d2 ~ f(~) = f(t) -d~ q~x(t)A(t)dt for all 

0 

and that  

oo 

I f P ((4 2 ~- ~2)'~](2)) < K - ~  q~x(t)A(t) dt 

0 

2 

__< K sup I(cosh t);%J~f(t)(1 q- t)n+s I = KQn+3,,~(f) 
te[0,~o[ 

for all 2 E D,. This shows tha t  f C cx" and that  f--->] is continuous. 
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4. Finally we take W E c2g~. For t E [0, zo[ consider: 

/ I '  I / ~( I )  - ~  9~(t) Ic(A)l -udA <-- K [ir-'(,it)[(1 + ]l])'+~'+qdl < + oo 

0 0 

therefore # is C ~. I t  is just left to find the behaviour of W(t) at oo, so assume 
t > c > 0  and we get for ~ =  (2r - 1 -  1)~ 

~'(t) = f W(~ + i~)c(-- ~ -- iv)-~e('~-'-~)'(1 + e-2'O(~ + i T, t))d$ = 
~ 00  

O0 

= e, T(~ + iT)c ( -  ~ - -  i~)-le~'d~ + 

- - 0 0  

O0 

f I -+- e -2t T(~ + iT)c ( -  ~ - -  i~)-~O(~ + iT, t)e~r = e ;~' (9~(t) + e-2'g2(t)) 
/ 

- - o o  

(4.1) 

Now gl is rapidly decreasing since it is the usual Fourier-transform of a rapidly 
decreasing function; and since all derivatives of 0(~ + i T, t) with respect to t 
is bounded uniformly in ~, it follows easily tha t  e-2'g2(t) is rapidly decreasing. I t  

follows that  W E 9  r. Since f - - ~ f  is continuous from ~" onto c)~r, and 
and 9g" are Freehet spaces the map is bicontinuous. 

This finishes the proof of Theorem 4 (ii). 

Before the proof of Theorem 4 (iii), we shall prove Theorem 6. 

L ~ t ~  16. Let v be an even C=-function, positive and with support contained 
in [--  1, 1], such that 

Define 

o o  

f v(t)A(t)dt = 1. 
0 

v~(t) --- e-lA (t)-ld (s-lt)v(s-lt)  , 

then, for s > O, v~ satisfies the same conditions as v, except that supp v~ c [--  s, s] . 
There exists constants K and K ,  such that for all ~ = ~ + i T E C 

(i) l~(;t) --  11 ~ s .  K(1 + I~t)e I'1 
(ii) Id"ld2"~(2)l ~ e"e*l'lK,. 
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~ ) ? ' O O f  . 

/ , I /  (i) iv~(~) - -  II ~- I vCt)(~x(et) -- 1 ACt)dr < vCt)etl~v'~(O)lA(t)dt < 
0 0 

1 

< s K f v( t ) t ( I+ O)(1 + lXt)e (lvl-e)' < s -  K(1 + ]~l)e I't , 

0 

where O = O(,, t) E [0, s t ] ,  

ao o0 

(ii) ~-ff ~(~) ~ v~(t) ~ c?~(t)A(t)dt < v.(t)t~(t)A(t)dt < 
0 0 

1 

<- f v(t)(et)~qg', (st)A(t)dt <~ s~e*l,IK. 
9 

Q.e.d. 

Proof of Theorem 6. Firs t  consider f E %. For  all t E [0, oo[ we get  

r 

O 

Since the  suppor t  of  v~ �9 f -  f for e < 1 is conta ined in a f ixed  compaet  set, 
we get  for 0 < r ~  oo: 

[Iv, . f - - f l l , - ->O for e - - > 0 .  

Using Theorem 5 (i) and the  fact  t ha t  ~ is dense in L'(A) for all 0 < r < oo, 
it follows easily tha t  v, is ~n approx imate  iden t i ty  in Lr(/l). For  f E ~ we find, 
as above,  for h E N :  

1" I j [ ~  (v. , f - .f)(t) < ~ . K ,  

this shows t ha t  % is an approx imate  iden t i ty  in gS. 
N o w  take  f E ~ for 0 < r < 2. Le t  ~ ---- (2r -1 - -  1)e, then  as in (4.1) we get 

2 

v, , f(t) - - f ( t )  = e;~ e) + g~(t, e)) 

for t > e : > O  where  

~o 

--oo 

and  
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o o  

g~(t, ~) = e -~' f ~(~ + i~)(~(~ + i~) - 1 )e ( -  ~ - i~)-~O($ + i~, t)e'~'d~ 

In order to prove that  v is an approximate identi ty in ~ ,  it is enough to 
show that  for any given integers n and m, we can find a constant K > 0 such 
that  [t~(dm/dt'~g~(t, s) I __< s .  K for i ---- 1, 2. g~ is easily taken case of using the 
factor e -:~ and Theorem 2 (ii). 

co  

d ~ / d" 
t ~ --dt "~ g~(t, s) = h(~)(v~(~ -~ i~) --  1) ~-~ (e~')d~, 

where h(~) = (i~)~( - i)~f(~ ~- i~)c(-- ~ --  iv) -~. Now doing partial integration n 
times, and then using Lemma 16 (i) and (ii) the result follows. Q.e.d. 

LEMMA 17. 
(i) The following inclusions hold 

~ '  c_ (~2), c_ ~ ' .  

(ii) With the natural definition of support, we have for all u E ~ '  : u E ~ '  i f  and 
only i f  the support of u is compact. 

The proof is straight forward, similar to [17], theorems 1.5.1 and 1.5.2. 
For  u C ~ '  the Fourier transform is defined since # E (~) ' .  I t  is easily seen 

to be the function ~(X)=  u(~).  

P~OPOSITmN 18. Given R > 0, the Fourier transform is a bijective map between 
the space of distributions {u C ~ ' I  supp u c [0,/~]} and the space of even, entire 
functions ~ ,  which for some N E N satisfy an inequality 

I~(~)[ _ < K ( I ~  ]~I)Ne I'IR for all ~ -~ ~ ~ i~ 1E C . 

Proof. Take u E ~ ' ,  s u p p u c E 0 ,  R]. Let  ~ E C ( R )  be such that  l ~ I _ < l ,  
~ ( x ) - -  1 for x_< �89  and ~(x)----0 for x ~  1. D~fine, for ~ #  0, 

T~(x) = ~ ( x ) ~ ( l ~ l ( I x [ - / ~ ) ) .  

Then obviously Tz is even and C ~, and 

T~(x) ~-- Fx(x) for x E [0, R -~ (2121) -1] 

~.(x) = 0 for [x] > _R -f- [~1-1 

I t  follows that  for x E supp Tz we have inequalities 
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and thus inequalities 

~z(t) ~ K~(1 + l&l)~e I',tR 

d n 
~/z T~.(t) _< Ko(1 + [~])-er, l , .  

Since u is continuous on ~ there is an inequality 

[u(f)[ < K Z f(t) for f E 3 .  
n < N  

Now it follows that  

I~(~)l = lu(w01 = iu(T~)I _< K(1 + 1~1)%1 < "  . 

Let U be even, entire and satisfy 

IU(),)i ~ K(1 + I&l)Ne I'IR for all Z E C.  

Obviously U E S ' =  (9g~) ' and is thus the Fourier transform of a tempered 
distribution u E (~) ' .  

Now take v, as in Theorem 6 and define % by  ~ , = u * v ~ = ~ . 6 , =  U ' v , .  
This shows that  supp u, ~ [0, R + s]. 

Now pick arbitrary cr and fl such that  B < ~  < fi, and f E ~  with 
supp f C [~, fi]. Then, for sufficiently small s, %(f) =- O. 

This gives 

o = %(f) = ~(]) = f ~(2)9~(2)f(2)]c(2)I-2da = ~(9~]) = u(v~ , f ) .  
0 

But  v~ , f - + f  in ~ as e - ~  0 and thus u ( f ) =  0. Therefore supp u ~ [0, R]. 
Q.e.d. 

This finishes the proof of Theorem 4. 
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