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I. Introduction 

Let f (z)  be meromorphie in the plane. We define in the normal way  the order 
and the characteristic T ( r , f )  of f(z)  and also the quantities re(r, a) and N(r,  a) 

for any a in the closed plane. 1) 
The Valiron deficiency is defined to be 

m(r, a) N(r ,  a) 
A(a) = ,-~lim T ( r , f )  -- 1 --  ,-,~lira T ( r , f )  " 

We are concerned in this paper with the question of how large the set of a can 
be for which A (a, f)  > 0 [3, problem 1.2]. For functions of finite order this problem 
has recently been completely solved by  I~yllengren. He proved [4, Theorem 1] 
the following 

THEOREM A. Let E be any plane point  set. Then the following two conditions are 
equivalent 

a) There exists a positive number k and an infinite sequence al, a2, . . . of complex 
numbers, so that each a E E satisfies the inequality 

[a --  anI < exp{-- exp(nk)} 

for  infinitely many  n. 
b) There exists a real number x, 0 < x < 1 and a meromorphic function f (z)  

o f  f ini te  order in  [zl < ~ ,  so that 

A ( a , f )  > x 
for  every a in  E. 

I n  fact f ( z )  can be chosen to be an integral f u n c t i o n .  

1) for the notation see e.g. [5, p. 158]. 
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For  functions of infinite order the s i tuat ion is ra ther  different. The strongest  
result  in the positive direction is due to Ahlfors [1, see also 5, p. 264], who proved 

T~EO~]~M B. Suppose that f(z) is meromorphic in the plane. Then given e > 0, 
we have for all a outside a set E of capacity zero 

re(r, a) < T ( r , f )  1/~+~ (1.1) 

for all sufficiently large r. I n  particular A (a) = 0 outside a set of capacity zero. 

As Hyllengren points out ,  while all sets sat isfying his condit ion a) have capaci ty  
zero, the  converse is false, and in fact  sets satisfying a) are metr ical ly  substant ia l ly  
smaller t han  general sets of capaci ty  zero. 

. 

In  this paper we shall give examples to prove t h a t  for functions of inf ini te  
order Theorem B is more or less best possible, by  proving 

T~EOREM 1. Let E be an arbitrary F .  set of capacity zero. Then there exists an 
integral funct ion f(z),  such that A(a, f )  ~ 1 for a E E. 

This result is an immediate  consequence of the  following more precise 

T~EOREM 2. Let q51(r ) and ~ ( r )  be continuous increasing functions of r for r ~ r o, 
which tend to -}- ~ with r. Let E., be an expanding sequence of  compact sets o f  
capacity zero, having the origin as an isolated point.  Then  there exists an integral 
function f(z)  with f ( O ) =  0, and a sequence r.~--~ ~ with m, such that for 
m -~ 1 , 2 , . . . ,  we have 

n(r.~, a , f )  ~ q~l(r.,), a e E . , ,  (2.1) 

2r a , f )  ~_ q~l(r.,) log r,., a C E . , ,  (2.2) 

and 

T(r,~,f)  ~_ q52(rm) . (2.3) 

We note t h a t  r  can tend  to inf in i ty  as slowly and  qS~(r) as rapidly as we please. 
Taking for instance Cbl(r ) = log r, ~b~(r) = r, we see t ha t  all values a in E = [9 Era, 
sat isfy A (a, f )  ~ 1. I t  is also interest ing to note  t ha t  the lower growth of 2V(r, a) 
for a E E m a y  be as slow as we please, subject  to  being more rapid t han  ]og r. 
Using the second fundamenta l  theorem, we deduce from (2.2) t h a t  

T(r.,/2, f )  < 4qil(r~) log (r~), m > too, 
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which contrasts  wi th  (2.3). We also deduce f rom (2.2) and (2.3) t h a t  the  sequence 
r,, is except ional  for Nevanlinna?s second fundamenta l  theorem.  For  t h a t  t heorem 
implies as r--+ ~ outside an except ional  set of  f ini te  measure  [5, p. 241] 

(q - -  2)T(r , f )  ~_ (1 + o(1)) ~q=l  •(r ,  a~,f) 

for  a n y  q dis t inct  values a,. I f  this were t rue  for r~ we should deduce 
q52(r~ ) < (q + o(1))(q --  2)-lq~l(rm) which is false in general.  Thus  the  except ional  
set in Nevanl inna ' s  second fundamenta l  theorem can real ly  occur [see 3, problem 
1.22]. 

The assumpt ion  t ha t  Em is compact  and  has the  origin as an isolated poin t  is 
no real restr ict ion.  Fo r  i f  the  E n  are a rb i t r a ry  closed sets we m a y  wri te  E'~ for 
the  pa r t  of  U:~IE ,  in m -1 _~ [z 1 ~ m, together  wi th  the  origin. I f  the  E ,  all 
have  capaci ty  zero, so does E : ,  which is compact  and  

E = U==I E :  = UZ=, E= O {0} .  (2.4) 

Thus a ny  F ,  set E containing the origin can be wr i t t en  in the  form (2.4). I f  
we now choose for instance q~l(r) --~ r, q52(r ) = # in Theorem 2, we deduce tha t  
for  eve ry  a in E 

N(rm, a) O(r,~ log r , )  
- -  2 ----N 0 ,  a s  r , n  ~ c O  , 

T(rm, f )  r= 

so t ha t  A ( a , f ) =  1. Thus  Theorem 1 follows immedia te ly  f rom Th eo rem  2. 
Theorem 2 also shows t ha t  if  E is any  F~ set of  capac i ty  zero and  r 

q~(r) are the  funct ions of Theorem 2, t hen  there  exists a sequence r~ -+  co and 
an integral  funct ion  f(z) such t ha t  (2.3) holds and  for an y  a E E we have  

N(rm, a) ~ q~l(rm) log r~, m ~_ too(a) �9 (2.5) 

I n  this form the  resul t  is best  possible. In  fact  the  set of  a sat isfying (2.5) for a 
given m o is an  intersect ion of  closed sets and  so is closed. Thus  the  set E of  alt 
a sat isfying (2.5) for  a given sequence r~ is an  F~ set. I t  follows f rom a resul t  of  
Nevanl inna  [5, formula  18, p. 171] t h a t  any  closed subset  of  E,  and  so E itself, 
mus t  have capac i ty  zero if  (2.5) holds, as soon as 

~5:(r~) - -  q~l(r~) log r~ --> + oo, as m --> co.  (2.6) 

Thus  i t  is remarkable  tha t  once the v e r y  weak condi t ion (2.6) is satisfied, we do not  
res t r ic t  the set E f u r t h e r  by  decreasing q~l(r) or increasing r 

3. Some preliminary results 

We complete  the  paper  b y  proving Theorem 2. In  order  to  do this we need 
to reproduce a s i tuat ion in a f in i te  disk for a sequence of  values r --~ rm in the  plane. 
W e  need two subsidiary results. 
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L E M ~  1. Let E be a compact set of capacity zero, p a positive integer and x 
a positive number. Then there exists c h, such that x ~ c~ ~ 10x and a function 

F(z) = alz + %+1 zv+l + . . . ,  (3.1) 

regular in Iz[ ~ 1, univalent in [z] ~ % / 2 -  1, having unbounded characteristic 
and assuming no value of E more than once in ]z] < 1. 

We assume ini t ia l ly  t ha t  E does no t  mee t  the  real  axis, except  perhaps  a t  
w = 0 .  Le t  E o be the  set E with the points  0, T x ,  oo, added  where x is a 
posi t ive number .  L e t  _R be the  inf ini te  covering surface over  the  complement  of  
E 0. We cut  a copy  of  _R f rom x to  ~- co along the  real axis thus  obtaining two 
surfaces R i, /t~ and  ano ther  copy  o f / ?  f rom - - x  to - -  co obtaining two surfaces 
_R 3 and  /?4, all of  which are s imply connected.  Le t  R 5 be the  plane cut  f rom x to  
co and  f rom --  x to  - -  co along the  real axis and let  _R 0 be ob ta ined  b y  joining 
R1, R 2 to R s on the  segments (x, oo), and  _R 3 and _Ra to  R~ along the segments 
( - -  o o , -  x), so t h a t  R 0 is a R iemann  surface containing none of  the  points  
=F x, co in a n y  sheet  and containing points  over  E exac t ly  once, namely  in the  
sheet  17 5. Thus  _R 0 is s imply connected,  and since /?0 does no t  contain the  points  
~= x, oo, / t  o is hyperbolic .  Thus  we m a y  map  Tz] < 1 (1, 1) eonformal ly  onto  R 0 
b y  a funct ion 

Fo(z) = biz -~ b~z ~ Jr . . .  

where b i ~ O. 
The  func t ion  2'0(z ) never  assumes the  values :F x, oo, and  so is subordina te  

to  the  funct ion  G(z) which maps  IzZ ~ 1 onto  the  inf ini te  covering surface S 
over  the  plane wi th  these 3 points  r emoved  and  satisfying 

G ( O ) = O ,  G ' ( 0 ) > 0 .  

This la t te r  funct ion  maps  z = 1, i, - -  1, - -  i onto  w = x, i oo, - -  x, - -  i co so t h a t  
the  sheet  _R s corresponds to  a ~>quadrilatera]~> Q in the uni t  disk bounded  b y  4 
quar te r  circles joining these points  (1, i), (i, - -  1), ( - -  1, - -  i) and (--  i, 1) and  

or thogonal  to Iz I = 1. Clearly Q contains the  disk Iz[ ~ ~ - -  1, and  since 

Fo(Z ) is subordina te  to  G(z), the  disk [z I < ~r 1 corresponds to  ~ subset  

of  the  sheet R 5 b y  F0(z), so t h a t  F0(s) is un iva len t  in [z[ < %/2- - -  1. 

I t  now follows f rom Koebe ' s  t heorem tha t  x > b l ( V ~ - -  1)/4. On the  Other hand  
the  inverse func t ion  z = r  of  Fo(Z ) maps the disk Iw[ < x into the  disk 
lzl < 1, so t h a t  b y  Schwarz 's  L e m m a  bi -~ = ~b'(0) < x -i .  Thus  we deduce t h a t  

4 
x < b 1 < % / ~ -  1 x < 10x.  (3.2) 

Thus  Fo(z ) has the  required  deve lopment  (3.1), when p = 1. 



ON T H E  VALIICON D E F I C I E N C I E S  OF I N T E G R A L  F U N C T I O N S  OF I N F I N I T E  O R D E R  ] [ ~  

We ne x t  no te  t h a t  No(z ) has unbounded  character is t ic  in Iz[ < 1. I n  fact  
Fo(z ) cannot  have  a n y  radial  l imits o ther  t h a n  points  of  E 0. I t  follows f rom a 
classical t heorem of  F ro s tman  and  Nevanl i rma [5, p. 198] t h a t  i f  No(Z ) had  bounded  
character is t ic  t hen  the to ta l  set of radial  l imits  of No(z ) would have  a posi t ive 
capaci ty ,  giving a contradict ion.  Thus  Fo(z ) has unbounded  characteris t ic .  

This proves  L e m m a  1 for the  case p = 1. I f  p > 1, we proceed as follows. 
Le t  E e be the  set consisting of  all complex numbers  w p, such t h a t  w E E.  We m a y  
say  t ha t  E e is the  p - th  power of  E .  L e t  Fp(z) be def ined  as above  wi th  Ep 
instea~l of E ,  xP ins tead of x, and  set 

1 1 

F(z) = {Fe(zP)} ~- = b~(z ~ (b~zP+l[blp) -~ . . . ) .  

Since Fp(z) ~ 0 for z ~ O, F(z) is regular.  Also i f  A o is the  p a r t  of {z L ~ 1 which 
cor responds  to the  sheet R 5 by  Fp(z), t hen  Fe(z ) is un iva len t  in A o. Thus  if  
Ap is the  p ' t h  roo t  of A 0, i.e. the  set of  all z, such t h a t  zp lies in A0, then F(z) 
is un iva len t  in Ap. I n  fact  i f  zi, z~ lie in Ap and  N(zl) ~ F(z2), we deduce t h a t  
z~, z~ lie in Ao, Fv(z~) = Fp(z~), so t h a t  zip = z~. Thus  we have,  for some integer  
k, z~ = z 1 exp  (2uik/p). This implies F(zi) = F(z2) exp (2uilc/p), so t h a t  z 2 = zl, 

and  F(z) is un iva len t  in Ap, which includes the  disk Izl ~ ( V ~ - -  1) l/p, and  so 

cer ta in ly  the  disk Izl ~ % / 2 - -  1. We also see t h a t  if  F(z) = w in E,  t hen  
Fp(zP) = we in Ep, and this is possible on ly  for zP in Ao, i.e. z in Ap, where F 
is univalent .  Thus  Fp(z) assumes no value of  E more t h an  once in Iz[ ~ 1. l~inally 
we see tha t  x P ~ b I ~ 10x p, so t ha t  F(z) has the  deve lopment  (3.1). 

The  above  a rgumen t  assumes ~hat ~ does no t  meet  the  real axis, except  perhaps  
a t  the  origin, t towever ,  since Ep has capac i ty  and so l inear measure  zero, E e will 
no t  mee t  eve ry  s t ra ight  line th rough  the  origin, a t  points  o ther  t h an  w = 0. I f  
Ep does no t  mee t  arg z = ~, a -~ z,  we app ly  the  above  a rgumen t  wi th  the  set 
Ep(~) instead of  Ep where Ep(~) is ob ta ined  b y  ro ta t ing  E v b y  an angle - -  
a round the origin. We then  consider e~Fv(ze -~ )  ins tead  of  F(z). The  a rgumen t  
showing t ha t  Fv(z) has unbounded  character is t ic  also shows t h a t  F(z) has un- 
bounded  character is t ic  and Lemm~ 1 is proved.  

W e  can deduce 

],EMMA 2. Suppose that a D . . . ,  ap are preassigned complex numbers, not all 
zero, and let M = ~ = 1  la~i �9 Let E be the set of Lemma 1. Then there exists Fe(z) 
regular in lzl ~ ], assuming no value of E more than 2p times there, having un- 
bounded characteristic in ]z I ~ 1 and a power series ~evelopment 

N,(z) = alz + c~z ~ ~- . . . .  apz" -~ O(z "+I) (3.3) 

near z : O. Further 

IFp(z)l < IOM, for IzI <_ (VF2 - 1)/2. (3.4) 
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Suppose t ha t  # > M and write 

P av Zr --~- /.tZ 2P 

~o(z )  = 

t~ + ~ ~ z2p-~ 

Then [co(z)] = 1 for Iz] = 1, and  og(z) has precisely 2p zeros and  no poles in 
Iz] < 1 by  Rouch6's  Theorem. Le t  F(z)  be the funct ion whose existence is asserted 
i n L e m m a  1, wi th  a 1 = / ~ ,  where M < / ~ <  10M and set 

G(~) = F{o~(~)}. 

We proceed to show t h a t  _Fp(z) has the required properties. I t  is evident  t h a t  

a n d  s o  

O)(Z) = [~--1 ~,P~=I av zv -~ O(ZP+I) , 

~-~p(Z) = ~t0)(Z) -~  0 (Z  p + l )  

has the required power series development  at  the origin. ~Iext i t  is evident  from the  
same argument  concerning radial  limits t ha t  Fp(z) has unbounded  chaiacterist ic 
in ]z] < 1. Also the  equat ion ~o(z) = $ has precisely 2p roots in [zl < 1 for 
any  ]~[ < 1, and  so, since F ( z ) = w  has at  most  one root z for w in E, i t  
follows tha t  F ~ ( z ) =  w has at  most  2p roots for w in E. 

Final ly,  since _F(z) is univalent  in ]z] < r o = ~r i t  follows from a 
classical inequal i ty  for univalent  funct ion [2, p. 4] tha t  IF(z)l < ttr~[z](ro - -]z])  -2, 
]z] < r 0. Also by  Schwarz's lemma l(o(z)l < ]z], for ]z I < 1, and  so we deduce 
tha t  

Irp(z)l _< t~r~lco(z)](ro --  Ioo(z)[) -~ < aOMr~lzl(ro --  IzI) -2 < IOM, if  Izl < ro12, 

This completes the proof of L e m m a  2. 

4. Proof of Theorem 2 

We shall proceed to construct  the f imction of Theorem 2 

f (z)  = ~,.~1 b ,z" ,  (4.1) 

by  successively constructing its coefficients b,. We set b 1 = 1, and assume tha t  
pk is a s tr ict ly increasing sequence of positive integers such t h a t  Pl = 1. We 
assume tha t  b~ is known for n _< pk and proceed to construct  bn for pk _< n _< Pk+l. 

To do this, we shall induct ively  define a sequence ~ of positive numbers,  
increasing rapidly to inf in i ty  and such t h a t  ~0 ~- 1. Suppose t ha t  ~k has been 
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chosen and l.et Ek be the set of Theorem 2. Let Fk(z) be the function defined as 
in Lemma 2 with p : l o k ,  E = E ~  and 

an = b ~ .  (4.2) 

Then if a~ are the coefficients of F~(z) for all n, we cIefine bn by (4.2) for 
pk < n _~< ~%+~. I t  remains to show tha t  the sequences ~k, Tk can be chosen in- 
ductively so tha~ f(z) given by (4.1) satisfies all the conditions of Theorem 2. 

We start by showing that  if ~ is chosen sufficiently large, when ~o~_1, ~o~ have 
been chosen, we shall have 

b, < (2~_x) -~, s < ~ ~ i%+~ �9 (4.3) 

In fact it follows from Lemma 2, (3.4) and Cauchy's inequality tha t  

lanl < 1 0 ( { ~ / 2  - 1}/2) "M, P~ < n < p~+~, (4.4) 

where 
Pk Pk 

M = Ib, ie; < "Z Ib l. 
v = l  v ~ l  

~u A o = (%/2--- 1)/2, 
for p a < n ~ p k + l  we have 

Bk Pk = ~ = 1  Ib, l, we deduce from (4.2), (4.4) tha t  

- -  p - - n  - - n  lbni < 10~k~ A0 Bk. 
1 n 

Thus (4.3) holds if ~-pk > 10(2~k_l/Ao)nBk, i.e. Qk > (10Bk)n-Pi(2Qk-1/Ao) n-Pi', 
and this condition is certainly satisfied for all n > pk, if 

~k > lOBk(2ek-1/Ao) pk+l �9 (4.5) 

I-Iere we use the fact that  Bk ~ ]bl[ = 1. We assume that,  if Pk and ek-1 are 
known, ~ is chosen to satisfy (4.5) so tha t  (4.3) holds. Since ~--> co with k, 
we deduce at once that  f(z) given by (4.1) is an integral function. 

We note that  (4.3) implies in particular tha t  Ibnl---< 1 for all n. Thus for 
~Iz[=~__<1/2, we have 

If(z)l < ~ e" < ~ < 2e. (4.6) 
- - ~ = 1  - -  1 - - e  - -  

Let E~ consist of all points of E k other than the origin, so that  by hypothesis E~ 
has a positive distance from the origin. We choose ~k to be positive decreasing, 
less than half this distance and less than 1/2. Then it follows from (4.6) tha t  f(z) 
assumes no value of E~ in ]z[ < ~k. Also for lz[ = e, where 0 < e < ~k, we have 

~ ~ -- 2~  
If(z)l ~ e -- e~ = ~ 1 1 - - -  > 0.  
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Thus f(z) # O, for 0 < lz] < ~k, and so in this annulus f(z) assumes no value 
of Ek. Also f(z) has a simple zero a t  the origin. 

The funct ion Fk(z/~k) by  our construct ion approximates  very  closely to f(z) 
and the coefficients of bo th  functions are the  same, namely  a~, for n _< Pk+l. 
Also for n > ~ok+~ we have in view of (4.3) 

Ib .I  < ( 2 Q k )  - =  �9 

This will enable us to show tha t  f(z) and  Fk(z/ek) behave similarly for ]zI = rk < ~k, 
provided t h a t  p~+~ is large enough. However  before constructing rk and  Pk+~ 
we need some fur ther  conditions on eL, which like (4.5) will be satisfied i f  eL is 
sufficiently large. Accordingly we choose ek so large t h a t  in addi t ion to (4.5) we 
h a v e  

2p~ < ~1(1 e~), (4.7) 
and 

2p~ log < q~l( } ~k) log (1 ~k) �9 (4.8) 

We now suppose t ha t  ~ satisfies (4.5), (4.7) and (4.8), and  proceed to define rk. 
I t  follows from L e m m a  2 tha t  Fk(z/~k) has unbounded characteristic in [z[ < ok. 
Thus we m a y  choose rk, such tha t  

1 (4.9) - f f ~ k < r k <  Qk, 

and in addi t ion 

T{rk, Fk(Z/Qk)} > qi2(O~) + 1 . (4.10) 

Next  we note t h a t  sets of capaci ty  zero have linear measure zero, and  hence so do 
their  inverse images by  regular functions, since the inverse funct ion is locally con- 
formal except at  isolated points. I n  part icular  the inverse image of Ek by  Fk(z/ok) 
meets [z[ --  r only  for a set of r of l inear measure zero. Thus, by  increasing rk 
if  necessary, we suppose in addi t ion to (4.9) and  (4.10) t ha t  Fk(z/ok) does not  meet  
Ek, for [zl = rk. Since Ek is compact,  this implies the existence of a quan t i ty  
ek, such t h a t  0 < s k <  1 and 

iFk(z/Q~) -- al > sk, for a eEL and  ]z[ : rk. (4.11) 

I-Iaving chosen rk to sat isfy (4.9) to (4.11), we proceed to show t h a t  if  Pk+l, which 
has so far been left undetermined,  is chosen suitably,  then  (2,1), (2.2) and  (2.3) 
will be satisfied. 

We write Fk(z/~k) =- ~,n~=l B,~z", and note  t ha t  the series is absolutely convergent 
for ]z I = rk. Thus we m a y  choose Pk+l so large t h a t  ~n~=pk+l [B n ] [z] n < I sk, [z] ---- rk, 

where s~ is the quan t i t y  in (4.11). Next  i t  follows from (4.3) and  the fact  t ha t  
r k < ~ k ,  t h a t  for [z[ = r ~  
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~,L~k+l+l Ib-llz[ ~ ~< X~n~176 2-n----  2--Pk+l ' 

and  this is less t h a n  �89 sk if  Pk+~ is large enough, which we assume. Thus we 
m a y  choose Pk+~ so large t h a t  (regardless of any  later  choices of e~, r~, and  p~ 
for ~ > k - k l )  we have 

, I ~ . ( 4 . 1 2 )  If(z) --  F,(z/~k)I = i~pk_l_l_kl (bn - -  B,,)z~l < ek, lz] = rk 

I t  follows f rom this and  (4.11) t h a t  for a in E~ the equations f ( z ) =  a 
and Fk(z/Qk) = a have equal ly  m a n y  roots in Izl < r~, i.e. at  most  2pk, in view 
of L e m m a  2. Now (2.1) follows at  once from (4.7), (4.9) and  the fact  t ha t  r 
increases. 

l~lext if  n(t,a) denotes the  number  of zeros of f ( z ) - - a  in 0 <  [z t < t ,  i t  
follows from the  defini t ion of ~k, " that  for a E Ek 

n(t ,  a) = O, t < ~k , 

while from wha t  we have just  shown 

Thus i f  a # 0 

n(t, a) < 2pk, (Sk < t < rk. 

rk 

N(rk, a) = f n(t, ta)dt < 2j0k log (rk//~e) . 

0 

I f  a = 0, we recall tha t ,  since f(z) has a simple zero a t  the  origin, and  no zeros 
in 0 <  [ z l < ( ~  

r k 

= --f n(t, O) --dt q_ log ~k ~ 2pk log (r~/(~k) . N(rk, O) 
d t 

~k 

Thus for a in Ek we have in all cases 

N(r~, a) < 2~o~ log (r~/~) < ~1(I e~) log (1 e~) < ~l(r~) log r~, 

in view of (4.8), (4.9) and  the fact t ha t  r increases wi th  t. This proves (2.2). 
Final ly  we have by  (4.10), and the well-known inequal i ty  for the  characteristic 

of the sum of two functions [5, p. 162], 

q~(r,) + 1 < r + 1 < T{rk, Fk(z/ek)} <_ T{rk, Fk(z/ek) --  f(z)} + T{r,,f(z)} + 1 

= T{r~,f(~)} + 1, 

in view of (4.12) and the  fact  tha t  e~ < 1. This proves (2.3) and  completes the  
proof  of Theorem 2. 
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