On the Valiron deficiencies of integral functions of infinite order

W. K. Hayman

1. Introduction

Let $f(z)$ be meromorphic in the plane. We define in the normal way the order ϱ and the characteristic $T(r, f)$ of $f(z)$ and also the quantities $m(r, a)$ and $N(r, a)$ for any a in the closed plane. ${ }^{1}$)

The Valiron deficiency is defined to be

$$
\Delta(a)=\varlimsup_{r \rightarrow \infty} \frac{m(r, a)}{T(r, f)}=1-\varliminf_{r \rightarrow \infty} \frac{N(r, a)}{T(r, f)}
$$

We are concerned in this paper with the question of how large the set of a can be for which $\Delta(a, f)>0$ [3, problem 1.2]. For functions of finite order this problem has recently been completely solved by Hyllengren. He proved [4, Theorem 1] the following

Theorem A. Let E be any plane point set. Then the following two conditions are equivalent
a) There exists a positive number k and an infinite sequence a_{1}, a_{2}, \ldots of complex numbers, so that each $a \in E$ satisfies the inequality

$$
\left|a-a_{n}\right|<\exp \{-\exp (n k)\}
$$

for infinitely many n.
b) There exists a real number $x, 0<x<1$ and a meromorphic function $f(z)$ of finite order in $|z|<\infty$, so that

$$
\Delta(a, f)>x
$$

for every a in E.
In fact $f(z)$ can be chosen to be an integral function.

[^0]For functions of infinite order the situation is rather different. The strongest result in the positive direction is due to Ahlfors [1, see also 5, p. 264], who proved

Theorem B. Suppose that $f(z)$ is meromorphic in the plane. Then given $\varepsilon>0$, we have for all a outside a set E of capacity zero

$$
\begin{equation*}
m(r, a)<T(r, f)^{1 / 2+\varepsilon} \tag{1.1}
\end{equation*}
$$

for all sufficiently large r. In particular $\Delta(a)=0$ outside a set of capacity zero.
As Hyllengren points out, while all sets satisfying his condition a) have capacity zero, the converse is false, and in fact sets satisfying a) are metrically substantially smaller than general sets of capacity zero.

2.

In this paper we shall give examples to prove that for functions of infinite order Theorem B is more or less best possible, by proving

Theorem 1. Let E be an arbitrary F_{σ} set of capacity zero. Then there exists an integral function $f(z)$, such that $\Delta(a, f)=1$ for $a \in E$.

This result is an immediate consequence of the following more precise
Theorem 2. Let $\Phi_{1}(r)$ and $\Phi_{2}(r)$ be continuous increasing functions of r for $r>r_{0}$, which tend to $+\infty$ with r. Let E_{m} be an expanding sequence of compact sets of capacity zero, having the origin as an isolated point. Then there exists an integral function $f(z)$ with $f(0)=0$, and a sequence $r_{m} \rightarrow \infty$ with m, such that for $m=1,2, \ldots$, we have

$$
\begin{gather*}
n\left(r_{m}, a, f\right) \leq \Phi_{1}\left(r_{m}\right), \quad a \in E_{m} \tag{2.1}\\
N\left(r_{m}, a, f\right) \leq \Phi_{1}\left(r_{m}\right) \log r_{m}, \quad a \in E_{m} \tag{2.2}
\end{gather*}
$$

and

$$
\begin{equation*}
T\left(r_{m}, f\right) \geq \Phi_{2}\left(r_{m}\right) \tag{2.3}
\end{equation*}
$$

We note that $\Phi_{1}(r)$ can tend to infinity as slowly and $\Phi_{2}(r)$ as rapidly as we please. Taking for instance $\Phi_{1}(r)=\log r, \Phi_{2}(r)=r$, we see that all values a in $E=\mathrm{U} E_{m}$, satisfy $\Delta(a, f)=1$. It is also interesting to note that the lower growth of $N(r, a)$ for $a \in E$ may be as slow as we please, subject to being more rapid than $\log r$. Using the second fundamental theorem, we deduce from (2.2) that

$$
T\left(r_{m} / 2, f\right)<4 \Phi_{1}\left(r_{m}\right) \log \left(r_{m}\right), \quad m>m_{0}
$$

which contrasts with (2.3). We also deduce from (2.2) and (2.3) that the sequence r_{m} is exceptional for Nevanlinna's second fundamental theorem. For that theorem implies as $r \rightarrow \infty$ outside an exceptional set of finite measure [5, p. 241]

$$
(q-2) T(r, f) \leq(1+o(1)) \sum_{v=1}^{q} N\left(r, a_{v}, f\right)
$$

for any q distinct values a_{p}. If this were true for r_{m} we should deduce $\Phi_{2}\left(r_{m}\right)<(q+o(1))(q-2)^{-1} \Phi_{1}\left(r_{m}\right)$ which is false in general. Thus the exceptional set in Nevanlinna's second fundamental theorem can really occur [see 3, problem 1.22].

The assumption that E_{m} is compact and has the origin as an isolated point is no real restriction. For if the E_{n} are arbitrary closed sets we may write E_{m}^{\prime} for the part of $\bigcup_{v=1}^{m^{n}} E_{v}$ in $m^{-1} \leq|z| \leq m$, together with the origin. If the E_{n} all have capacity zero, so does $\overline{E_{m}^{\prime}}$, which is compact and

$$
\begin{equation*}
E=\bigcup_{m=1}^{\infty} E_{m}^{\prime}=\bigcup_{m=1}^{\infty} E_{m} \cup\{0\} \tag{2.4}
\end{equation*}
$$

Thus any F_{σ} set E containing the origin can be written in the form (2.4). If we now choose for instance $\Phi_{1}(r)=r, \Phi_{2}(r)=r^{2}$ in Theorem 2, we deduce that for every a in E

$$
\frac{N\left(r_{m}, a\right)}{T\left(r_{m}, f\right)}=\frac{O\left(r_{m} \log r_{m}\right)}{r_{m}^{2}} \rightarrow 0, \text { as } r_{m} \rightarrow \infty
$$

so that $\Delta(a, f)=1$. Thus Theorem 1 follows immediately from Theorem 2.
Theorem 2 also shows that if E is any F_{σ} set of capacity zero and $\Phi_{1}(r)$, $\Phi_{2}(r)$ are the functions of Theorem 2, then there exists a sequence $r_{m} \rightarrow \infty$ and an integral function $f(z)$ such that (2.3) holds and for any $a \in E$ we have

$$
\begin{equation*}
N\left(r_{m}, a\right) \leq \Phi_{1}\left(r_{m}\right) \log r_{m}, m \geq m_{0}(a) \tag{2.5}
\end{equation*}
$$

In this form the result is best possible. In fact the set of a satisfying (2.5) for a given m_{0} is an intersection of closed sets and so is closed. Thus the set E of all a satisfying (2.5) for a given sequence r_{m} is an F_{σ} set. It follows from a result of Nevanlinna [5, formula 18, p. 171] that any closed subset of E, and so E itself, must have capacity zero if (2.5) holds, as soon as

$$
\begin{equation*}
\Phi_{2}\left(r_{m}\right)-\Phi_{1}\left(r_{m}\right) \log r_{m} \rightarrow+\infty, \text { as } m \rightarrow \infty \tag{2.6}
\end{equation*}
$$

Thus it is remarkable that once the very weak condition (2.6) is satisfied, we do not restrict the set E further by decreasing $\Phi_{1}(r)$ or increasing $\Phi_{2}(r)$.

3. Some preliminary results

We complete the paper by proving Theorem 2. In order to do this we need to reproduce a situation in a finite disk for a sequence of values $r=r_{m}$ in the plane. We need two subsidiary results.

Lemma 1. Let E be a compact set of capacity zero, p a positive integer and x a positive number. Then there exists a_{1}, such that $x<a_{1}<10 x$ and a function

$$
\begin{equation*}
F(z)=a_{1} z+a_{p+1} z^{p+1}+\ldots \tag{3.1}
\end{equation*}
$$

regular in $|z|<1$, univalent in $|z|<\sqrt{2}-1$, having unbounded characteristic and assuming no value of E more than once in $|z|<1$.

We assume initially that E does not meet the real axis, except perhaps at $w=0$. Let E_{0} be the set E with the points 0 , $\mp x, \infty$, added where x is a positive number. Let R be the infinite covering surface over the complement of E_{0}. We cut a copy of \boldsymbol{R} from x to $+\infty$ along the real axis thus obtaining two surfaces R_{1}, R_{2} and another copy of R from $-x$ to $-\infty$ obtaining two surfaces R_{3} and R_{4}, all of which are simply connected. Let R_{5} be the plane cut from x to ∞ and from $-x$ to $-\infty$ along the real axis and let R_{0} be obtained by joining R_{1}, R_{2} to R_{5} on the segments (x, ∞), and R_{3} and R_{4} to R_{5} along the segments ($-\infty,-x$), so that R_{0} is a Riemann surface containing none of the points $\mp x, \infty$ in any sheet and containing points over E exactly once, namely in the sheet R_{5}. Thus R_{0} is simply connected, and since R_{0} does not contain the points $\mp x, \infty, R_{0}$ is hyperbolic. Thus we may map $|z|<1(1,1)$ conformally onto R_{0} by a function

$$
F_{0}(z)=b_{1} z+b_{2} z^{2}+\ldots
$$

where $b_{1}>0$.
The function $F_{0}(z)$ never assumes the values $\mp x, \infty$, and so is subordinate to the function $G(z)$ which maps $|z|<1$ onto the infinite covering surface S over the plane with these 3 points removed and satisfying

$$
G(0)=0, \quad G^{\prime}(0)>0
$$

This latter function maps $z=1, i,-1,-i$ onto $w=x, i \infty,-x,-i \infty$ so that the sheet R_{5} corresponds to a »quadrilateral» Q in the unit disk bounded by 4 quarter circles joining these points $(1, i),(i,-1),(-1,-i)$ and $(-i, 1)$ and orthogonal to $|z|=1$. Clearly Q contains the disk $|z|<\sqrt{2}-1$, and since $F_{0}(z)$ is subordinate to $G(z)$, the disk $|z|<\sqrt{2}-1$ corresponds to a subset of the sheet R_{5} by $F_{0}(z)$, so that $F_{0}(z)$ is univalent in $|z|<\sqrt{2}-1$.

It now follows from Koebe's theorem that $x>b_{1}(\sqrt{2}-1) / 4$. On the other hand the inverse function $z=\Phi(w)$ of $F_{0}(z)$ maps the disk $|w|<x$ into the disk $|z|<1$, so that by Schwarz's Lemma $b_{1}^{-1}=\Phi^{\prime}(0)<x^{-1}$. Thus we deduce that

$$
\begin{equation*}
x<b_{1}<\frac{4}{\sqrt{2}-1} x<10 x \tag{3.2}
\end{equation*}
$$

Thus $F_{0}(z)$ has the required development (3.1), when $p=1$.

We next note that $F_{0}(z)$ has unbounded characteristic in $|z|<1$. In fact $F_{0}(z)$ cannot have any radial limits other than points of E_{0}. It follows from a classical theorem of Frostman and Nevanlinna [5, p. 198] that if $F_{0}(z)$ had bounded characteristic then the total set of radial limits of $F_{0}(z)$ would have a positive capacity, giving a contradiction. Thus $F_{0}(z)$ has unbounded characteristic.

This proves Lemma 1 for the case $p=1$. If $p>1$, we proceed as follows. Let E_{p} be the set consisting of all complex numbers w^{p}, such that $w \in E$. We may say that E_{p} is the p-th power of E. Let $F_{p}(z)$ be defined as above with E_{p} instead of E, x^{p} instead of x, and set

$$
F(z)=\left\{F_{P}\left(z^{P}\right)\right\}^{\frac{1}{p}}=b_{1}^{\frac{1}{p}}\left(z+\left(b_{2} z^{p+1} / b_{1} p\right)+\ldots\right)
$$

Since $F_{p}(z) \neq 0$ for $z \neq 0, F(z)$ is regular. Also if Λ_{0} is the part of $|z|<1$ which corresponds to the sheet R_{5} by $F_{p}(z)$, then $F_{p}(z)$ is univalent in A_{0}. Thus if Δ_{p} is the p^{\prime} th root of Δ_{0}, i.e. the set of all z, such that z^{p} lies in Δ_{0}, then $F(z)$ is univalent in A_{p}. In fact if z_{1}, z_{2} lie in Δ_{p} and $F\left(z_{1}\right)=F\left(z_{2}\right)$, we deduce that z_{1}^{p}, z_{2}^{p} lie in $\Delta_{0}, F_{p}\left(z_{1}^{p}\right)=F_{p}\left(z_{2}^{p}\right)$, so that $z_{1}^{p}=z_{2}^{p}$. Thus we have, for some integer $k, z_{2}=z_{1} \exp (2 \pi i k / p)$. This implies $F\left(z_{1}\right)=F\left(z_{2}\right) \exp (2 \pi i k / p)$, so that $z_{2}=z_{1}$, and $F(z)$ is univalent in Λ_{p}, which includes the disk $|z|<(\sqrt{2}-1)^{1 / p}$, and so certainly the disk $|z|<\sqrt{2}-1$. We also see that if $F(z)=w$ in E, then $F_{p}\left(z^{p}\right)=w^{p}$ in E_{p}, and this is possible only for z^{p} in Δ_{0}, i.e. z in Δ_{p}, where F is univalent. Thus $F_{p}(z)$ assumes no value of E more than once in $|z|<1$. Finally we see that $x^{p}<b_{1}<10 x^{p}$, so that $F(z)$ has the development (3.1).

The above argument assumes that E_{p} does not meet the real axis, except perhaps at the origin. However, since E_{P} has capacity and so linear measure zero, E_{p} will not meet every straight line through the origin, at points other than $w=0$. If E_{p} does not meet $\arg z=\alpha, \alpha+\pi$, we apply the above argument with the set $E_{p}(\alpha)$ instead of E_{p} where $E_{p}(\alpha)$ is obtained by rotating E_{p} by an angle $-\alpha$ around the origin. We then consider $e^{i \alpha} F_{p}\left(z e^{-i \alpha}\right)$ instead of $F(z)$. The argument showing that $F_{p}(z)$ has unbounded characteristic also shows that $F(z)$ has unbounded characteristic and Lemma 1 is proved.

We can deduce
Lemma 2. Suppose that a_{1}, \ldots, a_{p} are preassigned complex numbers, not all zero, and let $M=\sum_{v=1}^{p}\left|a_{y}\right|$. Let E be the set of Lemma 1. Then there exists $F_{p}(z)$ regular in $|z|<1$, assuming no value of E more than $2 p$ times there, having unbounded characteristic in $|z|<1$ and a power series development

$$
\begin{equation*}
F_{p}(z)=a_{1} z+a_{2} z^{2}+\ldots a_{p} z^{p}+O\left(z^{p+1}\right) \tag{3.3}
\end{equation*}
$$

near $z=0$. Further

$$
\begin{equation*}
\left|F_{p}(z)\right|<10 M, \text { for }|z| \leq(\sqrt{2}-1) / 2 \tag{3.4}
\end{equation*}
$$

Suppose that $\mu>M$ and write

$$
\omega(z)=\frac{\sum_{\nu=1}^{p} a_{\nu} z^{\nu}+\mu z^{2 p}}{\mu+\sum_{\nu=1}^{p} \bar{a}_{\nu} z^{2 p-v}}
$$

Then $|\omega(z)|=1$ for $|z|=1$, and $\omega(z)$ has precisely $2 p$ zeros and no poles in $|z|<1$ by Rouche's Theorem. Let $F(z)$ be the function whose existence is asserted in Lemma 1, with $a_{1}=\mu$, where $M<\mu<10 M$ and set

$$
F_{p}(z)=F\{\omega(z)\}
$$

We proceed to show that $F_{p}(z)$ has the required properties. It is evident that

$$
\omega(z)=\mu^{-1} \sum_{v=1}^{p} a_{\nu} z^{v}+O\left(z^{p+1}\right)
$$

and so

$$
F_{p}(z)=\mu \omega(z)+O\left(z^{p+1}\right)
$$

has the required power series development at the origin. Next it is evident from the same argument concerning radial limits that $F_{p}(z)$ has unbounded characteristic in $|z|<1$. Also the equation $\omega(z)=\zeta$ has precisely $2 p$ roots in $|z|<1$ for any $|\zeta|<1$, and so, since $F(z)=w$ has at most one root z for w in E, it follows that $F_{p}(z)=w$ has at most $2 p$ roots for w in E.

Finally, since $F(z)$ is univalent in $|z|<r_{0}=\sqrt{2}-1$ it follows from a classical inequality for univalent function [2, p. 4] that $|F(z)|<\mu r_{0}^{2}|z|\left(r_{0}-|z|\right)^{-2}$, $|z|<r_{0}$. Also by Schwarz's lemma $|\omega(z)| \leq|z|$, for $|z|<1$, and so we deduce that

$$
\left|F_{p}(z)\right| \leq \mu r_{0}^{2}|\omega(z)|\left(r_{0}-|\omega(z)|\right)^{-2}<10 M r_{0}^{2}|z|\left(r_{0}-|z|\right)^{-2}<10 M, \text { if }|z| \leq r_{0} / 2
$$

This completes the proof of Lemma 2.

4. Proof of Theorem 2

We shall proceed to construct the function of Theorem 2

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} b_{n} z^{n}, \tag{4.1}
\end{equation*}
$$

by successively constructing its coefficients b_{n}. We set $b_{1}=1$, and assume that p_{k} is a strictly increasing sequence of positive integers such that $p_{1}=1$. We assume that b_{n} is known for $n \leq p_{k}$ and proceed to construct b_{n} for $p_{k} \leq n \leq p_{k+1}$.

To do this, we shall inductively define a sequence ϱ_{k} of positive numbers, increasing rapidly to infinity and such that $\varrho_{0}=1$. Suppose that ϱ_{k} has been
chosen and let E_{k} be the set of Theorem 2. Let $F_{k}(z)$ be the function defined as in Lemma 2 with $p=p_{k}, E=E_{k}$ and

$$
\begin{equation*}
a_{n}=b_{n} \varrho_{k}^{n} \tag{4.2}
\end{equation*}
$$

Then if a_{n} are the coefficients of $F_{k}(z)$ for all n, we define b_{n} by (4.2) for $p_{k}<n \leq p_{k+1}$. It remains to show that the sequences ϱ_{k}, p_{k} can be chosen inductively so that $f(z)$ given by (4.1) satisfies all the conditions of Theorem 2.

We start by showing that if ϱ_{k} is chosen sufficiently large, when ϱ_{k-1}, p_{k} have been chosen, we shall have

$$
\begin{equation*}
b_{n}<\left(2 \varrho_{k-1}\right)^{-n}, \quad p_{k}<n \leq p_{k+1} \tag{4.3}
\end{equation*}
$$

In fact it follows from Lemma 2, (3.4) and Cauchy's inequality that

$$
\begin{equation*}
\left|a_{n}\right|<10(\{\sqrt{2}-1\} / 2)^{n} M, \quad p_{k}<n \leq p_{k+1} \tag{4.4}
\end{equation*}
$$

where

$$
M=\sum_{\nu=1}^{P_{k}}\left|b_{\nu}\right| \varrho_{k}^{\nu}<\varrho_{k}^{p_{k}} \sum_{\nu=1}^{p_{k}}\left|b_{\nu}\right|
$$

Writing $\quad A_{0}=(\sqrt{2}-1) / 2, \quad B_{k}=\sum_{v=1}^{p_{k}}\left|b_{v}\right|$, we deduce from (4.2), (4.4) that for $p_{k}<n \leq p_{k+1}$ we have

$$
\left|b_{n}\right| \leq 10 \varrho_{k}^{p_{k}-n} A_{0}^{-n} B_{k}
$$

Thus (4.3) holds if $\varrho_{k}^{n-p_{k}}>10\left(2 \varrho_{k-1} / A_{0}\right)^{n} B_{k}$, i.e. $\varrho_{k}>\left(10 B_{k}\right)^{\frac{1}{n-p_{k}}}\left(2 \varrho_{k-1} / A_{0}\right)^{\frac{n}{n-p_{k}}}$, and this condition is certainly satisfied for all $n>p_{k}$, if

$$
\begin{equation*}
\varrho_{k}>10 B_{k}\left(2 \varrho_{k-1} / A_{0}\right)^{p_{k}+1} \tag{4.5}
\end{equation*}
$$

Here we use the fact that $B_{k} \geq\left|b_{1}\right|=1$. We assume that, if p_{k} and ϱ_{k-1} are known, ϱ_{k} is chosen to satisfy (4.5) so that (4.3) holds. Since $\varrho_{k} \rightarrow \infty$ with k, we deduce at once that $f(z)$ given by (4.1) is an integral function.

We note that (4.3) implies in particular that $\left|b_{n}\right| \leq 1$ for all n. Thus for $|z|=\varrho \leq 1 / 2$, we have

$$
\begin{equation*}
|f(z)| \leq \sum_{n=1}^{\infty} \varrho^{n} \leq \frac{\varrho}{1-\varrho} \leq 2 \varrho \tag{4.6}
\end{equation*}
$$

Let E_{k}^{\prime} consist of all points of E_{k} other than the origin, so that by hypothesis E_{k}^{\prime} has a positive distance from the origin. We choose δ_{k} to be positive decreasing, less than half this distance and less than $1 / 2$. Then it follows from (4.6) that $f(z)$ assumes no value of E_{k}^{\prime} in $|z|<\delta_{k}$. Also for $|z|=\varrho$, where $0<\varrho<\delta_{k}$, we have

$$
|f(z)| \geq \varrho-\sum_{2}^{\infty} \varrho^{v}=\varrho-\frac{\varrho^{2}}{1-\varrho}=\frac{\varrho-2 \varrho^{2}}{1-\varrho}>0
$$

Thus $f(z) \neq 0$, for $0<|z|<\delta_{k}$, and so in this annulus $f(z)$ assumes no value of E_{k}. Also $f(z)$ has a simple zero at the origin.

The function $F_{k}\left(z / \varrho_{k}\right)$ by our construction approximates very closely to $f(z)$ and the coefficients of both functions are the same, namely a_{n}, for $n \leq p_{k+1}$. Also for $n>p_{k+1}$ we have in view of (4.3)

$$
\left|b_{n}\right|<\left(2 \varrho_{k}\right)^{-n}
$$

This will enable us to show that $f(z)$ and $F_{k}\left(z / \varrho_{k}\right)$ behave similarly for $|z|=r_{k}<\varrho_{k}$, provided that p_{k+1} is large enough. However before constructing r_{k} and p_{k+1} we need some further conditions on ϱ_{k}, which like (4.5) will be satisfied if ϱ_{k} is sufficiently large. Accordingly we choose ϱ_{k} so large that in addition to (4.5) we have

$$
\begin{equation*}
2 p_{k}<\Phi_{1}\left(\frac{1}{2} \varrho_{k}\right) \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
2 p_{k} \log \left(\frac{\varrho_{k}}{\delta_{k}}\right)<\Phi_{1}\left(\frac{1}{2} \varrho_{k}\right) \log \left(\frac{1}{2} \varrho_{k}\right) \tag{4.8}
\end{equation*}
$$

We now suppose that ϱ_{k} satisfies (4.5), (4.7) and (4.8), and proceed to define r_{k}. It follows from Lemma 2 that $F_{k}\left(z / \varrho_{k}\right)$ has unbounded characteristic in $|z|<\varrho_{k}$. Thus we may choose r_{k}, such that

$$
\begin{equation*}
\frac{1}{2} \varrho_{k}<r_{k}<\varrho_{k}, \tag{4.9}
\end{equation*}
$$

and in addition

$$
\begin{equation*}
T\left\{r_{k}, F_{k}\left(z / \varrho_{k}\right)\right\}>\Phi_{2}\left(\varrho_{k}\right)+1 \tag{4.10}
\end{equation*}
$$

Next we note that sets of capacity zero have linear measure zero, and hence so do their inverse images by regular functions, since the inverse function is locally conformal except at isolated points. In particular the inverse image of E_{k} by $F_{k}\left(z / \varrho_{k}\right)$ meets $|z|=r$ only for a set of r of linear measure zero. Thus, by increasing r_{k} if necessary, we suppose in addition to (4.9) and (4.10) that $F_{k}\left(z / \varrho_{k}\right)$ does not meet E_{k}, for $|z|=r_{k}$. Since E_{k} is compact, this implies the existence of a quantity ε_{k}, such that $0<\varepsilon_{k}<1$ and

$$
\begin{equation*}
\left|F_{k}\left(z / \varrho_{k}\right)-a\right|>\varepsilon_{k}, \text { for } a \in E_{k} \text { and }|z|=r_{k} \tag{4.11}
\end{equation*}
$$

Having chosen r_{k} to satisfy (4.9) to (4.11), we proceed to show that if p_{k+1}, which has so far been left undetermined, is chosen suitably, then (2.1), (2.2) and (2.3) will be satisfied.

We write $F_{k}\left(z / \varrho_{k}\right)=\sum_{n=1}^{\infty} B_{n} z^{n}$, and note that the series is absolutely convergent for $|z|=r_{k}$. Thus we may choose p_{k+1} so large that $\sum_{n=p_{k+1}}^{\infty}\left|B^{n}\right||z|^{n}<\frac{1}{2} \varepsilon_{k},|z|=r_{k}$, where ε_{k} is the quantity in (4.11). Next it follows from (4.3) and the fact that $r_{k}<\varrho_{k}$, that for $|z|=r_{k}$

$$
\sum_{n=p_{k+1}+1}^{\infty}\left|b_{n}\right||z|^{n} \leq \sum_{n=p_{k+1}+1}^{\infty} 2^{-n}=2^{-p_{k+1}}
$$

and this is less than $\frac{1}{2} \varepsilon_{k}$ if p_{k+1} is large enough, which we assume. Thus we may choose p_{k+1} so large that (regardless of any later choices of ϱ_{v}, r_{v}, and p_{v} for $v \geq k+1$) we have

$$
\begin{equation*}
\left|f(z)-F_{k}\left(z / \varrho_{k}\right)!=\left|\sum_{P_{k+1}+1}^{\infty}\left(b_{n}-B_{n}\right) z^{n}\right|<\varepsilon_{k}, \quad\right| z \mid=r_{k} . \tag{4.12}
\end{equation*}
$$

It follows from this and (4.11) that for a in E_{k} the equations $f(z)=a$ and $F_{k}\left(z / \varrho_{k}\right)=a$ have equally many roots in $|z|<r_{k}$, i.e. at most $2 p_{k}$, in view of Lemma 2. Now (2.1) follows at once from (4.7), (4.9) and the fact that $\Phi_{1}(r)$ increases.

Next if $n(t, a)$ denotes the number of zeros of $f(z)-a$ in $0<|z| \leq t$, it follows from the definition of δ_{k}, that for $a \in E_{k}$

$$
n(t, a)=0, \quad t<\delta_{k}
$$

while from what we have just shown

$$
n(t, a) \leq 2 p_{k}, \quad \delta_{k} \leq t<r_{k}
$$

Thus if $a \neq 0$

$$
N\left(r_{k}, a\right)=\int_{0}^{r_{k}} \frac{n(t, a) d t}{t} \leq 2 p_{k} \log \left(r_{k} / \delta_{k}\right)
$$

If $a=0$, we recall that, since $f(z)$ has a simple zero at the origin, and no zeros in $0<|z|<\delta_{k}$

$$
N\left(r_{k}, 0\right)=\int_{\delta_{k}}^{r_{k}} n(t, 0) \frac{d t}{t}+\log \delta_{k} \leq 2 p_{k} \log \left(r_{k} / \delta_{k}\right)
$$

Thus for a in E_{k} we have in all cases

$$
N\left(r_{k}, a\right) \leq 2 p_{k} \log \left(r_{k} / \delta_{k}\right)<\Phi_{1}\left(\frac{1}{2} \varrho_{k}\right) \log \left(\frac{1}{2} \varrho_{k}\right)<\Phi_{1}\left(r_{k}\right) \log r_{k},
$$

in view of (4.8), (4.9) and the fact that $\Phi_{1}(t)$ increases with t. This proves (2.2).
Finally we have by (4.10), and the well-known inequality for the characteristic of the sum of two functions [5, p. 162],

$$
\begin{gathered}
\Phi_{2}\left(r_{k}\right)+1 \leq \Phi_{2}\left(\varrho_{k}\right)+1<T\left\{r_{k}, F_{k}\left(z / \varrho_{k}\right)\right\} \leq T\left\{r_{k}, F_{k}\left(z / \varrho_{k}\right)-f(z)\right\}+T\left\{r_{k}, f(z)\right\}+1 \\
=T\left\{r_{k}, f(z)\right\}+1
\end{gathered}
$$

in view of (4.12) and the fact that $\varepsilon_{k}<1$. This proves (2.3) and completes the proof of Theorem 2.

References

1. Ahlfors, L., Ein Satz von Henri Cartan und seine Anwendung auf die Theorie der meromorphen Funktionen. Soc. Sci.-fenn. comment. phys.-math. 5, No. 16 (1931).
2. Hayman, W. K., Multivalent functions (Cambridge University Press 1958).
3. —》- Research problems in Function Theory (Athlone Press of the University of London 1967).
4. Hxclengren, A., Valiron deficient values for functions meromorphic in the plane. Acta Math. 124 (1970), 1-8.
5. Nevanlinna, R., Eindeutige analytische Funktionen (Springer, Berlin 1936).

Received March 29, 1972

W. K. Hayman
Tmperial College of Science and Technology
Dept. of mathematics
Exhibition Road
London S.W. 7

[^0]: ${ }^{1}$) for the notation see e.g. [5, p. 158].

