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0. Summary

The structure of a stationary Gaussian process near a local maximum with a
prescribed height % has been explored in several papers by the present author,
see [6]—[7], which include results for moderate % as well as for v — 4 0. In
this paper we generalize these results to 2 homogeneous Gaussian field {&(t), t € R"},
with mean zero and the covariance function 7(t). The local structure of a Gaussian
field near & high maximum has also been studied by Nosko, [8], [9], who obtains
results of a slightly different type.

In Section 1 it is shown that if & has a local maximum with height « at 0
then &(t) can be expressed as

E(1) = wd(t) — Lb(t) + A(1),

where A(t) and b(t) are certain functions, ¢, is a random vector, and A(t) is
a non-homogeneous Gaussian field. Actually &,(t) is the old process &(t) con-
ditioned in the horizontal window sense to have a local maximum with height «
for t =0; see [4] for terminology.

In Section 2 we examine the process &,(f) as w— — o, and show that, after
suitable normalizations, it tends to a fourth degree polynomial in #;,...,¢, with
random coefficients. This result is quite analogous with the one-dimensional case.

In Section 3 we study the locations of the local minima of &,(t) as % —> co.
In the non-isotropic case r(f) may have a local minimum at some point 1%, Then
it is shown in 3.2 that £,(t) will have a local minimum at some point ¥* near t°,
and that 7" —t° after a normalization is asymptotically n-variate normal as
u — oo. This is in accordance with the one-dimensional case.

*) This research was supported in part by the Office of Naval Research under Contract
N00014-67-A-0002.
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If the process is isotropic, then r(t) depends only on [t], and it can have no
strict local minima. We can then obtain some results without direct counterpart
in the one-dimensional cage. Consider &,(t) as t runs along a direction § from
the origin, and let ,(6) be the value of [t| at the first local minimum of &,(t)
along that direction. Then it is shown in 3.3 that if r(t) has (non-strict) local minima
for |t| =4{, then the random field {7,0) —t, 6 € R", |8] = 1}, defined on the
unit sphere, after a normalization tends to an isotropic Gaussian field on the unit
sphere.

Section 3 also deals with the values of £,(t) at the minimum points.

1. General results
1.1. Some definitions

Let {£(t), t € R"} be a separable, homogeneous Gaussian field with n-dimensional
parameter, with mean zero and with the covariance function » {(#(0) = 1). Define,
for k= (ky,...,k,), K =72k, the spectral moments

#*r(t) |

g = (— 1P et
k ) otk Lot

(K even).
If r has continuous partial derivatives of every order K << 4, and if furthermore,
for every k with K = 4

*r(t)

m~—lk = O(|]t]) as t-—->0, (1.1)

then £&(t) has, with probability one, sample functions with continuous first
and second order partial derivatives. Thus we can define ¢&;(t) = 9&(t)/at,,
£;(t) = &(t)/ar0;, and &;(t) = &;(t) for all t holds almost surely. This can
be shown from the one-dimensional analogues, (see the book by Cramér and Lead-
better {3], Ch. 4), combined with a result by Winkler on continuity of Gaussian
fields [10].

Now arrange the column vectors

E0) = (5(0), 1 <i <mn),
&(0) = (£:(0), 1 <i <m),
&0) = (50,1 <i<j<n),
and
£(0) = (E'i (0)) :
&(0)
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As in the one-dimensional case the covariances among £(0), &'(0), and £7(0) are

given by the spectral moments A,. If wewrite 4; or 4; (k, =2 and k;, =1k =1

respectively) instead of 1, when K = 2 and correspondlngly Ay if K = 4 then
Vo) =1,
Cov (£(0), & (0)) = — Cov (§(0), £;(0)) = 4
Cov (5:;(0) 5;;1( ) = Ajur >
Cov (£(0), & (0)) = Cov (£(0), &x(0)) =

The covariance matrix of the (1 4 n -+ $n(n + 1))-variate normal variable
(£(0), &'(0), £"(0))" is then partitioned in a natural way:

I 0 S
0 Sll 0 ( ]' '2)
S20 0 S22

say, where 8;; and S, are the internal covariance matrices for &(0) and £&(0)
respectively, while S,y (and S, = 8;,) gives the covariances between £(0) and
£7(0). Here we make the additional assumption that £(0), £'(0), £(0) have a non-
singular distribution.

In the special case when £ is isotropie, the covariance function 7(t) depends
only on the distance |tj = (3 #)"®. The Taylor expansion of r(t) will then con-
tain only terms of the type #, tf, ##; and higher. This implies that most of the

spectral moments vanish, and the S-matrices are considerably simplified:

A it o=
=10

Ao
}'ijkl = /‘L;kz
0

if ¢+£7,
if i=j=k=1
if G=1Fk j=I,
otherwise.

P #~J

This means especially that the mixed second order derivatives &;(0) are independent

of both £(0) and of the unmixed derivatives £&j(0).

If we define

0 = 3:/25 (0<pe<l,
1=(1,...,1) (nx1),
1 ¢ ... 0
p=[21 " Y mxm,
e o ... 1
I, = unit matrix of order m,

then
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MDD 0
— (—— 3%q7 — 40~ o . .
| S02 ( }'2 1 > 0); S22 ( 0 ﬂ;zln(n—l)ﬂ) (]' 3)
The inverse of D, is easily computed: '
1 14®m—=2)0 .
1—p 14 (n—1)p =g,
(DY) = (1.4)
4 1 o
if i=7.

Tl 1 (n—1)p

1.2. The structure near maximum

We want to consider a »conditional process»
E.(t) = &(t)|¢ has a local maximum with height » at 0.

Since the probability of the conditioning event has probability zero we have to
approximate it by the shorizontal window» event

Ak, b'): & has a local maximum with height in (v, » -}- ) at some point $
in the sphere [s| <A

Let 7= (t',...,t") be m different points in R", and let X = (z,...,%,)" be
a matrix of real numbers. Then we can compute the conditional probability that
Et) <@, ¢=1,...,m| Ak, k'), after which we can let h, A’ — 0. Under the
assumption (1.1) the stream of local maxima with heights in (u, -+ %) is regular
(cf. Belyaev, [2], Theorem 4), and

PE) <, i=1,...,m| A, 1)) — B(N,(X, w, k))/E(N,(u, b)) as &' —0, (1.5)

where Nip(%, k) = the number of local maxima s with |s| <T with heights in
(w, w + h), while Ni(X,u,h)=the number of those maxima s for which
Es+th<a, 1=1,...,m.

If furthermore the process is ergodic, which is the case if r7(f) — 0 as |t| — oo,
then the right hand side in (1.5) is the (a.s.) limit of Nx(X, %, h)/Np(u, ) as T — oo,
(cf. Nosko [8]). This means that it has a natural frequency interpretation as the
distribution of the &-values at points s’ -- t* where the points §* are the locations
of local maxima. Thus we have motivated the use of (1.5), or equivalently its limit
as h—0, as a conditional distribution.

It remains to express the expectations in (1.5) in closed form. This can be done
by generalizing the formulas for the expected number of local maxima given by
Belyaev [2]. First we need some definitions. Besides the set 7 of m points in R"
and the matrix x we define y= (y,..., %), V=(0,...,9), Zi= (Zu

1<i<n), Zo=(@1<i<j<n), and z= (5 %). Also let Z = (z)
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be the symmetric matrix formed by the elements in z; and z, In the sequel we
will often exploit the convention that if a capital letter denotes a symmetric matrix,
then the corresponding small letter denotes the column matrix formed of its
n(n +4- 1)/2 different elements.
Define the following probability densities and conditional probability densities

p(u, v, 2, X) for &£(0), £(0), £(0), &(tY), ..., £(t™),

pAX | u, v, z) for &), ..., E(t™) |£0) =u, E0)=v, £0) =1z,

p(u, v, Z) for £(0), £(0), &(0),

p(z|u, v)  for &(0)]&0)=u, &(0)=

Then
uth
f (m) f f et Z[p.(&, 0, z, y)dadédy
E(N(x, u, %)) _ Yisx t=u Z~«0
B(Ny(u, k) ’
f f \det Z|p(&, 0, 2)dzdé
f=u  Z<0

where Z < 0 means that the matrix Z is negative definite.
By letting A — 0 we finally get the following fundamental theorem.

TarorEM 1.1. The conditional distribution of &(1Y), ..., E(t™) given that & has
a local maximum with height w at 0 has the density

f |det Z|p,(u, 0, z, X)dz

Z<0

f et Z|p(u, 0, 2)dz

Z~<0

(1.6)

In the rest of this section we will simplify (1.6) to a form which gives considerable
insight in the structure of & near a maximum. To begin with write

[ detZ p(—z |, 0)

if Z>0
{fdeth~z]u) s (1.7)

Z>0

otherwise .

Then (1.6) can be replaced with

f q.(Z)p,(x [ u, 0, — z)dz . (1.8)
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Up to now we have made limited use of the normality of & Let us now use
it in full to derive the conditional densities in (1.7) and (1.8). Lot

Sl(t) = (_ T:(t), 1 S@ S 7&),,

Sy(t) = (ri(t), 1 < <myrg(t), 1 <o <j <) -
Then
1 0 Soz r(th) e r(t™)
0 S 0 S,(t) . S,(t™)
Sa 0 Sy Sy(th) . Sy(t™)
() Sy(t) Sy(th) 1 e T — 1Y)
r(t™) Sy(E7) Sy(t™) r(tt— ) ... 1

is the covariance matrix in the density p.(u, y, Z, X}. The mean and covariances
in the conditional density in (1.8) can then be expressed in terms of simple functions
of r: define A(t), C(s,t), and the matrix function b(t) = (b,(t),1 <7 < n;
by(t), 1 <i<j<m) by

(A(D), B(t)) = ((8), S(V)) (Sl g )Al,
20 22 (1'10)

C(s, £) = rls — 1) — ((s), S4(s) (Sl g) (g‘;g)) — Si(8)STS(Y) .

Then p,(- |%,0, —z) is normal with means uAd(t) — z’'b(t') and covariances
C(t, t/). The density ¢, comes out similarly: p(- | w, 0) is normal with mean

1 0\ 1w
oy 2) ) -

and covariance matrix

8o — (Sa9, 0) L 047 (S = S50 — 850502 = S 58 (1.11)
22 209 0 S, 0] = P 2002 = Pz2.0 5 Y- .
Thus, for Z > 0 we have
q.(z) = k; ' det Z exp {— 3(z + uSy)'S;0(z + uSy)} (1.12)

where k, is the normalizing constant.

Note that the assumptions made about the non-singularity of &(t), &'(t), &'(t)
guarantee the non-singularity of every interesting matrix.

‘We finally can conclude that (1.8) is the density for a process &,(t) defined in
the following theorem.
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THEOREM 1.2, Gliven a local maximum with height « at O the conditional process
&(t) has the same finite-dimensional distributions as the process {&,(t), t € R*} defined
as follows:

E.(t) = ud(t) — LLb(t) + A1)
where A 1is a non-homogeneous, zero-mean, Gaussian field with the covariance function
C, and L, is an n(n 4 1)/2-variate random variable, independent of A and with
the density q,.

2. Asymptotic properties as % -—> — o

For large negative » the maximum of £, at 0 will exert a strong influence
over §&,(t) for small t. Actually, the normalized process

EN() = lul(Eu(t/[u]) — u) = w' (1 — A(t/|u]) + [uPA|u]) — julZa®b(t]u]) (2.1)

has asymptotically the same distributions as a certain fourth degree polynomial
3

2\* 1 1
I'y=— g (Z t, at) 40) + 3y <§ t, at) A0y — 5 VZt (2.2)

(where (2 4,0/0t)’(0) = 2, .., Lt,5,0%(8)/21,0t,0t |,_, , ete.).

In I'(t) the first sum contains non-stochastic, fourth order terms in #,...,%,
while 1/31(2> £,0/0t,°A(0) contains third order terms with stochastic coefficients,
which essentially are the third order derivatives of A at 0. Tt is a normal »deter-
ministicy random field with mean zero and with the singular covariance function
1/3131(> 5,8/9s,)*(2, 1,8/04,)°C(0, 0). Finally the third term in I'(t) is the quadratic
one where the symmetric random matrix Z = (G4, 1 <4,5 <m) is positive
definite, and the corresponding column matrix = (5,1 <i<m;¢
1 <i<j<mn) has the density

(z) = k=L det Z exp SpS;z (Z > 0), (2.3)

ij?

with l~c~00 as a normalizing constant.

This gives explicitly the behaviour of £,(t) for |t| up to order |u|~' from
a very low maximum

To show the alleged convergence we need the asymptotic distribution of |u|{,
and the behaviour of 4, b, and C for small arguments. We then need to impose
the further assumption that » is six times continuously differentiable and that,
for >k, — 6,

| ()

o amm A = OUL) as 10, (2.4)

This is only what can be expected from the one-dimensional case in which the
sixth derivative of r plays an important role, see [5, Theorem 4, 5].
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LemMA 2.1. The density q,(z) of |w|l, tendsto ¢(z) with dominated convergence
as u— — oo,

Lemma 2.2, If r fulfills (2.4) then, as s,t—0

i ($65) 40 +ou
AW =1+ 5 Z,at A(0) + O(1t])
) 2\ s [E12+O3tF) for i=j
byl(t) = 5 (,=1t” ~t:> b;(0) -+ O([t]°) = { th 4+ O([tf) for i =7,
1 (= CAY
06 = 5 (S0 ) (S 2] 00,00+ oma (s, 1)

The proofs of these two lemmas are rather lengthy and are given after the
following main result, concerning the convergence of &F.

TueoreM 2.1. If r fulfills (2.4) then, for any set of times (¥, i=1,...,m),
it holds

; =4 .
(EXth, 1=1,...,m) S (L), i=1,...,m) as u—> — .
Outline of proof. An impeccable proof could have used the characteristic function

convergence as is done in Theorem 4 in [5]. We give here only some pertinent points,
Lemma 2.2 gives

4
w1l — A(t/|u])) — — 1 (Z t ﬁ) A(0),

5 22 for ¢=j
% (t/luf)ﬁ{titj for ©#7,

while by Lemma 2.1 |«[{, has asymptotically the density (2.3). Therefore

(lellwp(t/lu)), i=1,...,m) %(%t“'zﬁ, i=1,...,m).

Finally — «*A(t'/|u]), 1 =1,...m have the covariances
‘ 3

6 i j

Ot lul, ¥ ul) > 577 (Z f at) (Z Y at) 0(0,0),
which are just the covariances of the A-termsin I'(t'), ¢ =1, ..., m.[]

Remark. The function space method used by Lindgren [6] works also in the
multidimensional case. Then Theorem 2.1 can be extended to include almost sure
convergence and not only convergence in law.
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Proof of lemma 2.1. From (1.12) and 8y = 8, we get, with N = n(n + 1)/2,
7.,(2) = |u|™g,(ju]72) = Ju| Nk det Z -
« exp {— $(Ju|z + wS5) S5 o( 4|z + uSy)} =
= k7' det Z - exp SpuS5 4z exp (— 2u~22'S742)

where IZ,, is a new normalizing constant. As % — — oo then lz,ju(z) is dominated
by and tends pointwise to

det Z - exp Sp8570z (Z > 0) . (2.5)

As is shown below, this function is integrable, and therefore the dominated con-
vergence theorem implies

B =T, f 7.(2)dz - f det Z - exp SoyS5kadz — Fi_,
Z>0 Z>0
which gives the lemma.

It remains to show that (2.5) is integrable: transform to polar coordinates,
r=lz] = Q,c;25)"? 0=0(z), with the inverse z = z(r,0) = r-z(1,0). For
the sake of simplicity write z(0) = z(1, 6) and Z(0) for the corresponding symmetric
matrix, Let 4 = {0; Z(#) > 0} and denote by J the functional determinant. Then

f det Z - exp Soy Sy adz — f f 7™ det Z(6) - exp {7 - SpSs a0} drdd . (2.6)

Z>0 r=0 6€E4

The critical term is Sy,8;.,2(0) and we will show that

sup SpS75z(0) = ¢, < 0. (2.7)

ecAd
Then (2.6) is bounded by

[+

f " eXp 1 f rJ | det Z(0)dbdr .

r=0 6€A

Since r7'|J| is a bounded function over the bounded region A4, this shows that
(2.8) is integrable. (

| A
we have det 8 =
Spo Spp

(]. _— 80282—21 20) det 822, Which implies thaatv S02 det S = (So2 - 80282—21320802) det Szz ==
802595 (Saz — S20842) det Sy = 80,858, det 8y, so what we actually need to prove
is that

We still have to prove (2.7). Writing S =

sup SpSnz=d, <0. (2.8)

lz|=1,Z»0
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But 8,85z = E(E(0) | €(0) = 0, &(0) = z) and thus, if Z > 0, we are dealing
with the expected value of the process at a point where a local minimum with
a certain second order derivative occurs. Since the process is zero on the average,
and we expect it not to be more at local minima, (2.8) seems reasonable. However,
we have not been able to find a proof, unless the process is isotropic, but it is con-
jectured that (2.8) is true for general processes.
If £ is isotropic then (1.3) and (1.4) give
l;k —1 ry—1 ry—1 . 9 —1
- Tzko S8 2 = (1'D; ,0)z =1'D, zd:JZ,Zii{; 2 )i} =

=(1+(n— 1)9)_12 % - (2.9)

If |zl =1 then max [z;]|>e, = ($nn 4 1))""” Since Z >0 we have
l2;|* < zz; so that max |z;] >e, But z;> 0 implies that > z; >e, >0,
and thus (2.9) is positive and bounded away from 0. This shows (2.8) in the isotropic
case. [ ]

Proof of lemma 2.2. We concentrate upoa the rest term and the terms of order
six in CO(s, t). Similar, but simpler, versions of the masthods will give the lower
order terms (which all vanish) as well as 4 and b. 1 8

Rocall the definitions of S, S;(t), Sy(t) from (1.2) and (1.9) and let S= (Soz SZ:) ,

T=_8" V=2=8;" The rows and columns in 7' (except for the first one) will
be identified by a double index (ij); e.g. the third row in 7' will be called row
(2,2), since the leading element in the third row in S (the second element in Sy)
is — Ay The first row and column will be numbered 0.

Then C(s,t) contains six groups of terms. By (1.10)

a*r(t)

C(s, t) = r(s — t) — 7(5)Togr(t) — 7(8) 2, T,y ot.ot .
ey ot
) r(s) ?*r(s) &r(t)

— r(t) v%MT(W),o 38,,88M _usy,zw‘g,u’ asvasﬂ T(m), o'u’) atv,at; _

or(s) or(t)
2 e, e,

[

=1, -1, —I;,—1I,— I, — I, say.

If k= (ky,...,k,) we also employ the notations
K= (ky ..., k;+1,...,k)

i e L L k) i<
(byy ool +2,.. ., k) if §=3j,

and write (Ilf) for the multinomial coefficients:
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G5 i

k=K

Then, with K = > k;, we have as t—0

K n
rt)=1+ > = (k) tfidy + O(|t]),
K=2,4,6
or(t) (— e K) "
G Kgs N (k TT thide + O,
2 (t) — 1)kn

where the unspecified rest terms H,, are O(|t]’). Introducing these expansions
into C(s, t) we will see that the unspecified rest terms sum up to a total rest term
of order O(max (|s}, |t])?). Obviously this is true for I, I,, and Ig. In I,, I, I
however, there will seemingly appear terms of order O(max (|s|, |t])%). Fortunately,
these all cancel. The questionable terms are

1'2 o, 0wy (t) 4+ 1+ ZT(vu)O vu(8) +

Y<u

VU ily,

+
2 H, (51T p0 — 2 Ty ot +
< v <u

+ 2 Hy (T ey — Z Ty, iy ot -
v<p

v <p

T(vy) (v,u)( A H,y ( ) z’v’u'Hvu(s)) =

r/\

The bracketed sums are zero, since they are off-diagonal elements in 78 and ST,
and thus the fourth order rest terms cancel. _
Turning to the sixth order termsin CO(s, t), take k and k with Z + k) =

write k = k -+ k and consider the coefficient c¢; g for the term

n - =
— ki ks
Cuk i is,.lti'
i=1

in the expansion of Cf(s, t).

- = 1/6 1/6 176
z ki = 6? Z ki - O: - a (1_() /1 + 6' ( ) 2‘ TOO ' <]}) lk /z 'TO, (v"u');‘v',u,' =
P <u

1/6
= E(E) d—1+ Top — Z ,T"’ (V'M'))wy'} =0

v<u

since Tog — > Ty ,)hy, 18 an on-diagonal element in 7TS.
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sieo shon SO 2 2w

2 1

— 5 (D) =3 e

v

Since 270, =1 exactly one k, is 1, say IZ.. = 1. Then the spectral moments
Xz, are actually second order moments, and they constitute column %, in Sj.

Then

% e = o if Y £,
so that
Yo Vdign = M, -
vy
But k® = k 4+ k = k, and thus also this term vanishes.
>k, =4, Z—ki = 2: After some simplification we get

1 4\ (2

+ 7% VZ T(”M)’OAEVM - z ,ziv.uT(w), (”'M’)}‘EV’M'} :
<u 3

=< u, v <y

(2.10)

Now suppose that the non-zero elements in K are either IZO = %m. =1 (vy # pe)
or Eo = 2. Then the fourth order spectral moments 4, . in (2.10) make up

row number (vouy) in Sy, and a little reflexion will show that
z T, oy e Twlg=0,

v <u
Z T 1 N 1 (vp) = (vouo)
P L Cx) 0% 7" 10 otherwise.

Thus the double sum in (2.10) reduces to
;Livo#o + <z Z‘;ZVMT(W);OZE ’
v<u

and the bracketed expression is just

}.k——ﬂ.

KPolto *

Since K=k + k = k the term vanishes. B
The only non-vanishing terms in C(s, t) are then those with k; =k, = 3,
and similar calculations as above show that they have the coefficients

1 3\/3
v,
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3. Asymptotiec properties as © —
3.1. General results

In the same way as a very low maximum conferred a nearly deterministic
behaviour to the process, a very high maximum will exert a strong influence over
the process over a wide range. As in the one-dimensional case (see [7]) we prefer
to rewrite the conditional process &, in Theorem 1.2 in a form better adapted
for the present purpose:

£.(8) = ur(t) — n,b(t) -+ A(1)

where 7, = {, -+ uS,. Note that relation (1.10) implies that r(t) = A(t) - Syb(t)
so that the new form of &, is equivalent with the old one,.

Before we can present the analysis of &,(t) for large 4 we need some definitions.
Let D denote the differential operator

» (a a)’
T\ot, T e,

so that if f is differentiable the function Df is defined by

of(t) af(t)\
oy (A9 20

Thus, if DE,(t) == 0 then t obviously is a stationary point of &,. We also let
x|} denote the maximal element of a matrix x so that

af(t) ,
o |

[IDf(t)]] = max

i

Define the random functions

pu(8) = 7,0(t) — A(t)

(8.1)
y(t) = 7'b(t) — A(%) ,
and the n-variate random functions
7u(t) = Dy, (t) = D(n,b(t) — A(t)) (3.2)

x(t) = Dy(t) = D(n'b(t) — A(t)),

where 7, is the random vector just defined, while 9 is a new n{n - 1)/2-variate
random variable, which is independent of the process 4 and has a normal distribu-
tion N(0, S,.,), i.e. has mean zero and the covariance matrix §,.,, defined by
(1.11), -

Our interest thus concentrates upon the zeros of uDr(t) — y.(t) and the value
of wur(t) — y,(t) at such a zero.
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G
Lemma 3.1. 9, > as u— .

Proof. m, has the density ¢*(y) = q.(y — uSy). If 2=y — uS,, then the
corresponding symmetric matrix Z is equal to Y 4 uSy;, so that by (1.12)

w”kgu (¥) = w™" det (Y + uSy) exp (— 3¥'S374Y) (3.3)

for Y -+ w8y > 0. This function tends pointwise, and with dominated convergence
to det Sy, exp (— 3y'S;.0y), and it follows that

Wk, — ot Sy [ exp (— Jy'Syhy)dy = det Sy k.,
say. We get
@(Y) = k' exp (— 3y'S;0¥)

with dominated convergence, which is the content of the lemma,

The lemma implies that the stochastic term v, (t) is of moderate order for all
u. The behaviour of &,(t) is therefore well determined by the behaviour of r(t)
as is reflected in the following Lemma 3.2.

Let I be any bounded measurable subset of R and define

I,=IN{teR", |t|>¢}.

Lemma 3.2, If, for all ¢ >0
inf [|[Dr(t)]| > 0
tel,

then, as u - oo,

P(DE,(t) =0 for some t€I, t+£0)—0,

The lemma implies especially that the probability of at least one local minimum
in I tends to zero.

Proof. We prove the lemma in two steps.
a) P(DE,(t) =0 for some t 0, [t| <e)—0: since

inf |4 YDr(b) = M. > 0

0t <e

if & is small enough, we have

inf [t[DE(M)| = w, — sup [tz (D).

0 t|<e 0t <e

Therefore, the probability in question is less or equal

P( inf [DEM)] = 0) < P( sup |t b} > wl]). (3.4)

- &
0%t <e 0 lt|<e
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It is easily shown that 0b,(t)/df, = O([t]) for small |t|, (cf. Lemma 2.2), so
that {[Dy,b(t)| < Kit|llp)] for some K > 0. Furthermore 9A(t)/ét, i =1,...,n
are continuously differentiable (a.s) and 94(0)/9¢; = 0. This implies that

sup  [t[7HDA(t)]
0|t <o
is a finite (a.s) random variable. Thus the supremum in the right hand probability
in (3.4) is finite (a.s) which gives that the probability itself tends to zero as u goes
to infinity.
b) Now take an ¢ such that the proof of part a) goes through, and let

inf |Dr(t)| = M7 > 0.

tel,

As before

P(D£,(t) = 0 for some t€1,) < P(inf [[DE(W)] = 0) < P(sup | (t)] = ul]) .
ter,

tel,
Since I, is bounded and the process y,(t) is continuous (a.s.) the right hand

probability above tends to zero as u tends to infinity. This implies that there
are no stationary points in I,. [ ]

3.2. The non-isotropic pitfall case

We have seen that the equation DE,(t) = 0 has possible solutions only near
stationary points of . Even then, the behaviour of the solutions depends greatly
on the character of the stationary point. The »pitfally case is most simply defined
as follows:

P: r has a strict local minimum at t* = (¢, . . ., #1)’; the matrix R, = (9%r(t)/d4,0t;)
is positive definite for t near t°; as t—t°

n

. CAY
r(t) =r(t") + % (Z (t, — 1) 5{) r(t)) + ot — t']%),

or(t) n o 0 ar(t"

13

+o(lt — t]),

oo, — oa, W)
The first two expausions can be written

r(t) = r(£°) + 3(t — ) By(t — ) 4 o[t — ),
Dr(t) = Bu(t — 1) + o(jt — 1)) .
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The »degenerate» case when R, is not definite or possibly vanishes will be dealt
with later on.

Write S(t,¢) ={s € R |s — t| <e} for the sphere around t with radius
e, and let S(g) = S(1% ¢). Then, the condition P implies that there is an & > 0
such that 7 has no stationary points in S(¢%) except t°. Theorem 3.1 below states
that for any &, 0 <& <&, with a probability tending to one, £, has exactly
one local minimum in S(g). If so, let 7* be the location of that minimum; other-
wise let 7* = t’. Then £,(7") essentially denotes the value of the process at the
minimum. Theorem 3.1 also expresses the asymptotic properties of ¥* and &,(z%)
in terms of the random variables y(= p(1°)) and x(= %(1°)) defined in Section 3.1.

Obviously (v, ) is (n -+ 1)-variate normal and it has mean zero and the

covariance matrix
1 — #3(t%) 0
. .5
< 0 Sll I RtuSﬁlRlo> (3 )

To show this we compute
V() = Vi'b(1) + V(4(t)) = b(t)'Sz.ob(t%) + C(1°, ¥°) ,

ob(tY)’  o0(s, t
(t°) n (s, 1)

Cov (v, x;) = b(1%)'Sy.,

ot Ot g’
bty | o) | P, D
COV (xi) X]) = ati S2-0 atj aslatj s=t—=10 )

Now recall definition (1.10) of b(t) and C(s,t) and write
<Too Toz) _ ( 1 Soz>—1_
T20 T22 820 S22
Using that or(t%)/ot; = 0 we then get
, T, Ty T r(1%)
— 0 0 02 R
V(y) = r(0) + (r(t9), Si() {(T) ST T (Tzo T)} (Sa(to)) . (36)

Since T, = S;t, and Ty — TooT2 T = Spo' = 1, the bracketed expression is

TOZ) —-1 (TOO T02> (— 1 0)
T (To, Ta) — — ,
(T22 22 ( 20 22) T20 T22 0 0

so that V(yp) =1 — #2(1%).
To obtain the remaining covariances we have only to replace the appropriate
(r(t°), 85(1%) in (8.6) with the corresponding derivatives. [ ]

TuroreM 3.1. If r fulfills condition P with t°% R, and &, then, for any
e, 0<e<<e, as u—
a) P(&,(t) has exactly one local minimum in S(e)) — 1,

b) (u(z* — 1)), &(2") — wr(t)) g—£> (Ba'z, — 9) -
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P
The theorem simply says that 7* 2. t° and that u(z* — t°) and &,(z*) — ur(t’)
are asymptotically normal, independent, and have the covariance matrix and
variance R35'S;R:' — Sp' and 1 — r%(1°) respectively.

Proof. Even if part a) formally follows from part b) we have to give it an in-
dependent proof. a) Our concern is the number and locations of the zeros of the
mapping /M ulDE (L) = Dr(t) — w7y, (t), where y, is defined by (3.2). It is
therefore natural to look only at such outcomes for which y,(t) is in a certain sense
bounded. Let therefore 6 > 0 and M; be given constants, and define, for each
u, the event N (= N,,) so that, for each outcome in N, it holds

sup [z (t)| < M,

t€5(<%

sup max |3z,(t)/a]] < M, . (3.7)
tesE) j
By Lemma 3.1 and the continuity of b(t) and A(t) and their first and second
order partial derivatives we conclude that we can take M, so large that, regardless
of u, P(N;) =>1—4. Since ¢ is arbitrary, the assertion is proved if we can
show that £,(t) has exactly one local minimum for all outcomes in N, In the
sequel we therefore restrict our attention to such outcomes, even if that is not
explicitly mentioned.
We now prove part a) by showing that the range

Ba = {uDE,(t); t € 8(e)}

contains a sphere S(0,d) = {x € R"; |x| <d}, which especially implies that
u D&, (t) = 0 for at least one t in S(¢). It will also follow that there is actually
only one such t, and that it represents a local minimum,
We first notice that condition P implies that
inf |Dr(t)] =d,>0.

[t—t=c
If > 2d;'M, then, with inf and sup taken over |t — t0] = ¢,
inf [ DE(t)] = inf [Dr(t)] — sup [u"(8)] > d, — (247 M) M, = 42 > 0.
We can then take d = d,/2 as will now be shown. Write 8° = {x € R"; |x| < d,/2}
for the interior of 8(0,d,/2). Obviously
UPDE()] < 1Dr(O)] + [u g, 0)] < 0+ w i, < 4,2,

so that the set 4 = Ra N 8% is not empty. That in fact 4 = 8° follows from
the »inverse function theorem», see e.g. [1, p. 144]. The matrix J(t) of
partial derivatives of the elements of % 1DEZ,(t) is, for large u, uniformly near
R, — remember that we are only dealing with outcomes in N; — and so the
Jacobian |det J(t)| is non-vanishing over 8(e). The inverse function theorem
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then implies that 4 is open. But since the mapping »-1DE,(t) is continuous the
set B = S\ 4 is also open. Then 8°= A U B is the union of two open, disjoint
sets, and since S° is connected, either 4 and B is empty. But 4 is not empty
and therefore B is. We conclude that S° = Ra, and that, in fact S(0, d,/2) C ERa.
Thus &,(t) has at least one stationary point in S(e).

That any stationary point in fact is a local minimum follows immediately from
what was said above about the matrix J(t).

To finish the proof of part a) we still have to show the uniqueness of the minimum.
This follows however from the »almost linearity» of the mapping. Since R, is
continuous it follows that J(t) can be made uniformly close, not only to R, but
also to R, by choosing « large. (This might involve choosing a smaller ¢ than
the original one, but by Lemma 3.2, this is not a crucial point.) Since R, is non-
singular, this implies that w1DE, ( ) cannot map two different point in S(¢) on
one and the same point in §(0, d_/2). P

It is now a simple task to prove part b). Since part a) implies that z* — t°
we can expand £,(7%) and % 1DE&,(7") in Taylor series for large w:

E(7) — wr(t’) = ulr(z") — r(t')) — p(v) =
= u{§(z" — t")Bu(z* — ¥') + |z* — 1"P0,(1)} — w.(1) + 0,(1),
0 = Dé(7") = uDr(z") — 1.(v") = w{Bu(z" — t') + |7" — o, (1)} —
— 2(t) +0,(1)

where we have written o,(1) for any random variable that tends to zero in

(3.8)

(3.9)

probability. Then (3.9) implies that wu(z* — t°) ~ R3 %, (t% %R; v, which is
N, Bg'S; Rzt — S1i'). It also gives that u|t* — t°)* is 0,(1), and therefore (3.8)

implies that &,(7*) — ur(t’) ~ — p,(1°) (:Z; — v, which is N(0, 1 — (t).

Thus far the minimum of # at t° has been non-degenerate: the matrix R,
has peen positive definite. Let us now assume that R, = 0 so that the minimum
is of higher order than two. Then the mapping Dr is no longer »approximately
linears at t?, and the arguments used in Theorem 3.1 break down. To remedy this
we make a transformation of the region near t® as is indicated in the following
conditions on r:

P’: r has a strict local minimum at t* = (&),...,#)’; thereis a k> 1 such
that, as t—t°,
n 0 2k
= p(t° _ 0 _40%
(t) = r(t’) + 210'(21 at) (%) + o(|t — t°|%),
or(t) 1 n ) .
o (k—l'(g(t” 8t) 5, Tolt—+1,
’r(t) ( " 2 )ZH (1Y) -
oy, @ 2 \3 b0 g oo, Ot = VI
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the equation system

( 3 )2"41 ™o b, i 3.10
(2k—1 Zacvat at, =h, i=1,...,n (3.10)
has a unique solution for all h = (kl, . hn)'.

We introduce the notation ¢(h) ¢1(h ., ¢,(h)) for the unique solution

of the equation system (3.10). If « = 1/(2k — 1) then it is easily seen that there
are positive constants ¢, ¢, such that

alh* < [bh)| < e lh[*. (3.11)
The meaning of ¢(h) is more clearly understood from the expansion
Dr(t® + ¢(h)) = h + o(j¢(h)|*™") = h + o(/h]) as h—0,

so that the left hand side is an almost linear function of h.

Now let y and yx be defined as before, = p(1%), x(t?), and take & > 0 such
that » has no stationary points in 8(s%) except t9. The uniqueness of ¢(h) implies
that such an ¢ exists. Then we have the following theorem, which contains Theorem
3.1 as a special case.

TuaEoREM 3.2. If r fulfills condition- P’ with t°, k, and & then, for any e,
0 <e<<e 4t holds as u—> o©

a) P(&,(t) has exactly one local minimum in S(e)) — 1,

=4
(w¥(z* — 1°), &(7") — wr(t?)) 5 (b(x), — w) .

Proof. a) In Theorem 3.1 the almost linearity of the function D.(h)=
wIDE (1 + h) for h near 0 enabled us to draw simple conclusions about its
zeros. Now we rather study the function

Di(h) = wDE(t0 + $(h)) = Dr(t® 4 $(h)) — u g, (t° + $(h)) =
= Dr*(h) — u~1y%), say.

Then there is a one-one correspondence between the zeros of D, and the zeros
of D¢ near t°, and the probability that D.(h) = 0 for exactly one h € S(0, ¢)
tends to one for any & > 0 if and only if the same is true for D¢(h).

We first show that D¢ is essentially linear. Let J,(t) denote the matrix
(99,(t)/0t) of partial derivatives of any mapping @, R* ~\ R". Then, condition
P’ implies that

Jpe(h) =14 0(1) as h—0. (3.12)

The relation is easily extended to allow h = 0, and thus Dr*(h) is almost linear
for small h. We also have Dr®(h) = h -+ o(}h]).
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Unfortunately the transformation of h will render the function wy%h) =
w1y, (t° 4 é(h)) a highly non-linear behaviour for small h. This obstacle can be
avoided by removing a small region near 0 in the following way. Take a real number
B, 0 < B <af/(l —w), (x=1/(2k ~— 1)), and consider as before only outcomes
in the event N,, so that (3.7) is satisfied. Then Df(h) will have no zeros in
[h] <«™'* as will now be shown. It holds, for some K, >0, i =1,2,...

ID¥(h) — DYO)| < [Dr(t® + $(h))| + w7 {2u(t° -+ $(h)) — ()] <
< Kylg(h)[* 7 + Eyu™g(h)| < K3h| + K '[h|* < (3.13)
< w Y Kuf 4+ Ku= 0+
Here we used the bounds (3.11) for [¢(h)|. Now restrict the attention to those out-
comes Ny & N, for which it also holds
l1u(t)] = 2{Ksu="f + Ku 0} (3.14)
Since f > 0, this new restriction becomes negligible as «— o, so that

lim inf, ,, P(N;) > P(N,) >1— 4. Since D%0) = uly,(t") we can combine

U— 00

(3.13) and (3.14) and conclude that for all outcomes in N
[Di(h) — D¥0)| < |DY0)|/2 for [h| <w 7P,

Since D$(0) = 0 this especially means that D%h) # 0 for all such h. We can
therefore restrict our attention to the region w4~ !# < |h| <e, in which Dr?
trivially is almost linear. We will now show that also % 14* is almost linear there.
We have

(M), o It + $(h)); 94, (h)
h 2 a oh;

j o v

If |h| <& we therefore have, for all outcomes in Nj,

3%"’(11),-’ 8,(h)
oh, on,

max
ij

< nMy;max
i,

(3.15)

Since ¢(h) = |[h|*$(h/|h]) we get the following expression for its partial derivatives

a¢,(h)  3Jh[ . 9(h/|h])
$|h| d¢,(h/[h]) h,/|h] (3:16)
= O‘lhrx—l : ah ) ¢z(h/|hl) _!— Ihla z : at : gh .

Here 0|h|/oh;, ¢,(h/|h]), and 8¢,(h//h|)/o, are uniformly bounded for all % 5= 0,
while

9|h|
= H(lehl — b, -5;;} |-

I oh,/[h]
oh,;

< Kh.
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Inserting this into (3.16) gives that for some K >0

o¢,(h
29:(h) <K' for h#0.
oh;
Still with some unspecified K > 0 (depending on M) we thus get, for

w1F < |h} <e,
N 9z’ (h);
o | O
Since « -} af — f > 0 this bound tends to zero.
Finally we can combine (3.12), (3.15), and (3.17) and conclude that, for out-
comes in Nj, the matrix

J_h) = J, ,(h) — u] ,(h)

Dr

< w 'K )P < Ky~ 000 foy~lrad=h - (317)

is uniformly near the unity matrix I in the region defined by %~ !7# < |h| <,
(at least for small &), and thus that D"g is almost linear there for all large wu.

We can now proceed as in Theorem 3.1: Take d > 0 such that |D¢(h)| >d
for all [h|=¢; mnote that the sphere I, = S(D¥0), |D%0)|/2) is contained in
8(0, d) for large wu; note that I° = {x € R"; |x| < d}\J, is an open connected
set that contains 0; use the inverse function theorem to prove that the set
A =1N{D4h); w % < |h] <&} is open, and that B =I'\4 is open too.
Continuity, combined with a little reflexion, will show that 4 is not empty, and
therefore A = I°. Especially D¥h) is zero for at least one — and in fact for exactly
one — h with «™'7# < |h| <e. Since we can exclude the possibility of a zero
for |h] <% 'f the uniqueness is clear.

This proves that DE(t° 4 h)(= uD¥¢*(h))) has exactly one zero for
h near 0 for all outcomes in Nj. That the zero corresponds to a local minimum
follows as in Theorem 3.1. Since lim inf P(N;) > 1 — § and 8 is arbitrary, this
finishes the proof of part a).

b) This part now presents no further problems. If the unique zero of D? is V

then 7* — t° = ¢(V). As in Theorem 3.1 we get uV S_{ %, so that

SE
$(uV) —$(x), or w(s" — 1) %‘ﬁ(x) -

The proof is complete if we remark that we can incorporate the asymptotic
distribution of &,(3") — wr(1°) without further discussion. [ ]
3.3. The isotropic ditch case

If & is isotropic, and
r(t) = re([t]), say
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then 7 can have no strict local minimum. This, of course, does not rule out the
possibility that &, has strict local minima, but the locations of these are less precisely
determined than in the pitfall case. E.g. if r, has a (strict) local minimum at £,
then 7 has (non-strict) minima for all t with |t] = ¢%, and the only thing we can
say about &, is that it will have (strict) local minima concentrated near the surface
it =t

The following account will, at least implicitly, give some idea of the asymptotic
spacing of these minima,

Let r, fulfill the following »ditch» condition.
D: r, has a strict local minimum at t,, and there is an integer k such that 7,

is 2k times continuously differentiable near ft;

7‘;(t)<0 for 0 <t <ty,
7-(*]')(,50):0 for j:l,_..,zk—l,
$9(10) > 0.

Because of the circular symmetric character of the problem it is natural to observe
&, along radiuses from Q. Thereforelet @ = (8, ...,0,)", |8} = 1, define a direction,
and let

£(0) =&,(t-0) for t >0

be the values of &, observed along that direction. To obtain conformity with
notations used later on we have written the argument ¢ of the function &(9)
as a superseript. Also define, with the same notations as in (3.1) and (3.2),

Pu(0) = p,(t - 0),
p%0) = p(t, - 0) ,

and the derivatives

d
oul0) = o Pull-0) = 0" (¢ - 0) = 6" Dip.b(t - 6) — A(t-6)),

; (3.18)
B) = = ylty6) = 0" Dl'bity - 0) — A(ty - 9)) .
Then, for t >0
£u(0) = ury(t) — v.(0) ,
2 600) = wilt) — o). (3.19)
and, for any set of directions 6',...,6™, it holds
=4

(pe(6), o6, i =1,...,m) 5 @), %0, i=1,...,m).
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Now, let the process &,(f) attain its first minimum along the direction 6 at
t = 7,(0). By varying 0 we obtain a random field {z,(0), 6 € R", [0] = 1} defined
over the unit sphere, and our main object is now to express the asymptotic distribu-
tions of this field in terms of those of the field {¢°(6), 8 € R", || = 1}, and similarly
for the values of &(0) at &= 7,(0).

TrEoREM 3.3. If r fulfills condition D with t,, k then, as u-— oo
a) for any ¢>0

P(lz,0) —t,| <& for all 6ER", |0)=1)—>1,
=4
b) {u(r,(0) — )", &Eu(7.(0) - 0) — ury(ly), OER", 10| =1} 5
2k — 1)!
W o%0), —v%0), 6ER", 8] =1;.

Convergence of the random fields means convergenes of all finite dimensional
distributions.

Proof. a) We need simply to notice that for all small &> 0
dé.(0) .. GET(0)
Plsup sup 1 TR 0, inf T 0] —1, as u— o

o 0<t<ty—e [

which is easily proved if we use (3.19) and apply similar arguments as in the proof
of Lemma 3.2. P
b) Since, by part a), 7,(0) —»#, uniformly in # we can expand in Taylor series
with a uniformly small rest term:
d P }
Ol gy — g 1 N k-1 PR SN O

— 04(0) + 0,(1) .

This will give the results as far as 7,(0) is concerned, and the rest of the theorem
is straightforward as in the one-dimensional case.

We conclude this section with the remark that {y%0), ¢°6), 0 € R", 6] = 1}
is a bivariate homogeneous Gaussian field with mean zero and with a covariance
structure that depends only on the distance 10 — 6] =4/ 2(1 — ¢ - 8)2. In fact,
if @ denotes the angle between 6 and 6, so that cos® = 6 -0, then (with
i = —14(0)

Cov (%(0), 9°(0)) = rylly V' 2(1 — cos O)) — ri(ty) »

Cov (%(0), ¢%0)) = (1 — cos O)ry(t, \/E(l — cos &)%),
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(A \/—2—(1 — cos )

Cor (20 0 === " /50 Zeamoy® 0T
, — " T (to vV 2(1 — cos ©)) N
i {T*(to V(1 eos 0)') - ty AV 2(1 — cos @) } (1 — 00 0) =

— A0 (t) cos O |

Especially

V{u°0) = 1 — ri(ty) »
V(0%0)) = 25 — ri(to)’2s
Cov (y°(8), o%8))=0.

The proofs of these relations are quite straightforward. One just has to proceed
as in the proof of (3.5) and use the simple derivation rules on the function r(t) =

ra(lt).
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