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0.  S u m m a r y  

The s t ruc ture  of  a s t a t ionary  Gaussian process near  a local m a x i m u m  wi th  a 
prescr ibed height  u has been explored in several  papers  b y  the  present  author ,  
see [5]--[7],  which include results for  modera te  u as well as for  u--->-4- ~ .  In  
this  paper  we generalize these results to  a homogeneous  Gaussian f ield {~(t), t E R~}, 
wi th  mean  zero and  the  eovar iance funct ion  r(t). The  local s t ruc ture  of  a Gaussian 
field near  a high m a x i m u m  has also been s tudied b y  Nosko, [8], [9], who obtains 
results of a s l ightly different  type .  

In  Section 1 i t  is shown t h a t  i f  ~ has a local m a x i m u m  wi th  height  u a t  0 
t hen  ~(t) can be expressed as 

~. ( t )  = u A ( t )  - -  ~'ub(t) + A( t ) ,  

where  A(t)  and  b(t) are cer ta in  funct ions,  r is a r an d o m  vector ,  and  A(t) is 
a non-homogeneous  Gaussian field. Actua l ly  ~u(t) is the  old process ~(t) con- 
di t ioned in the  hor izonta l  window sense to  have  a local m a x i m u m  wi th  height  u 
for  t = 0; see [4] for  te rminology.  

I n  Sect ion 2 we examine  the  process ~ ( t )  as u --> - -  ~ ,  and  show tha t ,  a f te r  
suitable normalizat ions,  i t  t ends  to  a four th  degree polynomial  in tl . . . .  , tn wi th  
r an dom  coefficients.  This resul t  is quite  analogous wi th  the  one-dimensional  case. 

I n  Section 3 we s t udy  the  locations of  the  local min ima  of  ~ ( t )  as u - +  ~ .  
I n  the  non-isotropic case r(t) m a y  have  a local m in im u m  at  some poin t  t ~ Then 
it  is shown in 3.2 t h a t  ~u(t) will have  a local min imum at  some poin t  ~ nea r  t ~ 
and  t h a t  ~ u - - t  o a f te r  a normal iza t ion  is a sympto t ica l ly  n-var ia te  normal  as 
u--> ~ .  This is in accordance wi th  the  one-dimensional  case. 

*) This research was supported in part  by  the Office of NavM Research un4er Contract 
N00014-67-A-0002. 
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I f  the process is isotropie, then  r(t) depends only on [t[, and  i t  can have no 
strict  local minima.  We can then  obtain some results wi thout  direct counterpar t  
in the  one-dimensional case. Consider ~,(t) as t runs along a direction 0 from 
the origin, and  let %(0) be the value of  /tl at  the f irst  local min imum of $~(t) 
along t h a t  direction. Then it is shown in 3.3 t ha t  if  r(t) has (non-strict) local minima 
for ltl = t o  then  the  random field { % ( 0 ) - - t 0 , 0 E R  ~, 101 = 1}, def ined on the 
uni t  sphere, after  a normalizat ion tends to an isotropic Gaussian field on the uni t  
sphere. 

Seetlon 3 also deals wi th  the  values of ~,(t) a t  the min imum points. 

1. General results 

1.1. S o m e  de f in i t ions  

Let  {~(t), t C R"} be a separable, homogeneous Gaussian field wi th  n-dimensional 
parameter ,  wi th  mean  zero and  with  the  eovarianee funct ion r (r(0) = 1). Define,  
for k = ( k l , . . . ,  k~), K = ~ k~, the spectral moments  

~ r ( t )  [ 
4, = ( -  1) ~,'' 0t~x. . .  ~t : - ! t :o  (K even). 

I f  r has continuous part ial  derivatives of every order K ~ 4, and  if  fur thermore,  
for every k wi th  K =  l 

O%(t) lk 
~ M - -  ~t~n-- = 0 ( I t l )  as t - - > 0 ,  (1.1) 
v v  t . . . v v  n 

then  ~(t) has, wi th  probabi l i ty  one, sample functions wi th  continuous f irst  
t 

and second order part ial  derivatives. Thus we can define ~i(t) = O~(t)/Otr 
~"'t" " " q ( J =  02~(t)/Ot~Otj, and ~ q ( t ) =  ~}~(t) for all t holds almost  surely. This can 
be shown from the one-dimensionM analogues, (see the  book by  Cram6r and  Lead- 
bet ter  [3], Ch. 4), combined wi th  a result  by  Winkler  on cont inui ty  of Gaussian 
fields [10]. 

Now arrange the  eolunm vectors 
i ~'(0) = (~,(0), 1 < i < n ) ' ,  

t t  ~:~ (o) = (~,, (o), 1 < i < n ) ' ,  

r (o) = (~,j(o), 1 < i < j < n ) ' ,  

and 

I 
~"(o)  = \ ~ o ( O ) /  " 
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As in the one-dimensional case the covariances among }(0), }'(0), and }"(0) are 
given by  the spectral moments  2~. I f  we write 2, or 2~ (k i = 2 and  k i = kj --~ 1 

respectively) instead of 2 k when K -~ 2 and  correspondingly 2~jkt if K ----- 4 then  

V(~(0)) = 1,  
t Coy (~ (0), ~j (o)) = - C o v  (~(0), },~(o)) = ~ j ,  
If pt Co y  (~j(0),  ~k,(0)) = 2~ik,, 

Coy (~(0), ~ (0)) = Coy (~ (0), ~;,(0)) = 0 .  

The covariance mat r ix  of the (1 -~ n Jr ln(n + 1))-variate normal  variable 
(~(0), ~'(0), ~"(0))' is then  par t i t ioned in a na tura l  way: 

(o0 / 
S l l  0 ~02 (1.2) 

$2o 0 $22/ 

say, where SiX and $2~ are the internal  covari~nce matrices for }'(0) and  ~"(0) 
respectively, while $20 (and S02 = S'20 ) gives the covariances between }(0) and 
}"(0). I-[ere we make the addit ional  assumpt ion t h a t  }(0), }'(0), $."(0) have a non- 
singular distribution�9 

In  the special case when } is isotropic, the covariance funct ion r(t) depends 
only on the distance it] ---- (~  t~) '/2. The Taylor  expansion of r(t) will t hen  con- 
ta in  only terms of the type  t~, t~, t~t~ and higher�9 This implies t ha t  most  of the 
spectral moments  vanish, and  the S-matrices are considerably simplified: 

]2" if  i~--j  
21J-----[0 i f  i # j ,  

/2,'o if i = j = k = z  
20 .k ,= ]2 "  ~ if  i = k ,  j----l, i # j  

Io otherwise. 

This means especially t h a t  the mixed second order derivatives ~ (0) are independent  
of bo th  ~(0) and  of the unmixed  derivatives ~ (0). I f  we define 

2* 12" (0 < ~ < 1), ~ 22/ 40 

1 = (1, � 9  1) '  ( n •  

D : ~ 1 " ' "  ( n •  
�9 . - .  o 

~ . . .  

I ~ -  ,mit mat r ix  of order m ,  

then 
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S02----- (-- A*I', 0), S:2 = (~*~ \o  
The inverse of D e is easily computed: 

( n : %  = 

]~2$21nO(n_ l)/2) . ( 1 . 3 )  

1 1-~- (u-- 2)o 
if  i = j ,  

0 1 
- - -  i f  {- - / .  

1 - -  0 1-~ ( n - -  1)~ 

(1.4) 

1.2. The structure near m a x i m u m  

We want  to consider a ~)conditional process>> 

~,(t) ~ ~(t)[~ has a local m a x i m u m  wi th  height  u at  0 .  

Since the  probabil i ty  of the condit ioning event  has probabi l i ty  zero we have to 
approximate  i t  by  the ~)horizontal window>> event  

A(h,  h'): ~ has a local m a x i m u m  with  height  in (u, u -}- h) at  some point  s 
in the sphere Is1 _< h'. 

Let  T : ( t l , . . . , t  ~) be m different  points in R n, and  let x = ( x  1 . . . .  ,xm)' be 
a mat r ix  of  real numbers.  Then we can compute the conditional probabi l i ty  t h a t  
~(t ~) < x  i, i---- 1 , . . . , m ] A ( h , h ' ) ,  af ter  which we can let h, h ' - * 0 .  Under  the  
assumpt ion (1.1) the s t ream of local maxima  wi th  heights in (u, u ~- h) is regular  
(eL B~lyaev, [2], Theorem 4), and  

P(~(t ~) ~ x~, i ----- 1 . . . . .  m I A(h,  h')) --+ E(NI(x, u, h))/E(N~(u, h)) as h' -+ 0, (1.5) 

where _N'T(u, h) ~ the  number  of local max ima  s wi th  Is] _< T wi th  heights in 
(u, u ~- h), while NT(x, u ,h )  ~ the number  of those max ima  s for which 
~ ( s §  ~ ) _ < x .  i = 1  . . . . .  m .  

I f  fur thermore  the  process is ergodie, which is the  case i f  r(t) -+ 0 as It[ --> oo, 
then  the  r ight  hand  side in (1.5) is the (a.s.) l imit  of NT(X, u, h)/NT(U, h) as T - *  oo, 
(eL Nosko [8]). This means that it has a natural frequency interpretation as the 
dis t r ibut ion  of the ~-values a t  points  s ~ -[- t ~ where the  points s ~ are the  locations 
of  local maxima.  Thus we have mot iva ted  the use of (1.5), or equivalent ly  its l imit  
as h -+ 0, as a conditional distr ibution.  

I t  remains to express the expectat ions in (1.5) in closed form. This can be done 
by  generalizing the  formulas for the  expected number  of  local max ima  given by  
Belyaev [2]. F i rs t  we need some definitions. Besides the set ~ of m points in R ~ 
and  the  mat r ix  x we define Y-~ (Yl . . . . .  Y,~)', v ~ ( v l , . . . ,  v,)', za-~ (zii, 

? t t 1 < i ~ n)',  z0 ---- (zii, 1 _< i < j < n)', and  z = (za, z0) �9 Also let Z ---- (zij) 
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be the symmetric matrix formed by the elements in Zd and z0. In  the sequel we 
will often exploit the convention that  if a capital letter denotes a symmetric matrix,  
then the corresponding small letter denotes the column matrix formed of its 
n(n -[- 1)/2 different elements. 

Define the following probability densities and conditional probability densities 

p~(u, v, z, x) for 2(0), 2'(0), 2"(0), 2(t 1) . . . .  ,2( t~) ,  

p~(X !u, V,Z) for r 1) . . . .  , r  ~) ] 2 ( 0 ) = u ,  2'(0) = V, 2" (0 )=z ,  

p(u, v,z) for ~(0), ~'(0), ~"(0), 

p(z ]u, v) for 2"(0) [2(0) ---- u, 2'(0) = v .  

Then 

E(-~l(X, u, h)) 
E(NI(u, h)) 

u+h 

f f ]det ZlP~(~, O,z, y)dzd2dy 
y i~x i  ~=u Z ~ O  

u+h 

~=u Z~O 

where Z -< 0 means that  the matrix Z is negative definite. 
By letting h - +  0 we finally get the following fundamental theorem. 

THEOREM 1.1. The conditional distribution of ~(t 1) . . . . .  ~(t ~) given that ~ has 
a local maximum with height u at 0 has the density 

f ldet Zips(u, 0, x)dz Z, 

z~o (1.6) 

f ]det Zip(u, O, z)dz 

Z-~0 

In  the rest of this section we will simplify (1.6) to a form which gives considerable 
insight in the structure of 2 near a maximum. To begin with write 

[ detZ p(--  z I u, o) 

i f   f=>o qu(z) = detZ p( - -  z I u, O)dz (1.7) 

[ 0 otherwise.  

Then (1.6) can be replaced with 

f q,(z)p~(x [u, O, -- z)dz. (1.s) 
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Up to now we have made l imited use of  the  normal i ty  of  ~. L~t us now use 
it in full to derive the  condit ional  densities in (1.7) and (1.8). L~t 

I 
S~(t) = (--  ri(t), 1 < i < n ) ' ,  (1.9) 

t/ /f 
S2(t) = (r~(t), 1 < i < n; rq(t), 1 <_ i < j ~ n ) ' .  

Then 

1 0 So~ r(t 1) . . .  r(t ~) 

0 s~1 0 s~(t~) . . .  s~(t  m) 

~20 0 ~'~22 $2(ti) " ' "  ~2(tm) 

r(t ~) S~(t ~) S~(t ~) 1 . . .  r(t ~ - t  ~) 

r(t  m) S'l(t m) S~(t m) r(t 1 -  tin) . . .  1 

is the covariance mat r ix  in the  dens i ty  p~(u, y, z, x). The mean and covariances 
in the  condit ional  dens i ty  in (1.8) can then be expressed in terms of  simple funct ions 
of  r: define A(t),  C(s, t), and  the  mat r ix  funct ion b(t) --~ (bii(t), 1 < i < n; 
b~j(t), 1 < i < j  < n)' b y  

(A(t),  b(t)') = (r(t), S'~(t)) S~o S ~  ' 
(1.1o) 

( 1  H02)-1 ( r ( t )  ~ 
C(s, t) = r(s --  t) --  (r(s), S':(s)) $2 ~ $22 \S2(t) ] --  S'I(S)Sx-~IS~(t). 

Then p,(. I u, O, --  z) is normal  with means uA( t  ~) --  z 'b(t  ~) and covariances 
C(t ~, ti). The dens i ty  q~ comes out  similarly: p(. ] u, 0) is normal  with mean 

and covariance mat r ix  

&~ - (S~o, o) Six 

Thus,  for Z ~ > 0  we have 

qu(Z) : ]~u 1 det  Z exp {--  l ( z  § uS20) 'S2.1o(z • uS20)} (1.12) 

where k s is the  normalizing constant .  
Note  tha t  the  assumptions  made abou t  the  non-singular i ty  of ~(t), ~'(t), ~"(t) 

guarantee  the  non-singular i ty  of  every  interest ing matr ix.  
W e  f inal ly can conclude tha t  (1.8) is the dens i ty  for a process ~,(t) def ined in 

the  following theorem. 
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THEOlCEM 1.2. Given a local maximum with height u at 0 the conditional process 
~(t) has the same finite-dimensional distributions as the process {~(t),  t C R ~} defined 
as follows: 

~( t )  = uA(t) -- ~'~b(t) + A(t) 

where A is a non-homogeneous, zero-mean, Gaussian field with the covariance function 
C, and ~ is an n(n + 1)/2-variate random variable, independent of A and with 
the density q~. 

2, Asymptotic properties as u - + -  

For  large negat ive u the  m a x i m u m  of ~ at  0 will exert  a s trong influence 
over ~( t )  for small t. Actually,  the normalized process 

#*(t) . . . . .  lul3($,(t/Iul) u) u4(1 A(t/[u])) + lul3A(t/lu[) [ul~,u' ~b(t/IuI) (2.1) 

has asymptot ical ly  the same distr ibut ions as a certain four th  degree polynomial  

F(t) = -- 4~ t~ A(0) § ~ t, A(O) --  ~- t 'Z t  (2.2) 

(where (~  t~O/Ot,)af(O) = ~.,,,,y t~t~,t O3f(t)/Ot, Ot~Ot [,=0, etc.). 
In / '(t) the f irst  sum contains non-stochastic,  four th  order terms in t~ . . . .  , t,, 

while 1/3!(~ t~O/Ot~)aA(O) contains th i rd  order terms with stochastic coefficients, 
which essentially are the  th i rd  order derivat ives of A at  0. I t  is a normal  ))deter- 
ministic)> random field wi th  mean zero and  with  the singular covarianee funct ion 
1/3!3!(~ s,O/Os,)a(~ t~O/Ot,)aC(O, 0). Final ly  the th i rd  te rm in F(t) is the quadrat ic  
one where the symmetr ic  random mat r ix  Z = (~j, 1 ~ i , j  _< n) is positive 
definite,  and  the corresponding column mat r ix  ~ = (~ ,  1 < i < n; ~j, 
1 ~ i < j  ~ n ) '  has the densi ty  

/ c ~  det Z exp So2S~.~oz (Z >- 0) (2.3) 

with / c ~  as a normalizing constant .  
This gives explicitly the behaviour of  ~( t )  for ]tl up to order In[ ~1 from 

a very  low ma x imum 
To show the alleged convergence we need the asymptot ic  dis t r ibut ion of IuI~, 

and  the behaviour of A, b, and  C for small arguments .  We then  need to impose 
the  fur ther  assumption t h a t  r is six t imes continuously differentiable and  tha t ,  
for ~ / c ~ - - 6 ,  

IO t~ t . . .O t2~ -  =-O(l t l )  as t - - > 0 .  (2.4) 

This is only what  can be expected from the one-dimensional case in which the  
sixth derivat ive of r plays an impor tan t  role, see [5, Theorem 4, 5]. 
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L ] ~ M x  2.1. The density qu(z) of l u l ~  tends to q(z) with dominated convergence 
a s  q~--->-- 00. 

L~MMA 2.2. I f  r fulf i l ls  (2.4) then, as s, t ~ 0 

A(t)  = ~ + ~. t~ A(O) + O(lt l~),  

1 ( ~  ~ ) 2  it~/2+o(lt]3) for i =  j 
b~j(t) = -~ t, b~i(O) -~ O(Itl~) = [t~tj + O(lt[ 3) for i V=j, 

C(s, t) ~- ~ s, t~ C(0, 0) + O(max (lst, ltl) ') �9 

The proofs of  these two lemmas are ra ther  l eng thy  and  are given af ter  the 
following main  result, concerning t h e  convergence of ~*. 

THEORElV[ 2.1. I f  r fulfills (2.4) then, for any set of times (t ~, i ~ 1 . . . . .  m), 
it holds 

* i (~ , ( t ) ,  i = 1  . . . . .  m ) - ~ ( F ( t ~ ) ,  i = l , . . . , m )  as u ~ - o o .  

Outline of proof. An impeccable proof  could have used the characteristic funct ion 
convergence as is done in Theorem 4 in [5]. We give here only some per t inent  points.  
L e m m a  2.2 gives 

u~(1 - A( t / lu l ) )  ~ - -  77. t, A(O) , 

ITS~2 for = j 

u~b~j(t/lul) --~ [t~tj for i r j ,  

while by  L e m m a  2.1 lu[~u has asymptot ica l ly  the dens i ty  (2.3). Therefore 

(�89 ~, i 1, m) # 2 i ]u]~,u b(t i lu]) ,  i ---- 1 . . . . .  m) --> . . . .  , . 

F inal ly  --u3A(ti/ iuI),  i : 1 . . . .  m have the  covariances 

1 ~ s C(0, 0) u~162 tS l lu l )  ~ ~ t, t ,  , 

which are jus t  the  covariances of the  A-terms in F(t~), i = 1, . . .  , m. [ ]  

IPemark. The funct ion space method  used by  Lindgren [6] works also in the  
mult idimensional  case. Then Theorem 2.1 can be extended to include almost  sure 
convergence and  not  only  convergence in law. 
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Proof of lemma 2.1. From (1.12) and S~'0 = S02 we get, with N = n(n + 1)/2, 

@=(z) = lul-Nq=(lul-lz) = l u l - N - ~ k :  1 d e t  Z "  

�9 exp {-- I ( ] U [ - - I z  - ~  u S 2 0 ) ' S 2 . 1 0 ( [ u [ - l z  -[- u S 2 0 ) }  = 

= Ic; 1 det Z"  exp So2S~.iz exp (-- lu-2z'S~)oz), 

where k~ is a new normalizing constant. As u --> -- m then k~q,(z) is dominated 
by  and tends pointwise to 

det  Z" exp S02S~-)0z (Z >- 0) .  (2.5) 

As is shown below, this function is integrable, and therefore the dominated con- 
vergence theorem implies 

k~ ~ f~ f qu(z)dz-+ f det Z . e x p  So2S~)ozdz = k-~o, 
r  

Zi~0 Z~-0 

which gives the lemma. 
I t  remains to show that  (2.5) is integrable: transform to polar coordinates, 

a~j~ , 0 = 0 ( z ) ,  with the inverse z = z ( r ,  0 ) = r ' z ( 1 ,  O). For 
the sake of simplicity write z(0) = z(1, 0) and Z(0) for the corresponding symmetric 
matrix. Let  A = {0; Z(0) >- 0} and denote by  J the functional determinant. Then 

r  

f = f f rOdetZ(O).exp{r. ,vo:s;.1,,(o)},j,a,.ao. (2.6) 
Z~O r=0  oeA 

The critical term is SoaS2.�89 and we will show that  

sup So2S~.�89 ) = c~ < 0 .  (2.7) 
o EA 

Then (2.6) is bounded by  

o 0  

f rn exp crtr f r-l,gl det Z(O)dOd~" . 
r~O O~A 

Since r-llJI is a bounded function over the bounded region A, this shows that  
(2.5) is integrable. 

We still have to prove (2.7). Writing S = (S 2 S~ 0 S2j  we have d e t S - =  

( 1  - -  SoaS~2~S2o) det $22, which implies that  So2 det S ~- (So~ -- 302S~1S20S02) det $22 = 
So2S~21($22 -- SeoSo2) det $22 = So2S~1S2.0 det $22 so what  we actually need to prove 
is that  

sup So~S~2~z = d~ < 0 .  (2.8) 
Iz l= l ,Z~-0  
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But  So2S~'z  = E(~(0) [ ~'(0) : 0, ~"(0) = z) and  thus,  if  Z >- 0, we are dealing 
wi th  the expected value of the  process at  a point  where a local min imum wi th  
a certain second order derivat ive occurs. Since the process is zero on the  average, 
and  we expect i t  not  to be more at  local minima,  (2.8) seems reasonable. However,  
we have not  been able to f ind  a proof, unless the process is isotropic, bu t  it  is con- 
jectured tha t  (2.8) is t rue  for general processes. 

I f  ~ is isotropic then  (1.3) and  (1.4) give 

- - -  1 = = (1D e , 0 ) z =  ' -1 ~*o S~ = , -1 
j i 

= (1 + ( n -  1 ) e ) - l ~  z;, . (2.9) 
i 

I f  {z{ = 1 then  max  {zljl >-- e, = (�89 + 1)) -1/'~ Since Z >- 0 we have 
Izljl 2 <_ziizjj so t ha t  max  ]z,] > _ %  But  z i i >  0 implies t ha t  ~ z , > e . >  0, 
and  thus  (2.9) is positive and bounded away from 0. This shows (2.8) in the isotropic 
c a s e .  [ ]  

Proo f  o f  l emma 2.2. We concentrate upon the rest t e rm and  the terms of order 
six in C(s, t). Similar, bu t  simpler, versions of the m~thods will give the lower 
order terms (which all vanish) as well as A and b. ( 1 )  

~20 , 
lZ?call the definit ions of $11, Sl(t ), S2(t ) from (1.2) and (1.9) and  let S =  S02 Se~ 

T = S  -1, V----Sn 1. The rows and  columns in T (exc3pt for the first  one) will 
b~ ident i f ied by a double index (ij); e.g. the th i rd  row in T will be called row 
(2,2), since the leading element in the th i rd  row in S (the second element in Seo ) 
is -- ~22- The first  rove and column will be numbered  0. 

Then C(s, t) contains six groups of terms. By  (1.10) 

02r(t) 
C(s, t) --~ r(s -- t) --  r(s)Toor(t) - -  r(s) ~ To,(~,v, ) ate, ate,, 

0:r(s) a:r(s) 02r(t) 
--r(t)~__.T(~.),00s~Os. ~<_,.,<_~,~" Os~as. T(..),(~, ,) Ot,,Ot., 

0r(s) 0r(t) 
- -  ~ ~ V~, Or, - -  I 1 -  I s -  I a -  I 4 -  I 5 -  16 '  say. 

I f  k = ( k l , . - . ,  k,)  we also employ the  notat ions  

k ~ = ( k l  . . . . .  k~+ 1 . . . .  ,k~) 
~(k~, . . . , k, + 1 . . . . .  kj + 1 . . . . .  k , )  i f  i < j  

kiJ 
((k~, , k, + 2, , k,)  if  i = j ,  

and  write (K)  for the mul t inomial  coefficients: 
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Then, with 

( x~)~= ~ x, . 
.Xk i = K 1 

K ~ k i ,  we have as t ~ 0  

~=2,4,, K! ~ ]211 t~'~tk + 0(ItiT), 

8r(t) ( - -1)  (K+~)/2 (K)  

~:r(t) ( - -1)  ~:/2 (Kkk) 

where the unspecified rest terms H~** are 0([t[5). Introducing these expansions 
into C(s, t) we will see that  the unspecified rest terms sum up to a total rest term 
of order 0(max (Is], ]tl)7). Obviously this is true for I1, /2, and 16. In /3,/4, 15 
however, there will seemingly appear terms of order 0(max ([s], l tl)5). Fortunately, 
these all cancel. The questionable terms are 

1. ~ To, (~,/)H ,/(t  ) + 1. ~ T(,,.),oH~.(s ) + 

+ ~. T(~.),(+/)(-- ~ .Hr  -- ~r : 
v <  # , v "  <~lz" 

: ~ H~.(s){T(,,),o- ~ T(~,),(//)~t~,/} + 

+ ~ Hr162 Z T(~.),(~,/)~t~.}. 
V+~</z ~ V < / Z  

The bracketed sums are zero, since they are off-diagonal elements in TS and ST, 
and thus the fourth order rest terms cancel. 

Turning to the sixth order terms in C(s, t), take k and ~ with ~ (/c i + ~i) ---- 6, 
write k ---- k + ~, and consider the coefficient c~,~ for the term 

i = l  

in the expansion of C(s, t). 

1(0) 
~ , = 6 , 2 ~ , = o :  - 6 ~  f~ z k + ~  XkToo--~ f~ ~ Z To, 

v' < it" 

-- 6! Zk{-- 1 + Too -- Z To,(+/))'~'/} = 0 
v' _< it '  

since T ~ -  ~ To,(~,.,)2~, / is an on-diagonal element in TS. 
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Since ~%,  = 1 exact ly  one ~, is 1, say ~,, = 1. Then the  spectral moments  
) ~  are actual ly  second order moments ,  and  t h e y  const i tute  column v o in S n. 

Then 
{; i f  V=Vo 

V~,~2~ = if  v :#: v o , /* 

so t h a t  
= 

But  k"~ = k + 1~ = k, and  thus  also this  t e rm vanishes. 

~-/c~ = 4, ~%,  = 2: After  some simplification we get 

4!2t k ~ {2~ -- XTTo02~, + 2~ Z To,(+/)Z~v' /+ 
v'-</ (2.10) 

v_</~ v _<,~, v'_< td 

Now suppose t h a t  the non-zero elements in ~ are ei ther  ;,0 = ~,o = 1 (% ~ / to )  

or ~,0 = 2. Then the  four th  order spectral moments  2~,,,/ in (2.10) make up 

row number  (u0/to) in S~2, and  a little reflexion will show t h a t  

To,(+/)2~, / -- Too2 ~ = 0 ,  
v' _~/ff 

i f  (,+) ( om) 
~, _< / ' otherwise. 

Thus the  double sum in (2.10) reduces to 

and the  bracketed expression is jus t  

Since k"~176 = k + ~ = k the t e rm vanishes. 
The only  non-vanishing terms in C(s, t) are then  those wi th  /c i = ~i = 3, 

and  similar calculations as above show t h a t  t h e y  have the  coefficients 
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3.  A s y m p t o t i c  proper t i e s  as  u - - >  o~ 

3.1. General results 

In  the same way  as a very  low m a x i m u m  conferred a near ly  determinist ic  
behaviour to the  process, a very  high m a x i m u m  will exert  a s t rong influence over 
qhe process over a wide range. As in the  one-dimensional case (see [7]) we prefer 
to rewrite the conditional process ~ in Theorem 1.2 in a form bet te r  adap ted  
for the present  purpose: 

~( t )  = ur(t) --  ~'b(t)  ~- A(t) 

where W = ~= + uS20. Note t ha t  relat ion (1.10) implies t h a t  r(t) : A(t) + S~0b(t) 
so t h a t  the new form of ~ is equivalent  wi th  the  old one. 

Before we can present  the analysis of ~(t)  for large u we need some definitions. 
Le t  D denote  the  differential  operator  

/ )  ~ ~ ~ . . ~ 

so t h a t  i f  f is differentiable the funct ion D f  is defined by  

0++/' 
Dr(t) = \ ~t~ ' ' ' ' '  O t n / "  

Thus, if  D~.(t) = 0 then  t obviously is a s ta t ionary  point  of ~ .  We also let 
lIxN denote the  maximal  element of a mat r ix  x so t h a t  

10f(t) l l W ( t ) l l  = m a x  
Oti 

Define the  r andom functions 

~=(t) = ~'ub(t) - -  A( t )  (3.1)  

v ( t )  = ~ 'b ( t )  - -  A ( t ) ,  

and the  n-variate  random funct ions 

zu(t) = D~u(t) : D(~'b(t) - -  A(t)) 
(3.2) 

%(t) = D~(t) ---= D(~'b(t) - -  zl(t)) ,  

where ~?~ is the  random vector  just  defined, while ~ is a new n(n  + 1)/2-variate 
random variable, which is independent  of  the  process A and has a normal  distribu- 
t ion N(0, $2.0), i.e. has mean  zero and  the  covarianee mat r ix  S~.0, def ined by  
(1.11). 

Our interest  thus  concentrates upon the  zeros of  uDr(t)  - -  z=(t) and  the  value 
of u r ( t ) -  ~ ( t )  a t  such a zero. 
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LEMlgA 3.1. U~--->r I as u--> ~ .  

Proof. ~ has the density q~*(y) --~ qu(y -- uS2o). I f  z = y - -  US2o then the 
corresponding symmetric matrix Z is equal to Y -~ uSn,  so that  by (1.12) 

u - ~ k  - * ' - '  = u - ~  ~ - ' s  - ~ - '  ( 3 . 3 )  ,~, (y~ det (Y ~- U S l l  ) exp (-- ~y 2.0Y/ 

for Y -~ Ut.~11 ~- 0. This function tends pointwise, and with dominated convergence 
1 , --1 to det $11 exp (-- ~y S2.0y), and it follows tha t  

u ] c , - ~ d e t S l ~ f e x p ( - - ~ y S 2 . o y  ) y detSl~ /c~, 

say. We get 
1.  I~--1. \ q.(y) - +  ]g~l e x p  (-- ~-~ 2.0~/) , 

with dominated convergence, which is the content of the lemma. [ ]  
The lemma implies that  the stochastic term ~f~(t) is of moderate order for all 

u. The behaviour of $~(t) is therefore well determined by the behaviour of r(t) 
as is reflected in the following Lemma 3.2. 

Let I be any bounded measurable subset of R n and define 

L = I n { t c a " ,  I t 1 > _ ~ } .  

LEMMA 3.2. I f ,  for all e ~ 0 

inf HDr(t)lI > 0 
tEI~ 

then, as u - ~  ~ ,  

P(D$~(t) ~-0  for  some t C I ,  t # 0)---~ 0 .  

The lemma implies especially that  the probability of at least one local minimum 
in I tends to zero. 

Proof. We prove the lemma in two steps. 
a) P ( D ~ ( t ) : 0  for some t=~0 ,  ]tI ~e ) - -~0 :  since 

inf /tI-~lIDr(t)]l : M: > 0 
o#[tl-<~ 

if s is small enough, we have 

.M'  inf [tl-~lID~(t)ll > u  ~ -  sup ltl-fllz~(t)II 
O#ltl<--e O # [ t ] ~  

Therefore, the probability in question is less or equal 

P( inf ]t[-ll[D~u(t)l[ = 0) _~ P( sup Iti-ll]z~(t)l[ >_ u M : ) .  
O#lt]_<s O#lt[<_~ 

(3.4) 
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I t  is easily shown tha t  Obq(t)/Ot, =-O(Jt l )  for small It], (ef. L e m m a  2.2), so 
t h a t  IIDv'~b(t)tI _< KItlN.II for some K > 0. Fu r the rmore  OA(t) /Ot .  i = 1 . . . . .  
are cont inuously differentiable (a.s) and  OA(O)/Ot i = 0. This implies t h a t  

sup It I-X]IDA(t)rl 
0# l t l _<e  

is a f inite (a.s) random variable. Thus the supremum in the r ight  hand  probabi l i ty  
in (3.4) is f ini te  (a.s) which gives t h a t  the  probabi l i ty  i tself tends to zero as u goes 
to inf ini ty .  

b) Now take  an e such tha t  the  proof  of par t  a) goes through,  and  let 

in f  ][Dr(t)H = My > 0 .  
t e r ~  

As before 

P(D~u(t)  - -  0 for some t C It) <_ P( inf  LID~=(t)LI = o) < P(sup lIz,(t)l[ >_ uM'~) .  
tEr~ t E ~  

Since I t is bounded and  the process z.(t) is continuous (a.s.) the r ight  hand  
probabil i ty  above tends to zero as u tends to inf in i ty .  This implies t h a t  there 
are no s ta t ionary  points in I~. [ ]  

3.2. The  non-isotropic pi t fal l  case 

We have seen t h a t  the equat ion D~( t )  = 0 has possible solutions only  near  
s ta t ionary  points of r. Even  then,  the  behaviour of the  solutions depends great ly  
on' the character  of the s ta t ionary  point.  The ~>pitfMb> ease is most  s imply def ined 
as follows: 
P:  r has a strict  local min imum at  t o (t o, . . 0 ,. = . ,  t , ) ,  the  mat r ix  _R t -- (O~r(t)/O@tj) 

is positive defini te  for t near  t~ as t - + t  o 

r ( t )  = r ( t  ~ + �89 (t~ - -  t~) r ( t  ~ + o ( [ t  - -  t~  

ar(t) ( ~  ~ )  ar(t ~ ) 
Ot~ = (t~ - -  t o ) ~ --Ot~-  ~ ~  - -  t ~  

0~r(t) 02r(t ~ 
+ o(1). 

~ t ~ a s  Ot~Ot/ 

The first  two expansions can be wr i t ten  

r ( t )  : r ( t  ~ ~ -  ~ ( t  - -  t~  - -  t ~ @ o(It - -  t~ , 

Dr(t) = _R,0(t -- t ~ ~- o([t --  t~ 
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The ~>degenerate~) case when / t  to is not  defini te  or possibly vanishes will be dealt  
wi th  later  on. 

Wri te  S(t,  e) ----- {s E Rn; Is - -  tl ~ s} for the  sphere a round  t wi th  radius 
e, and  let  S(e) = S(t  ~ e). Then, the  condi t ion P implies tha t  there  is an e ~ > 0 
such t ha t  r has no s ta t ionary  points  in S(e ~ except  t ~ Theorem 3.1 below s ta tes  
tha t  for any  e, 0 < s < ~o, wi th  a p robabi l i ty  tending to one, ~, has exac t ly  
one local min imum in S(e). I f  so, let  z~ be  the  location of  tha t  minimum; other-  
wise let  z~ = t ~ Then ~,(z") essential ly denotes  the  value of  the  process at  the  
min imum.  Theorem 3.1 also expresses the  asympto t ic  propert ies  of  T ~ and ~,(v~) 
in t e rms  of  the  r andom variables  ~(~- F(t~ and g ( ~  g(t~ defined in Section 3.1. 

Obvious ly  (F, Z) is ( n -~  1)-variate normal  and  it has mean  zero and  the 
eovarianee mat r ix  

- -  0 

(1 r2(t~ --  Rt .S~l~t .  ) O Slz . (3.5) 

To show this we compute  

V(~f) = V(v'b(t~ + V(A(t~ = b(t~ ~ § C(t ~ t~ 

ab(t~ ' aC(s, t) s = t = t  ~ Coy (~f, Z,) = b(t~ at--T + at----~ ' 

ab(tO) ' ab(t ~ a2C(s, t) ~=t=t." 
Coy (z , ,  z j)  - o + a ,atj 

N o w  recall definit ion (1.10) of  b(t) and  C(s, t) and wri te  

T20 T22] =- $20 $22] " 

Using tha t  ar(t~ : 0 we then  get  

o(T:o, ( oo (3.6) V(V) = r(0) ~- (r(t~ S'2(t~ [~T~] \T20 T22)J ~S~(t~ " 

Since T22 ---- S~.~, and Too - -  To2T~iT20 : S~  1 = 1, the  b racke ted  expression is 

T2J T~(T2~ T22) - -  T22 ] =- 0 T2 o 

so tha t  V(~f)----- 1 --r~(t~ 
To obta in  the  remaining covariances we have  only to replace the  appropr ia te  

(r(t~ S~(t~ in (3.6) wi th  the  corresponding derivat ives.  [ ]  

T ~ E O R ~  3.1. I f  r fulfills condition P wi th  t ~ and e ~ 

a) P(~,(t)  has exactly one local minimum in S ( s ) ) ~  1, 

b) (u(T = -  to), $,(~u) ur(t0)) ~-~ - i  
- -  ~ ( R t ~  g '  - -  ~ ) )  " 

then, for any 
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The  t he o re m s imply  says t ha t  r -+  f~ t o and  t h a t  u ( f  - -  t p) and  ~=(z") - -  u r ( t  ~ 
are asympto t ica l ly  normal ,  independent ,  and  have  the  covar iance m a t r i x  and  
var iance  _R~;~SnR~ 1 -- S~ 1 and  1 - -  r2(t ~ respect ively.  

Proof. E v e n  i f  pa r t  a) formal ly  follows f rom p a r t  b) we have  to give i t  an in- 
dependen t  proof,  a) Our concern  is the  n u m b e r  and  locations of  the  zeros of  the 
mapping  t ~ u - l D ~ ( t )  = Dr(t)  - -  u-lx=(t), where Z, is def ined  b y  (3.2). I t  is 
therefore  na tura l  to look only  at  such outcomes for which x,(t)  is in a cer ta in  sense 
bounded.  Le t  therefore  ~ > 0 and  M s be given constants ,  and  define, for  each 
u, the  even t  iY~(= N~,) so tha t ,  for  each ou tcome in N~ it holds 

sup [z.(t)l _< M~,  
t e S(~ ~ 

sup m a x  IlOz=(t)/OtjH <__ M~ . (3.7) 
t E S(d) j 

B y  L e m m a  3.1 and  the  con t inu i ty  of  b(t) and  A(t) and  the i r  f i rs t  and  second 
order  par t ia l  der ivat ives  we conclude t ha t  we can t ake  M~ so large tha t ,  regardless 
o f  u, P(N~) ~ 1 - -  ~. Since d is a rb i t r a ry ,  the  assert ion is p roved  i f  we can 
show t h a t  ~,(t) has exac t ly  one local m in im u m  for  all outcomes in N~. In  the  
sequel we therefore  res t r ic t  our  a t t en t i on  to  such outcomes,  even  i f  t h a t  is no t  
expl ic i t ly  ment ioned.  

We now prove  par t  a) b y  showing t h a t  the  range 

_Ra = {u-IDea(t); t E S(s)} 

contains  a sphere S(0, d ) =  {x E I1"; Ix[ ~ d}, which especially implies t h a t  
u-lD~=(t) = 0 for a t  least  one t in S(s). I t  will also follow t h a t  there  is ac tua l ly  
on ly  one such t, and  t h a t  i t  represents  a local min imum.  

We firs t  not ice t h a t  condi t ion P implies t h a t  

in f  ]Dr(t)l = d~ > 0 .  
I t - - t~  

I f  u > 2dylM, then ,  wi th  in f  and  sup t ak en  over I t  - -  t ~  = s ,  

inf  lu-~D~=(t) I > in f  IDr(t)[ - -  sup [u-~x=(t) i > d. - -  ( 2d /M~) -~M~ >_ d./2 > O. 

We can t he n  t ake  d = d J2 as will now be shown. Wr i t e  N ~ = {x E II~; txl < d J2} 
for  the  in ter ior  of  S(0, d J2). Obviously  

[u-ID~,(O) l < lDr(O) l + lU--1)~u(0)l ~ 0 + U--IM~ < d j 2 ,  

so t h a t  the  set A = R a f l S  O is no t  empty .  T h a t  in fac t  A = S  ~ follows f rom 
the  ))inverse funct ion  theorem)), see e.g. [1, p. 144]. The  m a t r i x  J ( t )  of  
par t ia l  der iva t ives  of  the  e lements  of  u-lD~=(t) is, for  large u, un i fo rmly  near  
R t - -  r emember  t ha t  we are on ly  dealing wi th  outcomes in N(~ - -  and  so the  
J acob i a n  ]det J ( t ) l  is non-vanishing  over  S(s). The  inverse funct ion theorem 
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t hen  implies t h a t  A is open. B u t  since the  mapp ing  u-lD~u(t) is cont inuous  the  
set B = S ~  is also open. Then  S o = A U B is the  union of  two open, dis joint  
sets, and  since S O is connected,  e i ther  A and  B is empty .  B u t  A is no t  e m p t y  
and there fore  B is. We  conclude t h a t  S ~ C Ra, and  tha t ,  in fact  S(O, d J2) c_ l~a. 
Thus  ~=(t) has a t  least  one s t a t i ona ry  po in t  in S(e). 

T h a t  a n y  s t a t i ona ry  poin t  in fact  is a local m in im u m  follows immedia te ly  f rom 
wha t  was said above  abou t  the  ma t r i x  J ( t ) .  

To f inish the  proof  of  pa r t  a) we still have  to  show the  uniqueness  of  the  minimum.  
This  follows however  f rom the  )>almost linearity)> of  the  mapping.  Since R t is 
cont inuous  i t  follows t h a t  J ( t )  can be made  un i formly  close, no t  only  to  Rt, b u t  
also to  Rt0 b y  choosing u large. (This might  involve choosing a smaller s t h a n  
the  original one, bu t  b y  L e m m a  3.2, this  is no t  a crucial point .)  Since ~t0 is non-  
singular,  this  implies t h a t  u - l D ~ ( t )  cannot  map  two dif ferent  poin t  in S(s) on 
one and  the  same point  in S(0, d j2) .  @_~ 

I t  is now a simple task  to  p rove  pa r t  b). Since p a r t  a) implies t h a t  T ~ t o 

we can expand  ~( ,~)  and  u - l D ~ ( z  ~) in Tay lo r  series for large u: 

~ ( ~ )  - -  u r ( t  ~ : u(r(~ ~) --  r(t~ - -  ~ ( ~ )  
( 3 . s )  

= u{�89 - -  t~ "u - -  t ~ -~ I~" - -  t~ - -  w=(t ~ § % ( I ) ,  

u = __ .g,, = __ t o 0 = D~,(T ) uDr(T ~) Z,,( ) u{Re( ~ --  t~ + 1 ~" 1%(1)} - -  
- -  z = ( t  ~ ~ -  % ( 1 ) ,  ( 3 . 9 )  

where we have  wr i t t en  %(1) for  any  r a n d o m  var iable  t h a t  tends  to  zero in 

probabi l i ty .  Then  (3 .9 ) imp l i e s  t h a t  u(~ ~ t ~ -1 0 ~__~ -1 Rto Z, - -  ~-, R~o z=(t ) which is 
1V(O, R ~ S n R 3  ~ --  SS~). I t  also gives t ha t  u]~= - -  t~ 2 is %(1), and  therefore  (3.8) 

implies t h a t  ~=(~=) - -  ur( t  ~ ~ --  ~v~(t ~ -+  - -  ~, which is N(O, 1 - -  r2(t~ 

Thus  far  the  min imum of  r a t  t o has been non-degenerate :  the  ma t r ix  Rto 
has oeen posit ive defini te .  Le t  us now assume t h a t  /~t0 = 0 so t h a t  the  min imum 
is of  h igher  order  t h a n  two. Then  the  mapping  Dr is no longer )>approximately 
linear>> a t  t o , a nd  the  a rguments  used in Th eo rem  3.1 b reak  down. To r emedy  this  
we make  a t r ans fo rma t ion  of  the  region near  t o as is indica ted  in the  following 
condit ions on r: 

P ' :  r has a s t r ic t  local m in imum at  t ~  (t o , . . . , t~  the re  is a k >  1 such 

tha t ,  as t -+  t ~ 

r ( t )  = r ( t  ~ ~ -  (t~ - -  t ~ r ( t  ~ + o ( l t  - -  t~  

- - r + o ( I t  - 

- -  (~ 0 /2k--2 D2r(t ~ to12k_2) a2r(t) 1 (t~ --  t ~ ~ ]  atia-~j -1- o(lt - -  �9 
Ot, Otj (2k - -  2)! 
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the  equat ion  sys tem 

1 ( ~  1 0 ~  2k-1 ~r(t~ 
(2k - 1)! x~ ~ ]  at, - h , ,  i = 1 , . . . ,  n (3 .10 )  

has a unique solution for all h = (hi . . . .  , h~)'. 
We  in t roduce  the  no ta t ion  r = ( r 1 6 2  for the  unique  solut ion 

of the  equat ion  sys tem (3.10). I f  ~ = 1/(2k --  1) t h e n  i t  is easi ly seen t h a t  t h e r e  
are posi t ive cons tants  cl, c 2 such t ha t  

c~[hi ~ ~ [r ~ cejh[ ~.  (3.11) 

The  meaning of r  is more  clearly unders tood  f rom the  expans ion  

Dr( t  ~ + r = h + o(]r 2k-~) : h + o(Ihl) as h - + 0 ,  

so t h a t  the  left  hand  side is an almost  l inear  funct ion  of  h. 
/qow let yJ and  Z be def ined  as before,  = yJ(t~ x(t~ and  take  e ~ > 0 such  

t h a t  r has no s t a t i ona ry  points  in S(e ~ excep t  t ~ The  uniqueness  of  r  implies  
t ha t  such an e ~ exists. Then  we have  the  following theorem,  which contains Theorem 
3.1 as a special case. 

TttEOI~E~ 3.2. I f  r fulf i l ls  condition P '  with t ~ k, and e ~ then, for any 
0 < e < e  ~ it holds as u--> c~ 
a) P ( ~ ( t )  has exactly one local m i n i m u m  in S(e))--> 1, 

b) (u~(~ ~ - -  t~ $~(~) - -  ur(t~ --> (r - -  ~ ) .  

Proof. a) I n  T h e o r e m  3.1 the  a lmost  l inear i ty  of  the  func t ion  D~(h)--~ 
u - l D ~ ( t  ~ + h) for  h near  0 enabled us to d raw simple conclusions abou t  i t s  
zeros. Now we r a the r  s t udy  the  func t ion  

D~(h) = u - l D ~ ( t  ~ -~ •(h)) = Dr( t  ~ + r - -  u- lz~(t  ~ -~ r ----- 

= Dr+(h) - -  u - lx r  say. 

Then  there  is a one-one correspondence be tween the  zeros of  D$ and  the  zeros 
of  D~ near  t ~ and  the  p robab i l i ty  t h a t  D~(h) ----- 0 for  exac t ly  one h E S(0, e} 
t ends  to  one for  a n y  e > 0 i f  and  on ly  i f  the  same is t rue  for  D~(h). 

We f i rs t  show t h a t  D~ is essential ly linear. Le t  J+(t)  deno te  the  m a t r i x  
(3q~(t)/Oti) of  par t ia l  der iva t ives  of  a n y  mapping  4 ,  1t n ~ R ~. Then,  condi t ion 
P '  implies t h a t  

JD~4(h) = I + o(1) as h - - > 0 .  (3.12) 

The  re la t ion is easily ex t ended  to allow h : 0, and  thus  D # ( h )  is a lmost  l inear  
for  small h. We  also have  Dr~(h) = h + o(Ih]). 
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Unfor tuna te ly  the  t ransformat ion  of h will render  the  function u-lz$(h) 
u - lg , ( t  ~ + r a highly non-l inear behaviour  for small h. This obstacle can be 
avoided by  removing  a small region near  0 in the  following way. Take a real number  
fl, 0 < fl < ~/(1 - -  cr (~ = 1/(2k --  1)), and  consider as before only outcomes 
in the  event  N~, so t h a t  (3.7) is satisfied. Then D~(h) will have  no zeros in 
[hL_<u -1-~ as will now be shown. I t  holds, for some K ~ > 0 ,  i =  1 , 2 , . . .  

IDa(h) - -  D~(0)[ ~ lDr(t 0 + r + u-lXz,(t ~ + r --  z,(t~ _< 

Kllr :k-1 -[- K # - l i r  ~ Ka]h i + Kau-~Ih] ~ ~ (3.13) 

< u-a{K~u -~ + K#-~(~§ 

I-Iere we used the  bounds (3.11) for [r Now restr ict  the  a t ten t ion  to those out- 
! 

comes N~ c_ N~ for which it also holds 

lz,(t~ > 2{Kzu -fl -+- Kau-a(i+P)}. (3.14) 

Since fl > 0, this new restr ic t ion becomes negligible as u - +  ~ ,  so t ha t  
l i m i n f . + ~  P(N~) >_ P(N~) >_ 1 --  6. Since D~(0) = u - i z , ( t  ~ we can combine 
(3.13) and  (3.14) and  conclude tha t  for all outcomes in N'~ 

[ n ~ ( h ) -  n~(0)[ ~ [D~(0)[/2 for Ihl _< u -1-~ �9 

Since D~(0) :fi 0 this especially means  tha t  D~(h) v~ 0 for all such h. We can 
therefore  restr ict  our a t ten t ion  to the  region u -1-z ~ ]hi ~ e, in which Dr + 
tr ivially is almost  linear. We will now show t h a t  also u - ix  r is almost  l inear there.  
We have  

0z+(h), ~z,(t  ~ + r Or 

0hi = ahj 

I f  Ihl _< e we therefore  have,  for all outcomes in 1V~, 

Oz+(h), ~r 
m..ax,,j ahj < nM~ m.a.x,,j ~ . (3.15) 

Since r = I h [~r [) we get  the  following expression for its part ial  derivat ives 

0r alh] ~ ar 
ahj = a--~j "r  + ]hl ~. ahj - -  

(3.16) 
r ar ah,/]h] 

= ~ lh l~-"  a--~-~ "r + Ihl ~ ~, at, Oh) 

Here  alhllahj, r and  ar ~ are uni formly bounded  for all h va 0, 
while 

 h/rhl  Ihl 1 
W I  = {6,~[h[ --  h, ah j )  [hI-2 <---Klh[-'" 
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Inser t ing  this in to  (3.16) gives t h a t  for some K > 0 

r+'h/I I= _ < K l h  for h O. 

Still wi th  some unspecif ied K > 0 (depending on Me) we thus  get,  for  
u -1-~ __< ]hi ~ s, 

t 0x~(h), 
u -1 m a x  ~ u - l K l h l  ~-~ < K u  -1+0-~)(1+~)- K u  -(~+~'- ')  (3.17) 

Since ~ -]- aft - -  fi ~ 0 this  bound  tends  to  zero. 
F inal ly  we can combine (3.12), (3.15), and  (3.17) and  conclude t h a t ,  for out-  

comes in N'~, the  ma t r i x  

JD~(h) = JD,~(h) - -  u - l J  +(h) 

is un i formly  near  the  un i ty  m a t r i x  I in the  region de f ined  b y  u -1-~ ~_ Ihl <_ e, 
(at least for small ~), and  thus  t h a t  D~ is a lmost  l inear  there  for  all large u. 

We can now proceed as in Theo rem 3.1: Take  d ~ 0 such t h a t  ID~(h)l >_ d 
for all Ih]----s; no te  t h a t  the  sphere I 0 = S(D~(0), ]n~(0)]/2) is con ta ined  in 
S(0, d) for large u; no te  t h a t  I ~ = {x E R~; ]x I < d } ~ I  o is an  open connec ted  
set t h a t  contains 0; use the  inverse func t ion  theo rem to prove  t h a t  the  set 
A = I ~ N {D~(h); u -~-~ ~ lhI _< ~} is open, and  t h a t  B - -  I ~  is open too. 
Cont inui ty ,  combined wi th  a li t t le ref lexion,  will show t h a t  A is no t  empty ,  and  
therefore  A -=-- I ~ Especial ly  D~(h) is zero for a t  least one - -  and  in fac t  for  exac t ly  
one - -  h wi th  u -1-z  ~ ]h[ < s. Since we can exclude the  possibi l i ty of  a zero 
for [hi _< u -1-~ the  uniqueness  is clear. 

This  proves  t h a t  D~,( t  ~ + h ) ( =  uD~(r has exac t ly  one zero for  
t 

h near  0 for  all outcomes in N~. T h a t  the  zero corresponds to  a local m i n i m u m  
follows as in Theorem 3.1. Since lim inf  P(N~) ~ 1 - -  ~ and  ~ is a rb i t r a ry ,  this  
finishes the  p roo f  of  pa r t  a). 

b) This  pa r t  now presents  no fu r the r  problems.  I f  t he  unique  zero of D~ is V 

t hen  T ~ -  t o =  r As in Theorem 3.1 we get  uV --> Z, so t h a t  

r - + r  or - t 0) 

The  proof  is complete  i f  we r emark  t h a t  we can  incorpora te  the  a sympto t io  
dis t r ibut ion of  $,( ) - - u r ( t  ~ wi thou t  fu r the r  discussion. [ ]  

I f  ~ is isotropic,  and  

3.3. The isotropic ditch case 

r(t) = %(It]),  say 



216 G E  O Ol~  L I l ~ D  G R E l ~  

t h e n  r can have  no str ict  local minimum.  This, of  course, does not  rule out  the  
possibil i ty t h a t  ~= has s t r ic t  local minima,  bu t  the  locations of  these are less precisely 
d e t e r m i n e d  t h a n  in the  pitfall  case. E.g. i f  r ,  has a (strict) local m in im u m  at  t 0, 
t h e n  r has (non-strict)  min ima  for all t wi th  l t l  = t ~ and  the  only  th ing  we can 
s ay  abou t  ~ is t h a t  i t  will have  (strict) local min ima concen t ra ted  near  the  surface 

ttl = to .  
The  following account  will, a t  least  implici t ly,  give some idea of  the  a sympto t i c  

spac ing  of  these minima.  
Le t  r ,  fulfill t he  following ~)ditcb) condit ion.  

D: r ,  has a s t r ic t  local m in imum at  to, and  there  is an in teger  /~ such t h a t  r ,  
is 2/c t imes cont inuous ly  different iable  near  to; 

t 
r , ( t )  < 0  for  0 < t  < t  o , 

rO)(to) = 0 for j = 1 . . . . .  2/~ --  l ,  

~(:~)(t0) > o .  

Because of  the  circular  symmet r i c  charac te r  of the  p ro b l em  it  is na tu ra l  to  observe 
$, along radiuses f rom 0. Therefore  let  0 ~-- (01, �9 �9 �9 , 0~)', [0I = 1, define a direction,  
a n d  let  

~ ' , ( 0 ) = f , ( t . 0 )  for  t > _ 0  

be  the  values of  ~, observed along t ha t  direction.  To obta in  conformi ty  wi th  
no ta t ions  used la ter  on we have  wr i t t en  the  a rgumen t  t of  the  funct ion  ~'(0) 
as  a superscript .  Also define,  wi th  the  same no ta t ions  as in (3.1) and  (3.2), 

a n d  the  der ivat ives  

d 

9'=(0) = 9o(t. 0) ,  

9~ = 9(to" 0 ) ,  

o~.(0) = ~ /  9 . ( t .  0) = 0 ' .  z ~ ( t .  0) ---- 0 ' .  D ( ~ ' . b ( t  �9 0) - -  A ( t .  0 ) ) ,  

d 
a~ = ~ /  9(to. 0) = 0 ' .  D(v'b(t  o �9 0) - -  Afr  o �9 0 ) ) .  

Then,  for  t ~ 0 

~t.(O) = u r , ( t )  - -  9t,(O) , 

d 
- -  ' ~ u ( O )  dt  ~tu(O) = u r , ( t )  - -  ~ , 

and,  for  a ny  set of  direct ions 0 1 , . . . ,  0 m, it  holds 

t o i t o i (9o(0), ~ ( o  ), i = 1 , . .  . ,  m)  ~ (9~162 ~0(r i--~ 1 , . . . , m ) .  

(3.18) 

(3.19) 
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Now, let the  process ~'~(0) a t t a in  its f irst  m in imum along the  direction 0 at  
t -~ 3~(0). B y  vary ing  0 we obtain a random field {3~(0), 0 E R ~, [01 = 1} defined 
over the uni t  sphere, and  our main  object is now to express the asymptot ic  distribu- 
t ions of this  field in terms of those of the field {a~ 0 E R ", [0] ~- 1}, and  similarly 
for the  values of  ~t~(O) at  t = 3~(0). 

T ~ t E O ~  3.3. I f  r fulfills condition D with t o, k then, as u--~ 
a) for any e > O 

P(13=(0) - -  tol ~< e for all 0 E R", 

b)  { u ( 3 o ( 0 )  - to) 2~-: ,  ~ . (3~(0)  �9 0) - ur.(to), 0 r It% 

r(~)(to) ~~ - ~~ 0 e a", 

IOl -~ I)  ~ 1 ,  

IOI = 1} _+ 

lel-- ~[ .  
J 

Convergence of  the  random fields mea~ls eonvergcne~ of all f ini te  dimensional 
distributions. 

Proof. a) We need s imply to notice t h a t  for all small s > 0 

P (sup sup t_: d~'=(O) d~+~(O) ) 
- o  0<,<,o-~ d--t- < 0, i n f - - o  dt ~ 0 --+1, as u--~ 

which is easily proved if  we use (3.19) and  apply  similar a rguments  as in the proof  
of L e m m a  3.2. 

b) Since, by  par t  a), 3u(0) ---> to uni formly  in 0 we can expand  in Taylor  series 
wi th  a uni formly  small rest  term: 

d / to) } o - -  ~ ~;.(o)(o) = u t - ( 2 ~ Y ) ~  (3=(0) - + o(13o(o)  - toI ~ - x )  - 

- -  a~(0) + op(1) .  

This will give the  results as far  as 3~(0) is concerned, and  the  rest  of  the  theorem 
is s t ra ightforward as in the  one-dimensional case. 

We conclude this  section wi th  the  remark  t h a t  {W~ a~ O E R", IOl = 1} 
is a bivariate homogeneous Gaussian field wi th  mean zero and  wi th  a covariance 

s t ructure  t h a t  depends only on the distance IO -- OI = %/2-(1 -- 0 "  O):J~. In  fact,  

i f  0 denotes the  angle between 0 and  O, so t ha t  cosO ~ 0 " 0 ,  t hen  (with 
4" = - r,(o)) 

Coy (W~ ~v~ = r,(t o ~r --  COS O) 1/2) - -  r,(to)2 , 
t Coy (W~ ~o(~)) = (1 -- cos O)r,(t o %/2 (I -- cos 0):/2) , 
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Coy (~~ 

*--1 tt 2 - -  22 r , ( to )  cosO.  

E s p e c i a l l y  

~o(~)) r , ( t o  ~ / ~ - ( l  - cos o )  ~/~) 
= - -  �9 cos  0 + 

to ~ / ~ ( 1  - cos 0 )  ~1~ 

COS 0 )  112 ) - -  ~'*(~0 ~ r - 2 (  1 - -  COS 0)1/2)~ 
j - -cos 0) - 

v ( ~ ~  = 1 - r , ( t o )  , 

V(o.O(O)) = 2" _ r , (t0)22 * , 

C o y  (v,o(o), a~ = o .  

The proofs of these relations are quite straightforward. One just has to proceed 
as  i n  t h e  p r o o f  o f  (3.5)  a n d  u s e  t h e  s i m p l e  d e r i v a t i o n  r u l e s  o n  t h e  f u n c t i o n  r(t )  ~-  

r , ( i t l ) .  
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