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1. Introduction

g and H;. Equivalent norms .......... .. .. 0oL,

The object of this paper is to give a self-contained treatment for some aspects
of the theory of Banach spaces of distributions. The basis is on one side a generaliza-
tion of the well-known multiplier theorem in I,-spaces of Michlin-Hérmander
[13, 8], and on the other side the general interpolation theory for Banach spaces.
We use the real interpolation method developed by Lions-Peetre [10, 15, 19, 7],
and the complex method developed by Lions, Calderén [4], and S. G. Krejn [9].
Further we need some facts from the theory of the vector-valued ZL,-spaces Ly(B),
where B is a Banach space [5a, 6].
In 2 we describe some results about distributions and interpolation without
proofs.

In 3 we consider the operator XK,
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Kf)e) = f K@ — )y, @) = (F50)—wcjcn »

K(zx) = (K (%)) ~ o, j <oo” Kij(x) € I*(R,) ,

and give sufficient conditions for acting from L,(l,) into itself and for acting from
L,(,) into itself, 1 <p,r < . The result is a generalization of the multiplier
theorem proved by Hormander [8].

In the following parts we consider special spaces of distributions. Let

1

b= {81 = Eimorz..s [l = (3 ETIEDAT < o 1<p < ;

(1.1)
—wo<<o<< .
Then we define for — o <<s<< o0, 1 <p << o, 1 <qg<< o0,
= {fifes'(Rn), f= ia-(x) (convergence in S},
=’ (1.2)
H{“(x)}ll ) < %, Supp Fo,c 7' < [f| =2}, (j=12,...),
q

supp Fa, € {§11¢] = 2}} ;

{f[f € S'(R,), ;i ) (convergence in S’), (1.3)

(@) o 5y < o, supp Fa;c (£ S | =27}, (1=1,2,..1),
-4

supp Fa, c {§]|¢] = 2}} )

Ff being the Fourier transform of f€8’. (We also consider B, with ¢ =1 or
g = .) We set

A e s = Inf [{a; }H » Wil = mf H{ al o

g Zaj=f 1Ly

B, are the Besov spaces, and the definition (1. 3) is essentialy the same as by
leol’sk1] [14], p. 2586. H; are the well-known Bessel potential spaces defined by
By = {f1f € §'(R), F-X(1 + [EEf € L(B)}

Here F-! denotes the inverse Fourier transform.
Here are some results proved in 4—10%). F;, and B;, are Banach spaces, O7(R,)
is dense for ¢ < o (theorems 6.1.1 and 6.2.1). We have

1} The exact formulation of the assumptions is given in the theorems.
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By cF,cBy, for ¢=p,
By, c Iy C By for ¢ =p,

in the sense of continuous embedding, Fp, = H, (theorem 5.2.3),
(theorem 5.2.3). If we set

ILf=F'(1+ |?)Ff, f€S, —ow<s< o,
then holds
LF = Fi°, 1By = B‘;q“, — w<o,8< 0,

(theorem 5.1.1). Further we show (with the usual interpretation)

(Bpg)" = Bpgs (Fpg)' = Frg;

P'q”’ P’y

15

£ - 23
Fpp - Bpp

where B’ is the dual of B, and 1/p4-1/p'=1jg+1/¢ =1, 1 <p,g << oo;

(theorems 7.1.7 and 7.2.2). We also prove the interpolation theorems
(B BpgJo,g = Bpgp 8 = (1 — O)s + Osy; 8y £ 5
(theorem 8.1.3), and

(F ;‘:190’ F ;l;ql)e.p = B;p
for
(= sy, = 0
s = (1 — 0)s, 5, — = —; 8 8
0 t p Po H o !

(theorem 8.3.3). Special cases of (1.4) and (1.5) are
(B Bopdo,p = (Hy,, Hp)o , = (Hp, By 1), , = By

PopPo?® 6 p § 2V 21 pp

Further interpolation results are

[Bpay Bpade = Baq »
1 1—96 6 1 1—0 6
I " R 9o %

§ = (1 — 0)sy + Os;;

(theorem 10.1.1), and
F g Frgde =T, Pe

Podo’®
with (1.8) (theorem 10.2.1). Special cases of (1.9} are
[Hy, Hpl, = H,
and
[Hso B ]9 — F;q

Po’ " PPy

(1.6)

(1.7

(1.8)

(1.9)

(1.10)

(1.11)

with (1.8) and ¢, = 2, ¢, = p;. We show that the definition (1.3) coincides with
the usual definition of the spaces B;, (theorems 9.2.2, 9.2.5, and 9.2.9).
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2. Basie facts about distributions, interpolation, and function spaces
2.1. Distributions [21]

8 = S(R.) is the space of rapidly decreasing functions, 8’ = §'(R,) the dual
space of tempered distributions with the usual topologies. We use in §'(E.) the
strong topology. By

(Fe)¢) = (271)—; / e < g()da, ¢ €S(Ra), (2.1a)

Ry

with (z, & = Z};lxj;:j, we denote the Fourier transformation. Then holds

(F2p)(&) = (27;)_g f & <= > g(x)dx . (2.1b)

R

n

We extend F and F-1 on 8§ in the usual way. The Fourier transformation is
a continuous operation in § and §’. That means if

P ?‘P’ f; -S._'>f
then
Fo; ?F(p, Ff; S—>Ff (2.2)
Is f€8 and Ff has compact support then f is a continuous function (regular
distribution). This follows from the Paley-Wiener-Schwartz theorem [21, II, p. 127].
We define the convolution
(f > p)a) = fpx — ), fES, p€S. (2.3)

Then holds fx ¢ € C°(R,) N S'(R.). The convolution is a continuous operation
in 8 and in §’. That means if

959 vE€S, ¢ 29 fES, (2.4)
then holds
Sdypxq v, fog >fxe gxy 997 (2.5)

For g €8, f€S" we have
F(f+ ¢) = (20)*Fg - Ff, F(f+¢) = 2n)°Fp- F-Yf. (2.6)

2) This follows from (2.6) and the continuity of F and F~! in § and §.



SPACES OF DISTRIBUTIONS OF BESOV TYPE ON EUCLIDEAN 7-SPACE 17

2.2, Interpolation theory

We give a brief sketch of the real interpolation method developed by Lions
and Peetre [10], and describe the K-method [15], and the L-method [19] given by
Peetre. Finally we describe the complex method [4].

2.2.1. The K-method [15]. Let A, and A; be a couple of (real or complex)
Banach spaces, continuously embedded into a linear Hausdorff space. Then

Ay+ 4, ={a|lda, €4, a,€A4;, a=ay-+ a;}
with the norm

K(t, a) = K(t, 0, 49, ;) = inf  (laglly, + tlloglly), ©>1>0,
Dt=an+lll
2, € Ay, a, €A,

and 4,N 4, with
lollayna, = llolls, 1 llalla,

are Banach spaces, see [4]. Now we define the interpolation spaces (dg, 4y), p»
0<@<l1, by

® . (2.7a)
o ), = {ole € 4o+ el = | [k U <ol 129 <0,
0

(A03 Al)e,oo = {ala € AO + Al; ”a”e,w == sup t—eK(t: (I/) < OO}’ Pp= 0. (27b)

>0

(4o, 4,),,, are Banach spaces. For abbreviation we write 4, , = (4, 4;),, -

2.2.2. Interpolation property, [103). Let (44, 4,) and (By, B;) two couples
of Banach spaces with the embedding property of 2.2.1. Let 7' an operator acting
from A4, + A, into By + B,. Further we suppose that the restriction of 7' on A4;
is a bounded linear operator into B; with the norm |T; (¢ = 0, 1). Then the
restriction of T on A4, , is a bounded linear operator into B, ,, 0 <0 <1;
1 =p = o, and we can estimate its norm [T, , by

1T, , < TN - (2.8)

2.2.3. Reiteration theorem (stability theorem), [10]. Let be (4,, 4;) the couple
from 2.2.1 and 0 << 0 << 1. Then we define the class K(0) = K(0, 4y, A;) of
Banach spaces by

EeK@O)=4d,,cEcd,.,. (2.9)

3) In [15] PEETRE showed that the K-method and the methods given in [10] are equivalent.
So we can quote the results from [10] and formulate them in the sense of the K-method.
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C always means that the embedding is continuous. We note that always
4,04,c4,,c4,,cd,,cd;+4; 0<8<]L 1<p= oo (210)
If 0<6y<b6,<1 and E;€K(6), (:=0,1), then holds
By, By),,p = (Ao, A1), (2.11)
with 0 <9 <1l; 0=10)(1-—n) +6m and 1 =p = oo.

2.2.4. Duality. Let (dy, 4;) be the couple from 2.2.1, and 4, N 4; dense both
in 4, and 4;. If B is a Banach space we denote its dual by B’. Then follows
from (2.10) with the usual interpretation

A:{ c N A4); i=0,1 (Ae,p)’ c4,n 4,),
and, [10],
(Ae,p), = (AO’ Al);,p = (A(,)’ A;)e,p' (2‘]‘2)

with 1 <p << 0, l/p+ 1/p’ =1. We remark that 4,N A4, is always dense
in 4,, for 1 <p < oo, also without the assumption 4,MN 4, dense both in
A4, and 4, [10].

2.2.5. The case of one semi-group, [10]. Let B be a Banach space and G(¢),
0 <t < oo, a strongly continuous semi-group of bounded operators, acting in B,
G(0) = I (identity operator), [[G()] =M. By A we denote the infinitesimal
generator of {G(t)y<,; <.} A™ is the iteration, and D(4™) its domain of definition
with [bllpiem = [[470] 4 [IBll, (m=1,2,...). If 0 <6 <1 we write mf =j + »,
j integer, 0 <<z = 1. Then holds

. - it
. D, = o e o, i+ | [ e - pany G < o @y

for 1 =< p < o and an analogous formula for the case p = . For 0 <<» <1
(2.13) simplifies to

1

(B, D{A™)),,, = {blb € D(4%), bl + { f (NG — DA (};JP < 00} (2.14)

(also with the usual modification for p = co). Here the norm [|bis, p(.emy, » and the
norms in (2.13) and (2.14) are equivalent. |

2.2.6. The case of several commutative semi-groups, [7, p. 189]. Let B be a
Banach space and Gi(t), k=1,2,...,N; 0=<1¢< o0; N strong continuous
commutative semi-groups of bounded operators, acting in B. That means

Gi(t)G(s) = Gk(s)Gj(t), 0=ts<<o, k#j. (2.15)
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We denote with A; the infinitesimal generators of {Gi(f)}y<;<.- Then holds
N N

(B,kﬂll)(fl?"))e, » an (B, D(A4;%),, , (2.16)
= =1

0<<b<l; 1=<p= . m>0 are integers. The norms of the intersection
spaces are constructed in the usual way. Using (2.13), (2.14), and (2.16) we can
describe these norms explicitly.

2.2.7. The L-method, [19]. Peetre proved in [19], theorem 2.2, the following
result. Let (A4, 4;) be a couple of Banach spaces in the sense of 2.2.1. We construct
for 1 <p, p,< 0 and a € A4, -+ 4,

L, a) = L(t, a, 4y, 4;) = inf  ([aoliZ, + tlladll%) , (2.17)

a=ga,+2a,
ay €Ay 0. €4,

00 >t > 0. Then holds

fal, , ~ [ 7Lt @) %y (2.18)
0
with
1 1-—-6 6 bp
0<0<1’P_ Dy +P1’n= 1

These interpolation theorems are sufficient for our purpose. For further considera-
tions of real interpolation methods see [10, 7, 2].

2.2.8. The complex method, [4]. The complex method is developed by J. L. Lions,
A.P.Calderén, and S. G. Krejn. Let (4, 4;) be a couple of complex Banach spaces
in the sense of 2.2.1. We consider functions F(z), 2 = 7 + 4, inthestrip 0 < 7 <1
with values in 4, 4 4, continuous and bounded with respect to the norm of
Ady+ A4, in 0 <7 =1 and analytic in 0 <7 <1, and such that F(it) € 4,
is Aj-continuous and bounded, F(1 + 4t) € A; is A;-continuous and bounded.
The set of these functions we denote by 7 = T[4, 4,],

|#z = max [S?P IE(50)] .4, Sup IFQL A i)l -

The interpolation space [4,, 4,],, 0 <0 < 1, is defined by

L4, 4], = {als € o+ 4, WP €7 with FO) = o}, Jalls, 41, = 0 ¥l (219)
F(o)=a

[4,, 4,1, is a Banach space. 4N 4, is dense in [4,, 4,],, Two couples (4,, 4,)

and (B, B,) have the interpolation property analogous to 2.2.2.

4) ~ means that we can estimate the left side by the right side with help of a positive
constant and vice versa.



20 HANS TRIEBEL

2.2.9. Duality for the complex method, [4]. Let (4, 4;) be a couple of Banach
spaces in the sense of 2.2.1, and let 4, N A, be dense bothin 4, and 4,. Further
we assume that at least one of the spaces 4, or 4, is reflexive. Then holds (in
the sense of 2.2.4)

([4o> 41),) = [4g, 41, (2.20)

2.3. Function spaces

We need a few results about vector-valued function spaces.

2.3.1. Definition. Let B be a Banach space and 1 = p << . We consider a
function f(x), x € R., with values in B, and put

1
Ly(B) = {f(x)lllf (@) Lebesgue-measurable, [|f|z & = ( f llf(w)ll”dw)" < 00} .

Lp(B) is a Banach space [5a, 6].

2.3.2. Duality. By B’ we denote the dual of the Banach space B. {(f,g>,
f€B, g €B’ is the symbol for linear continuous functionals. Let B be a reflexive
Banach space, 1 <p < o and 1/p 4 1/p’ = 1. Then holds

(Zy(B) = Ly(B') (2.21)

in the sense

f (Ww), U)>dw, h(z) € L(B), Ux) € LB'), (2.22)
Rn

as representation of the general linear continuous functional over Iy(B), [6,
theorem 8.20.5].

3. A generalization of the Michlin-Hérmander multiplier theorem
3.1. Hormander's multiplier theorem
Let L,=Ly,(C), 1<p= o be the usual space of complex Lebesgue-

measurable functions with
1

W I 3.1)
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(and the usual modification for p = o). In [8, theorem 2.5] Hoérmander proved
the following result. Let f€8’, Ff€L,, and

d¢
f \BHDAFf* £ < B*) (3.2)
FElisr
forall B> 0, and all & with 0 = |x| = [»/2] + 1, and a suitable positive number

B. Then forall p, 1 << p << o, there exists a constant ¢ = ¢(n, p), which depends
only on n and p, with

1f * ¢ll, < cBlel,, p€S. (3.3)
(2.6) and
fxg=F3F(fxg) = F(2n)'Fp - Ff)
show that (3.3) is equivalent to

\FXFp - Ff)lz, < (27) *cBlgly, ¢ €S- (3.3)

(3.2) and (3.3) (or (3.3')) iz a generalization of Michlin’s multiplier theorem [13].

3.2. Modification of o theorem of J. Schwartz, [20]

For our purpose we have to generalize the result of 3.1. First we extend a
theorem of J. Schwartz [20, theorem 2, p. 788). If B is a Banach space we denote
by LyB) the set of all Lebesgue-measurable bounded functions vanishing out-
side of a compact set in R,, having values in B,

TaEoREM 3.2. Let B, and B, be two reflexive Banach spaces, and let K(x) be
a function of x € R. having values in the Banach space of bounded linear mappings
of B, into B, for almost all x € R.. Suppose that K(x) is integrable over every finite
region. Let © > g =1 and A > 0 be given; and suppose that there exists a constant
C < o such that for each t> 0 we have

f Ktz — y)) — K(tx)nqdw)? <0 ¢ (3.4)
|*} = 4
for oll y such that |yl =< AL Put
K(f)(e) = f K(@ — 9)f)dy, f€Lo(By) - (3.5)
Rn
dledy

n
5) We use Dof = s 0 == (0 «0uslly) |a|='21¢zj.
]=

a4
oxl .. . Oxim
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Suppose also that for some p and r satisfying
wo>p>1 wo>r>1 1lp—1r=1—1jg (3.6)

( [ !l(%f)(x)llﬁgldx)7 < 0( [ llf(w)ll%,,dx)“’ 3.7)

with the same constant C as in (3.4). Then we can extend the mapping K for oll
s, t with

we have

l<s=i<<oo, /s —1jt=1—1/q (3.8)

in a unique way to a linear continuous operator acting from L (By) into L(B,).
For the norm of the extended operator (also denoted with K) holds
”%HL_,(BO)_)L,(BI) =ua-C, (3.9)

where O ds the same constant as in (3.4) and (3.7), and « depends only on n, A, q,
r,p,s,t.

3.3. Proof of theorem 3.2

Step 1. In theorem 2 and corollary 4 of his paper [20] J. Schwartz proved

\ ”%f ”L,(Bl) =0f ”Ls(Bo)a f € Ly(By) (3.10a)
for s, t with
s—1ft=1—1/g, 1 <s=p, (<t=71). (3.10D)

A homogeneity argument shows that
O =u-C, (3.11)

where C is the constant from (3.4) and (3.7), and « depends only on n, 4,4, 7,
p,8,t. (We replace K in (3.4) and (3.7) by C1K and prove (3.10) for this
modificated operator.)
Step 2. By X’ we denote the dual operator to X, acting from L,.(B;) into
L,.(B;) with
18 — 1fs' =1—1[g, v <t <¢q, (p' £ < ). (3.12)
This follows from (3.10). An estimate of type (3.10), (3.11) is true. Now we can
determine X’ explicitly. Let K’(x) be the dual operator of K(z) acting from

B] into B;. Because ||[K'||= ||K|, (3.4) is true for K'(z). (3.7) holds for X'
and the couples (#,s’) with (3.12). Let f(x) € Ly(B,) and g(z) € Ly(B;). With
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the aid of (2.22) and the integration theory in Banach spaces (see [6] or [5a, especially
III, 2.19]) follows

f fla), Kglayyde = f (P @), gla)pdee
(3.13)

= [ [ &e—wsw) awpivie = [ 1), [ Ko —pgeinyay.

Because Lg(B,) is dense in L/(B,), and 2.3.2 shows

(Lo(Bg)) = L,(By) = L(By) ,

we find

(K'g)(y) = f K(z — y)g()da . (3.14)

If we use the operator (Eh)(xz) = h(— z), we see that E'X'E is an operator of
the type (3.5), for which (3.4) holds. (3.6) and (8.7) we have to replace by

s\ OV 1 1 1
( f u“K'J”(x)n%,,dx)P = 0( f nf(w)nz,dx)' ey =l

(3.10) shows that X’ is a linear bounded operator, acting from IL,.(B;) into
L,(By), with

£

1t —1s'=1—1lg; 1<t <71, (<8 Zp').

Together with (3.12) we find that X’ is a linear bounded operator from L, (B;)
into L.(B,) for all #,s" with
1 —1fs =1—1jg; 1<t < < (3.15)

Step 3. Because B, and B, are reflexive Banach spaces we have from 2.3.2
K" = K. The theorem follows by a duality argument from the second step.

3.4. Remark

The proof shows that the dual operator K’, (3.14), has essentially the same
structure as the operator KX (8.5). After replacing X by K’ (3.9) with (3.8)
is true. The second step shows we needed for this statement only the reflexivity
of B,, but not of B;. This was necessary in the last step.
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3.6. A multiplier theorem

Now we are able to extend the multiplier theorem given by Hérmander [8,

theorem 2.5]. Let I, be the sequence space
1

L={8l§ = (§)-w<j<wr & complex, [ = ( 2‘0 IEJ-I')'_< o}, (3.16)

j=—w
1 =r<< oo, and Ly(l) the space in the sense of 2.3.1. We consider the matrix
K(@) = (E4(®))—wcijcor Kylw) € LI(R,) (3.17)
with complex coefficients. Now we construct the operator
(K1) = [ K@ — iy (3.18)
Rn
with
f=()-w<i<wr fil®) =0 for [jlZ DN, flz)€CP(R,). (3.19)

THEOREM 3.5. Let K(x) be the matrixz (3.17). Further we suppose 1. K (x) € S'(R,)
(regular tempered distribution), 2. the Fourier transform (FK;)(§) is a regular
distribution with classical derivates D"‘(FK,.]-)(E) for all «,0 < o] < [n/2] 41,
3. the existence of a positive number B with

S IDMFK)E)[dE < BRH (3.20)

Lj=—c
R2< || <2R

for all R>0 and all «,0 < |x| < [n/2] + 1.

(a) We can extend the operator K, (3.18), to a linear bounded operator from Ly(l,)
into itself, 1 <<p < co. We have |K| <«B, where o depends only on p.

(b) If we suppose additionally K; =0 for i j, we can extend the operator K
to a linear bounded operator from Ly(l,) into itself, 1 <r << co; 1 <p < 0.
We have |X|| < «B, where « depends only on p and r.

This theorem is an extension of Hormander’s multiplier theorem described in 3.1,

3.6. Proof of theorem 3.5 (a)

The proof follows the lines giver: by Hormander [8, theorem 2.5].
Step 1. In [8, lemma 2.3] Hormander proved the existence of a non-negative
function ¢(z) € C(R,) with support in {&|3 < |£] < 2} and

ﬁ P27 =1, £+£0.

I=—w
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We set
(FE (&) = (FE)(£)p(27€), — 0 <14,j,1 < . (3.21)
From (3.20) and

IDMFE)| S e 3 [DPRK|27 7109, 0 < o] < [n/2] + 1,

18] < |l
follows for R = 2

| f 2 IDXFK)PdE = cBi2iol (3.22)
£, i j=—00

We set
gy(@) = FYFK,Y, — o0 <4,j,1< . (3.23)

A remark in 2.1 shows that gﬁj(x) is a continuous function. By Parseval’s formula
we get with = = [»/2] + 1

/ (1 4 |22y i k() Pdz < cB*2" . (3.24)
Lhj=—ow

R

Because x» > n/2 follows with the help of Minkowski’s inequality for integrals
1 1 (3.25)

) 2 © 2 d. 2
L,icz_oo ( f lg:,-ldx) J = f L,j Z.w[gsjlz} dw = GB[TI f -+ 292’[91:[2)"} =B.
R, R

Rn n

1ol

Formula (3.23) shows

n

R, R,

From (3.25), (3.26), and the construction of (FK,)(z) we get

% (FE) @) < eB®. (3.27)

i,j=—wo
Step 2. We set
N
G5 () =l_§_:Ngi-j(%), V(@) = (G§ (@) ~o<i, j<o - (3.28)
(3.25) shows Gy € L;(R,) c LY*(R,) N S'(R,). We consider the operator
i P

8) For several constants we use the same letters ¢, ¢/, ¢”. The constants ¢ and ¢’ depend
only on .
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(GF)w) = f G — ) )y (3.29)

where f has the properties (3.19). We have

”qflef ”i,(l,) = . =§

0

2 f F(@ — y)fiy)dy

i=—w
R

—o > || > FOYELLE,

2
Ly i=—o j=—un

n

<o [ 3 wap io \Ff, e

We used (2.6). From (3.23), (3.27), and (3.28) follows

G L.y = Bl IL0 - (3.30)
We can extend G~ to a bounded linear operator from Ly(l,) into itself. The relation
(3.7) with K=G", By=B, =1, p=r=2, ¢=1, is true.
Step 3. For the application of theorem 3.2 we need an estimate of

6%t — 9)) — G ()ide for Jy| < 1. (3.31)
|| =2
Here is ||| the norm of the operator G™(t(x — y)) — G~(tz) acting from I, into
itself. In the same way as in (3.25) omitting the term 1 we find
@ 1 r_,
[ S lgyPPde = cB(2')’ (3.32)
WS iyj=—c0
It follows for |y| =<¢
' o ! L3
[ 2 lggle —y) — gyl@)Tde = eB(2)* . (3.33)
o T
For 2% <1 we need another estimate. We have
g5(@) — gyl — y) = F[(1 — "< ) (FK)(E)] .
Using (3.22), 2% <1, and |y] <t we find for 0 < |x] < x
Z ]D"‘(l . e_i<y’5>)(FKij)l(§)12d§ < GB22l(n—2|a])22lt2 .
hj=—w
The estimate analogous to (3.25) leads us now to
® 1
[ 2 lgylz —y) — gy@)Pde < cB2Y. (3.34)

B j=-—0c
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Together with (3.33) and the definition of G~ we get

1

[ 167 — ) — GV@)de < 2 [ S 1oz — o) — gylo) P <

ol S 2 Y T (3.35)
< cBl % min (2%, (2’t)g—”) <¢B, ly <t
We write the last estimate in the form
1672 — 9)) — G (tx)|de < eBt™, ly| = 1. (3.36)

(ol 22

This is the desired estimate of (3.31).

Step 4. Now we are able to apply theorem 3.2. We set By, = By =1,, K(x)=
), g=1, A=2 K=", and r=p=2. (3.25)shows that G (z) isa
bounded operator from &, into I,, and [|G"(z)|] € L*(R,). (3.4) and (3.7) follow
from (3.36) and (3.30). An application of theorem 3.2 gives now

( f G"f )(x)llz’;d&”); = cB< f Hf(«”v)Hde>5; 1<p <o, (3.37)
RYI Rn

where ¢ depends only on % and p. f has the property (3.19).
Step 5. We consider the limit N — co. Because (L,(%))" = L, (l,) and with
the aid of (2.6) we see that (3.37) is equivalent to

5 [ ~ DM@Myde < Blfly Wz 3:37)

and to

S [ W) OENOFREE = Bfly gty (337

i,j=—00
f and & have the property (3.19). (Elements with (3.19) are dense in L,(%,)). (3.23),
(3.28), and (3.27) lead us for N — o to

S [ FE® - F@) - FUREE = Bl 0
i, j=—o0

and

Z ( f Kz — Z’/)f}(?/)d?/) (x)dz < ¢B|fll, (12)”h|lL lg) *
hj=—c0
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From this follows
H%f“LP(l2) = CB”f“LP(lz) . (3.38)

This completes the proof of theorem 3.5 (a).

3.7. Proof of theorem 3.5 (b)

We consider again the operator ¢~ from (3.29). Now we have @] =0 for
2 5= j. The estimate after (3.29) we change into

G = > [ et — sy '
i=—0a0 K Lr
Now we use (3.37) with p =+ and
fO=(..,0,f(x),0...,).
Then holds
G 2,0y = ¢ " % Ifilz, = B lflL,q, - (3.39)

1=—00

This formula we have to take instead of (3.30). The estimate (3.35) we can take
without any change because

167 (@ — y) — GN(‘”)“I,-»I, = Sl<1P Gz — y) — Gu()]
1

N © -
él 2 [ 2 lgule —y) — gul2) T

=N i=w—w

Then follows (3.37) with [, instead of I,. The fifth step we can take over with
suitable changes. This completes the proof.

3.8. Remark

The assumption (3.20) is realized if we find a positive number B with

o 1 B
[ > IDMFE)EPT =

i,j=—00 IEIM ’

0<|o| <[n2]+1. (3.40)

4. The spaces B,, F,,, and H;. Equivalent norms
4.1. Definitions

4.1.1. The spaces I;. Tirst we define the sequence space 5. Let
—w<<o<<o For 1=p< w we get
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1

Iy ={&l& = (§)j=0,1,3,..., & complex, elle = (zo(2j6]§jl)P); < w}. (41)
i=
For p= oo we set
lo = {8l = Gl-ora...o & complex, [[fe = sup 27|§] < o},  (4.2)

l5 are Banach spaces.

4.1.2. The spaces F,.. For — o0 <8 << o0; 1 <p,g< o we set

By = BB = {fres@), 5 S,
j=0

o 2\
e, o) = ( [> <2s’1aj(x)1>*14dx)P <w, (43
JAY] j=0
supp Fa; c {£|277" < |§] S 27"} for j=1,2,..
supp Fa, < {£]|§] = 2}} :
2520 8i(%) =g f means that > a,(x) convergesin §'(R,) to f. suppg denotes
the support of the distribution g. A remark in 2.1 shows that a(x) are continuous
functions. We set

= inf |{a; o (4.4

Iflgy = e, )

4.1.3. The spaces BI’,q. For —wow<s<<oo; 1<p<<oo; 1X¢g<< o0 weset
B, = B, (R,) = { fIf €S (R, f ?]Zb o) ,

® 1
K, , = (2 @@l )? < oo, (4.5a)
9P j=0 P
supp Fa; ¢ {£]277 < |E] < 274} for j=1,2,..
supp Fa, c {£]§] = 2}} ‘
For —o0o<s<<ow; 1<p<<oo; g= o0, we set
B;eo = B;oo(Rn) = {flfe S/(Rn)7 f ? '20aj(x) ’
j=
el , , = sup 2la@)l, < e, (4.5D)
o\ p J P

supp Fo; ¢ {£]277 < |§] < 2771} for j=1,2,..

supp Fa, c {¢]1¢] < 2}} .



30 HANS TRIEBEL

We set

£l = inf|{a;}] (4.6)

- e

f=24qj P
These are the well-known Besov spaces. The definition is similar to the definition
given by Nikol’skij [14], p. 256.

4.1.4. The spaces H,. For — o0 <s << 0; 1 <p << 0, we set

Hy = H(R,) = {fIf € S'(R,), F'(1 + [2/Ff € L,(R,)} (4.7)
and

il = F*Q + |22 FA_ - (4.8)
4 P

H;, are the well-known spaces of Bessel potentials, Lebesgue spaces, or Liouville
spaces [14, p. 379 ff.] or [25] (where there are further references). Sometimes the
spaces are denoted by L;.

4.2, Equivalent norms

For the further considerations we need some equivalent norms.

4.2.1. A special system of functions. We consider functions with
1. gux) ES(R,), Fo &) =0, (k=0,1,2,...);
2. AN, (N=1,2,...), with supp Fo, c{£]2F"¥ < |§] < 2P}, (k=1,2,...);

supp Fo, c {£]|§] = 2™} (4.9)

3. Moy >0 with ¢ < (520 F)(E) ; (4.10)
4. Hey> 0 with

(D Fp®)] = E("[%' for 0= x| < B’—} +1, (k=1,2,..). (411)

The most important system of functions of this type is the following. We consider
a function ¢(x) € S(R,), Feé) =0 with

1

supp Fop c {1277 = 5] =< 2}, (Fg)(€) >0 for < iEl=v2. (412)

S

It is not difficult to see that the functions ¢, () with
(Fou)(§) = (Fe)27%), k=1,2,... (4.13)

by suitable choice of gy(x) are a system of above type.
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4.2.2. Equivalent norms in F, and B
THEOREM 4.2.2. Let {@1}r_o,1,2,... @ system of type 4.2.1, —oo <<s <0, and
1 <p << . Then we have
@) Iflyy ~IF 5 0l % fE€Fs 1 <0<

(b) ifll, ~Kf*@ullls, D) fE€By 1Sg= .

W
4.2.3. Proof of tkeorem 4.2.2, (a).

Step 1. Let f€F; and f=>7,a(z) in the sense of (4.3). (2.5) and (2.6)

show
E+N+1
f*%s Z“*‘Pk Z (@ * gu)(2)
j=k—-N-1
because

n

aj % P = F_IF(UL]» #* (pk) == F_l(zﬂ)zF(Pk M Fal =0

for j<k—N—1and j>k-+ N + 1. Further weset ¢, =, =0 for k£ < 0.
It follows that

N1
RF* @adlly o) = 2 Ko = el g - (4.14)
( ra=— 1 Lp(ls)
@, belongs to L, we approximate a,
OP(R,)da,, 7>a, for ¢} 0. (4.15)
P

For fixed numbers ¢, r and M we can apply theorem 3.5 (b) with K; = ¢; 7).
((3.40) is fulfilled because (4.9) and (4.11) hold.) Then follows

”{“Hr,e * q’k}"M:O”LP(J;) = 0”{“k+r, s}I]:LO”LP(Z;> .

Here ¢ is independent of &, r, and M. s— 0 shows that the last estimate is
true for ¢ = 0. Setting M = o on the right hand side of the last inequality we
find that

IF» 0l () S g

Taking the infimum on the right hand side we get

“{f*(pk}ﬂ (ls < c“f“Fs . (4‘16)

Step 2. We prove the opposite inequality. We need an auxiliary system of
functions. Let p(z) be a real function with

@(x) =1 for 27V < |z < 2N’ o(z) € 080({£|2~N—-1 < & < 2N+1}) i
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‘We set
oulx) = 0(27%), (k=1,2,...).
Further let gy(z) be a real function with
af@) =1 for |§] < 2%, oo@) € OF((E]IE] < 2V*1)) .

Then the assumptions of theorem 3.5 (b) for K,
(FK;)(x) = (I%F¢,)_lgi(x)(2n)’", i=0,1,2,...7)
are fulfilled. We construct

¥ == @ * Ko (P = (20)*Fo, - FKy)

and find by application of theorem 3.5 (b) with the aid of an analogous continuity
argument as in the first step for the function ¢, = f€ L,

“{f * "i)k}”LP(,;) é CH{f * 9%}”1’};(';) . (4'17)
Now we have, see (2.6),

(S Fu)E) = @n) 2.
k=0

Therefore
f = FEf = B3 Fy @ 5= 3 F4(Fp FN@af =31 v
For the case N =1 with a, = f=v, follows now
”f“F;;q g ”{ak}”Lp(l;) é C”{f * ‘Pk}”Lp(l;) . (418)

Step 3. Let N > 1. Then we have to modify the last part of the second step.
We need an auxiliary system of functions. Put

@) ES(R,), (k=0,1,2,...)
supp Fyp c (12 < [E] < 2}, (k=1,2,..),
supp Fy, c {&]16] = 2},

n

S Fp=@0) T, ((DFRO < —g-
]

The existence of such a system follows from the beginning of the first step of 3.6.
For K, = y, the assumptions of theorem 3.5 (b) are fulfilled”). We find that

) Ki =0 for 4 <0
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KT = i 2, ey = v =73, @y C=—N—Lo N+,
PVY j4

and

F4+N41

fry = Z f*w*aa

(¥ 1s the same function as in the second step, y,==0 for k << 0). Setting

N+1
ak(x): z f*’(/)k+r*xk, (k:(), ]., 2,...)

r=—N-1

we find
M, (o = AP % pudl, o SUPD @ C (1270 5 18] < 244, (b= 1,2, (419)
P\ pPNg

(with the usual modification for k¥ = 0), and by using (2.6)

N+1 ©

0305 renenn-3uemes

NMs
x

k=0

fi

With the aid of (4.17) follows from (4.19) the estimate (4.18). This proves the theorem
4.2.2. (a).

4.2.4. Proof of theorem 4.2.2 (b). The proof is the same as in 4.2.3. We have to

change || . into |, . Further we need only the scalar case of theorem
Lp(lq) (L) J

7p
3.5 (b) with
[l = ak+rl = GHa/k+rHLP s

where ¢ is independent of k. The limit cases ¢ = 1 and ¢ = o do not disturb
the considerations. (The scalar case of theorem 3.5 is the usual multiplier theorem.)

4.2.5. Remark. The definition of the Besov spacesin the sense-of theorem 4.2,2 (b)
is given by Peetre [17]. (See also [16]) For similar constructions see [14, 8.8—8.10].

4.2.6. An equivalent norm in H,.
THEOREM 4.2.6. Let — o0 <<s << o0; 1 <<p << 0. Then holds
H, = F;,.
For the proof it is sufficient to show that

F 9l (yny ~ I lye = IF (1 + 2 B, (4.20)
p\2 P
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where {g.} is a system of functions of type 4.2.1. In this sense theorem 4.2.6 is a
result about equivalent norms. First we prove the theorem for s = 0, that means
(with I, = 1)

IS = %}HLP(zz) N“f”Lp . (4.21)

This is a theorem of Paley-Littlewood type. A systematic treatment of Paley-
Littlewood theorems is given by Littmann, McCarthy and Riviere in [11]. There
are also further references. The proof of the general case of theorem 4.2.6 for an
arbitrary s we give in 5.1.4.

4.2.7. Proof of (4.21). We consider a system of functions of type 4.2.1, and set
g, =0 for k& <<O.
Step 1. Let f€L, With fy=f, fi=10 for j # 0,

Ki(x) = gix), — oo <k << oo K,q-=0 for j=£0,

we apply theorem 3.5 (a). With the aid of a continuity argument as in the first step
of 4.2.3 we get

IS * eallle plly) = CHfHL (4.22)
Step 2. Let {f* ¢} € L,(l). Then we set f, = f=* ¢, and
Ko(x) = pil2), (6=0,1,2,...), Ky =0 otherwise.
{y,} is also a system of functions of type 4.2.1 with
Iy )(€) =1 for & €supp ¢ . (4.23)

Then we apply theorem 3.5 (a), and find with the aid of a continuity argument
Il Zf * @y * 1/)kHL = oi{f * g}l p(2) * (4.24)
Now we have from (4.23) and (2.6)
éﬁf % g%y = F1(20)" i;Ff For = 2a)FY z Fo.-Ff)  (4.25)
(convergence in §’). Without loss of generality we may assume
(zn)"éﬁ’% =1. (4.26)

Then (4.24) and (4.25) show
“fHLP = ofi{f * %}”Lp(tz) . (4.27)

(4.22) and (4.27) prove (4.21), and theorem 4.2.6 with s = 0.
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4.2.8. Remark. 1s (4.26) not true we prove (4.21) for an other system {y,} for
which (4.26) holds, and use then the equivalence

HfHFg2 ~Ii{f = 1)"k}HLP(IZ) ~|[{f = (pk}HLP(lz) .

This shows that (4.21) is always true.

5. Relations between the spaces B,

F,,, and H;. Lifting property
5.1. Lifting property

We consider the operation

If = F7Y(1 4 [2’Ff, — 0 <s< . (5.1)

It is easy to see that I, is a linear continuous one-to-one mapping from S(R,)
onto S(R,), and from S'(R,) onto S'(R)),

I'=1_, (5.2)
5.1.1. Lifting property.

THEOREM 5.1.1. Let — o <<s,0<< o0 and 1<p<<oo. I, is a lLinear
bounded one-to-one operator from Hy onto H;~°, from F;, onto F;*, (1 < q < ),

Pg
and from Bj, onto B; %, (1 =g = c0).

5.1.2. Proof of theorem 5.1.1.
Step 1. The formula

Lofllzro—e = [ flig (5.3)
P p

is clear. (5.2) shows that the theorem is true for the spaces H,.
Step 2. Let {¢,} be a system of type 4.2.1. Then {y.}r_o,1,2,...,

2ks
=t (5 ). e

is also a system of such a type. This follows from (2.6). For f € S’(R,) holds

If %y, = F~Y(2n)* Fy, - FLf) 5.5)

~1((2m) 2'“14’9; Ff)y = 2fxg¢,.
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Theorem 4.2.2 shows now
M fllgo—s ~fllge s Hfllgo—s ~fllgs - (5.6)
Pq Pq Pq prq

From this and from (5.2) the theorem follows.

5.1.3 Remark. For the spaces H; and B, these lifting properties are well-
known, see for instance [14, p. 370].

5.1.4. Proof of theorem 4.2.6. We know that (4.20) holds for s = 0 (this is
(4.21)). This means that L, = H) = Fj,. The general case follows now from
theorem 5.1.1.

5.2. Relations between the spaces B, F,, and H,

5.2.1. Relations between the spaces B,

Tueorem 5.2.1. Let — oo <<s<<ow; e>0; 1<p<<oo; 1=g= 0.
Then holds '
(a) BucB,cB.," (5.7)
and
(b) Bl cB,cBy’ (5-8)

5.2.2. Proof of theorem 5.2.1. (5.7) follows immediately from the monotony
property of the spaces I,
For the proof of (5.8) we suppose in the sense of 4.1.3.

= z %) € Byiy, sup 27 ay(w)lg, < 2y
J

Then holds
M, < W2al, ¥, < 2, 02, < dlfl,. -
PY P g poo q P

This proves the left side of (5.8). The right side follows in the same way. If
f € B;,, ¢ B;,, we replace in the last inequality s by s —¢, ¢ by 1, s+ ¢ by s.

5.2.3, Further relations.

TuEOREM 5.2.3. (a) Let — oo <<s <o and 1 <p << oo. Then holds

8) The sign C always means continuous embedding.
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F, = H, and F,, = B;, (5.9)

(b) For — oo <<s << oo holds
B, cF,cB,’) 1<q=p<w; (5.10a)
B,cF,chB,®), 1<p=¢g<w. (5.10b)

5.2.4. Proof of theorem 5.2.3.

Step 1. (5.9) follows from theorem 4.2.6 and the definition of the spaces B,
and Fp..

Step 2. The right side of (5.10 a) and the left side of (5.10 b) follow from the
monotony property of the spaces I,.

Step 3. We prove the left side of (5.10 a). L2t {g,} be a system of functions of
type 4.2.1. With the aid of the triangle inequality follows for f € B

1
© =

e P DA R N

B q

<6[225”1Hf*¢] s ]q—clt{f Bl y = €1y

We prove the right side of (5.10 b). Let be f € F; .. Then holds

{ JEER |de}
R

n

1
P
!

£y =l * 938l =

9/p

=y { f 211 3y W a7 =l ), ) = €U

PY
This proves the theorem.

5.2.5. Remark. From (5.9) and (5.10) follows for — oo < s << o

Ba,cH,cB, 2=p< x; (5.11a)
B,cH,c B, l<p=2. (5.11b)

We have also
H; = Bs, (5.12)

The relations (5.11) and (5.12) are well-known. See for instance [14], [25, theorem
15] or [12].
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6. B-space property. Density

Until now we have not shown the completeness of the spaces Bj and F].

The reason is that we want to use the lifting property, theorem 5.1.1, and (5.6).
This is not necessary, but convenient.

6.1. The spaces F,,

6.1.1. B-space property, density.

THEOREM 6.1.1. Let — 0 <s << o0; 1 <p, ¢ << 0. F, is a Banach space,
and CF(R,) is dense in it.

6.1.2. Proof of theorem 6.1.1.
Step 1. Density. Let in the sense of definition 4.1.2

F.3f= Zoak(x) .
Then H{ak}[ll’; is an integrable function with
q
lim a5l = el -
N> 9 q

From the Lebesgue dominated convergence theorem follows

>0

h fo.0} 1 M o0 P
tim [ el de = [ lim o)yl de =0
Rn

n

This shows
N
Hf"fzv”Fs —0 for N - o0, fy :kzoak(x) .
rq =

a(x) € L,(R,) we approximate in L, with functions in CF(R,). From this follows
the possibility of approximation of fy with functions in Cy(R,) in F,,. This
proves the density property.

Step 2. B-space property. Theorem 5.1.1, especially (5.6), shows that we can
restrict the considerations without loss of generality to the case s> 0. From
the theorems 5.2.1 and 5.23 follows

PP, =L,. (6.1)

It is clear that F}, is a linear normed space. We consider a sequence {f0}*, < F3,
with

”f(j)”Fs <27 j=1,2, ... (6.2)
P
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We want to show the existence of an element f € F,,  with

zf(f) —>f for N— 0. (6.3)
J=1 Toq

This is sufficient for the proof of the completeness. From (6.1) follows the existence
of an element f€ L, with

me ->f for N— «. (6.4)

j=1

We set in the sense of 4.1.2

f(]) ?kzoascl)(x) With H{a’gc])}kHL (ls) é 2-j+1 * (65)
= b\ g
Then holds
N-
2 —:ak v)€L, (k=0,1,2,...). (6.6)

In particular we have

N
> oiw) - a(x), z Faf’ — Fa, (k=0,1,2,...).

j=1
The properties of the functions au{x), (k=1,2,...), show that for
¢ €S(R,), suppp N{§21 < [§] =27} =0
we have
N .
(Fa)(p) = lim 3 (Fafd)(g) = 0.
N—sw j=1

That means

supp Fa, c {§]27F < || < 241} (6.7)

Of course we have an analogous formula for supp Fa,. Now we consider for
N=0,1,2,...; K=0,1,2,...; K < L; the estimate

How — Za Dokl 0 S — > aME l{ Z a’(])}k il e (6:8)
p(l ) j=1 Lp(l Lp(lq)

M > N. For N=0 thesum >, is zero. First we set N = 0. Then the
considerations of the first step and (6.5) show that the second term on the right
hand of (6.8) is smaller than ¢/2 for K = K(¢) independently of M and L
(> K). For M sufficiently large the first term is also smaller than /2. The in-
clusion (6.1) leads us to

!

k

IR

akHLP <e¢ for L > K = Kye).
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That means
L L
a, g €L, Fa, — Fyg . 6.9
kgb kLP g P kZO ks g (6.9)

We show f=g¢. If y€8 with Fy € Cy(R,) then follows from (6.4), (6.6), (6.7),
(6.9) for a suitable number L

L L o ©
Fy-Fg=73Fy-Fa,= > Fy-> Fa)) = > Fy- Ff9 < Fy- Ff.
k=0 k=0 j=1 j=1
From this follows f=g¢ and
f= kz a, - (6.10)
=0
Now we set K = 0 in (6.8). Then we get in the same manner as above for all L
N
[{ar, — Z agp}f:o” o =¢ for N = Nye).
Jj=1 Lp(lq)
For L — oo we get with the aid of (6.10) and (6.7) f € F;, and
N
If — Zf(j)” s —>0 for N— .
J= “pa
This proves the completeness.

6.1.3. Remark. We know that Hj = F;,, theorem 4.2.6. The last theorem shows
that OF(R,) is a dense subset of Hj. The B-space property is clear without the

last theorem, because L, is a Banach space, and we have the lifting property 5.1.1.

6.2. The spaces B,
6.2.1. B-space property, density.

THEOREM 6.2.1. Let — 0 <<s << o0, 1 <p<<oo; 1=Zqg= 0. B;q 8 a
Banach space. For g << o is CF(R,) a dense subset.

6.2.2. Proof of theorem 6.2.1.
Step 1. Density. It is immediate to see that elements of the form

N
f=> afx) (in the sense of 4.1.3)
k=0

are dense in Bj, for ¢ < 0. Then follows the density property in the same
way as in the first step of 6.1.2.

Step 2. The proof of the B-space property is the same as in the second step
of 6.1.2.



SPACES OF DISTRIBUTIONS OF BESOV TYPE ON EUCLIDEAN 71-SPACE 41

6.3. Remark

It is well-known, and easy to see that
ScL,c¥ %) (6.11)

where the sigh ¢ always means continuous embedding. The lifting operator I.
from (5.1) is an one-to-one continuous mapping from 8 onto 8§, and from S’
onto §’. Together with the lifting property 5.1.1 and (6.11) follows

Scr, H,B,cs (6.12)

Here s, p, ¢ have values for which the spaces are defined.

7. The dual of F;,q and B,,
7.1. The dual of F,,

7.1.1. Embedding in 8’. (6.12) and theorem 6.1.1 show that S is a dense subset
of F,, for all values for which F}  is defined. So we have by the usual inter-
pretation the possibility to write

(Fr) 8. (7.1)

In this sense we consider the dual space (F,)" of F;,. If g € (F;,) and ¢ €8
we write g(g) (interpreting g € 8"). But if f€ F;,, we write <{g,f>. For con-
venience we start with a few lemmas.

7.1.2. Systems of functions. We need two systems of functions. Let

¢ €S(R,), (Fp)§) =1 for 1V/2 =[] =V,
0 < FpeCR({ENV2 —e < [E] <V2+ e}

and
¢ ES(R,), 0= Fo€OP(ENV2+06< 8 <V2—0)).
¢ and J are positive numbers. We construct {¢,}2>, and {g.}i, by
(F)(§) = (Fp)(27"), (Fon(@) = (Fo)(27"9). (7.2)
We choose ¢ and ¢ sufficient small and so that
Fo, - Fp=0 for k1. (7.3)

%) We reecall that we took the strong topology in &§'.
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7.1.3. Lemma

Lemma 7.1.3. Let g € (F;) and

§= > F(FoFy). (7.4)

i
({ox} is the system of 7.1.2). Then g € (F3)" and

g1 (7" = dlgll

s \7
(qu)

where ¢ does not depend on g.

7.1.4. Proof of lemma 7.1.3. Let f € S(R,). Then holds

3(f) = FREY) = éOFg(FekF*f)

2o _r
p) p

\ék*(pk*f)m)'

s

= (27) 9(

og@ xf) = (27)

k=

We use ¢ € (F;,))’ and theorem 3.5 (b) with K, = Ek. Then follows

91 = Nl s = @ x S,y = gl IS * 9]
P\ g

k=0

Lp(1y)
if {g} is a system of type 4.2.1 (without the function ¢,). We get from theorem
4.2.2

9] = clgl - Il -
e
This completes the proof.

7.1.5. Lemma. We need another lemma.
Lemma 7.1.5. Let {g.}ie and {g. i, be the systems of 7.1.2, g € (F,))', and

g the functional of lemma 7.1.3. Let {b s, be a system of functions with by, € L(R,).
We set

a, = F Y Fo, - Fg), k=0,1,...,N), ¢, =Db, =g (7.6)
and
I‘\T
f= z G (7.7)
k=0
Then holds
z N
{g, f> = (2n)*® kZ ab, dx (7.8)
=10
R

1) p(x) = o(— x). We have (F2gp)(x) = ox(— @) = (@)
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7.1.6. Proof of Lemma 7.1.5.
Step 1. We prove

#, €L,, 1fp+1jp' =1.
We repeat the consideration of 7.1.4 and find for f€ S(R))
@)1 = clgli(dure 1Y, o = U1, -
P\q P

This proves (7.9), and shows that the right side of (7.8) has a sense.

43

(7.9)

Step 2. First we assume b, € S(R,). Then holds also ¢, € S(R,) and f€ S(R,).

We have (see (7.4))

and

Il
>
o~
I
-3

(Fh)(E) = (Fh)(— &), (7.3), and (7.6) show that

n n

alf) = @n)  Fa(F~'b,) = (27)® f abdz .

R

n

From this follows (7.8) for b, € S(R,).
Step 3. If b, € L(R,) we approximate

S(R,)3 by, ; L—P> b,
and set
N
Ck7j = bk,j * @, f] :kZOCk’j .
(7.8) is true for f; and b, ; We have

. > >
Gk,] LP C _ng f‘
re

The proof of (7.8) follows now from the last relations and (7.9).

7.1.7. The dual of F,,.

TaEoREM 7.1.7. Let — wo<s<<o; 1<p,g<oo; 1p-+1/p =

g -+ 1/¢ = 1. Then holds
(Fr) = Frg .

7.1.8. Proof of theorem 7.1.7.
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Step 1. Let f€S8, g € F;, and {y}2, be a system of functions of type 4.2.1

P'q?
with >, Fy, = 1. The existence of such a system follows from the beginning

of the first step of 3.6, Then

fs:kzof*w’ frp €8, g ?kzog*%-

It follows from (4.9)

8

9(f) = g sp)(f) 5 }; :io(g * ) (f * p)]

oN
2 (¢ * ) * veys)] (y; =0 for j << 0).

“ll

HMS nMs

Using Holder’s inequality we get

Ni<e f g * vl (S + il de

= Gﬂ{g * %;ll =) IS = vadll = llgll - I 1]

P P ‘g Pq
S is dense in F7 , theorem 6.1.1. Together with the last estimate this shows that
g € ()" 19l = = cgll,— - (7.10)
Pq P ‘¢’

Step 2. Let be g € (F;,)’. We assume that g, and the functions ¢, and g
have the same sense as in 7.1.2, lemma 7.1.3, and lemma, 7.1.5. We show ¢ € Fro.
For this purpose we construct the functions a,, (7.6), and set

by = sgn ay - |a,) 27 {a )Y on 0 k=0, 1,...,N). (7.11)
‘1

(If a,=0 we set b, =0.) We have

N 4 1
H{bk}f,vl{L () = <f[z 9ksall=1) g, (al=1) | H{“k}év”fg —q)dx)p )
Py I k=0 '
With

’ 7 7 ! q I4 !
(@ —Ng=g, kgl —q)=—ks¢’, p+p@ —d)=p (.12
follows
P
”{bk}f)VHL (ls) - “{a’k}f)v”f ,(l_,s) . (7‘13)
P\q PR
In particular b, € L,. Now we construct the function f from (7.7). Using lemma
7.1.5 and (7.5) we find
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zz el de = [ 5 ﬁakbkdx
R,

=g, f = CH!]H( ;q)/H{bk * %}f)VHLP(zq)

We use again theorem 3.5 (b) with ¢, = K,,. Then follows from the last estimate
and (7.13)

¥l oy =

where ¢ is independent of ¢ and N. This shows

= cIl.qH H{a’k}o IIP

H{ak}OHLP,(l_S) = CHgH(F )
The last estimate, (7.4), and (7.6) lead us to.

€Fyy, lgll,_, = clgl (7.14)

P ‘¢ (FP‘I) "

Step 3. We specialize the function ¢(x) from 7.1.2 setting
1
(Fo)) =1 for —= 120 < £ =2 —25.
V2
(8 sufficiently small). Then we find a function g(x) € S(R,) with
0= FgeCr(sV2 —20 < [&l<V2+ 58},

1
(Fo+Fg+Fo)@) =1 for =20 <8 = 2(V'2 — 20).
As in (7.2) we construct @,(x), and as in (7.4) we put

g5 2 F(FaFy) .

5 has similar properties, notably (7.14) holds. Changing the function g, = § (which

is not important for the considerations) we can obtain g = g -+ ; Then (7.14)
shows

EFy 9l - = dlgl

o ey = Wy 1

(7.10) and (7.15) complete the proof.

7.1.9. Remark. From Hj = F}, follows

(Hy))y =Hy*, —oo<s<<o; 1<p<o; llp+1/p'=1. (7.16)
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7.2. The dual of B,

7.2.1. Embedding in 8’. We consider the spaces B;, with — oo <s < oo;
1<p<oo; 1<g< . Theorem 6.2.1 shows that S is a dense subset in B .
In the same manner as in 7.1.1 we interpret the dual of B;, in the sense

(Byy) 8. (7.17)
7.2.2. The dual of B,

THEOREM 7.2.2. If —00 <8 <<o0; 1 < p,q<<oo; 1fp+1/p'=1lg+ 1/ =1,
then holds

(Bpy)' = By . (7.18)
7.2.3. Proof of theorem 7.2.2. The proof follows the same line as the proof of
theorem 7.1.7.
Step 1. f€S, g € B,;. In the same manner as in the first step of 7.1.8 we
find
9N = elgl, 71,
Py P
and
7€ B> llye = el .- (7.19)

Py re
Step 2. We start with g € (B;,)’ and construct g, (7.4). The proof of lemma
7.1.3. shows

g € (B, llgl, .\, = clgl

(#50) ()"

Here we use the scalar case of theorem 3.5. After constructing «, in the sense of
(7.6) we set
b = sgn 4o F T2 M, (=0,1,2,..).
We remark that a, € L,. This follows from
s\ st+ent —s—g
(Bpg)' € Iy ") = Fpg™*, 6>0

(see theorem 5.2.1, 5.2.3, 7.1.7). The formula analogous to (7.13) is

z
ST = L, - (7.20)
LR 2
With the aid of the function f, (7.7), we find in the same manner as in the second
step of 7.1.8

e, 5 = el e
q J4 re
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From this follows as in the first step of 7.1.8

9 €8y, lgll,—o =cligll s\ -
By (Bpo)

This completes the proof.
7.2.4. Remark. Theorem 7.2.2 is well-known, see Taibleson [26, theorem 5].

7.2.5. Remark. The theorems 7.1.7 and 7.2.2 show that the spaces F; , H,, B;,
(— o0 <<s << oo; 1<p,qg<C ) are reflexive.

8. Interpolation of the spaces B;, and F,, real method

In this part we use the general interpolation theory, described in 2.2.

8.1. Interpolation of the spaces B,

8.1.1. Lemma. We consider a system of functions {g}2, of type 4.2.1. For
simplicity we suppose N = 1. We use theorem 4.2.2 (b). K is the functional
defined in 2.2.1.

Levma 8.1.1. Let — o0 <08y, 8 << 0; $#£ s L <<p<<oo;, 1 =Zr< oo
Then holds
K'(t,f, By, By) ~ z min (24, 62| plfy , fEBRMe . (8.)

8.1.2. Proof of lemma 8.1.1. Theorem 5.2.1 shows
Byibes) — B 4 By . (8.2)

Step 1. For f€ Bo=tes) follows

¢ f. By, By) ~ inf Z (2%ifo * @, + £2*Ify = pllr)
F=frtf; B0

fi€ B_,,, (8.3)
=> inf  (@glr, S+ 2Rk ) ~ 3 min (2%, 2% f gl
k=0 gpthp=F+ ok ’ ? k=0 ’
g hp €Ly

Step 2. We assume s, > s,. For a given ¢ = 1 we choose the integer k(f) by

2,‘(')(30_51) é t < Zlk(t)+1](sn—s1) .
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Further we choose a function wy,(z) € 8(R,) with
0= Fy, =1, Fy, €CP({El1E] < 20+, (Fy)(§) =1 for [§] =20 (8.4)
With the aid of this function y we consider the special decomposition of a given
function f € B;, - By = By

F=r+f Ffo=Fy, - Ff, Ffi=(1— Fyp)Ff. (8.5)
It is clear that f, € By, f, € B;.. Using the scalar case of theorem 3.5, and the

pr?
properties of the system of fuunctions {¢,} we find for ¢ =1

K, f, By, Byy) = clfoll’,, + C1AI,)

k(g)+-1 ©
=¢ > 2W\forqly, + ¢ 2 2% fix qillL (8.6a)
E=0 L3 Bkt P

IA

¢’ > min (2%, r2R)\f % gill,
k=0

We choose the function y, in such a way that by applying theorem 3.5 the constant

"

¢’ is independent of f#. For 0 <# =1 we have
K'(t, f, By, By) = 11, - (8.6b)
pr

(8.3) and (8.6) prove the lemma.
Step 3. If s, <<'s; we have to change only the cases ¢t =1 and ¢ <1 in the
second step.

8.1.3. Interpolation theorem.

THREOREM 8.1.3. Lef — 00 <88 << 005 SFEs; Ll<p<<oo; 1=
9o 41, 9 = 0. Then holds for 0 <6 <1

(B , B = B}, with s = (1 — 0)s, - 0s; .

P’ P91)9= q

8.1.4. Proof of theorem 8.1.3.
Step 1. First we show for 1 <r <

(Bs, By, , = B, (8.7)

pr’ T

From lemma 8.1.1 follows

”f“rB;ar’ B:;r)e, r

~ f 1S min (24, 2470)| + g7 ds
k=0
0

=Sipsni,( [ erena [ oo dt)

t<2k(50—31) 1=>2k(s0—s1)

= clzollf* il 2 ~llfll;;q .
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This proves (8.7).
Step 2. We show for 1 <7 < @

(Bprs Bpi)oyow = By - (8.8)
We have
If H g gy~ sup( Z min (27, 278 f « @ullz )
pr Bpr) t>0 k=0
Choosing the sequence {t, = 2=\ = we find
HfH B 5 = ¢ sup 2o oGom sl f 5 oz, ~ I - (8.9)
pr prle, ! 0
On the other hand we have
”f“ 30 le) <c sup ( z Qlr(se—s)p—er + Z glr(s,—s)yr(1—6) Hf” . (810)
pr prle. >0 2k(sovsl)g, zk(so*51)>t poo
‘With
so—8="00—81), 8 —8=— (1 —10)(s—s1),

we estimate the expression in the brackets by

“

©
(2]‘(30‘31),5*1)3’ + z (2 To(s4— sl)t r{l—o0) z 2— k[sn—sller__I_ 2-—k[so—sﬂ(1—9)r)

ok(so—s:)—1 <1 12— k(so—s) <1

independent of . Then (8.10) shows
g

pr pr)o «©

Now (8.8) follows from (8.9) and (8.11).
Step 3. We have, (8.7) and (8.8) with r =1,

(B, By)e, 1 = B (B

pl> pls pl>

< dfl,, - (8.11)

B;ll)e,oo = B;oo M (8'12)
With the aid of theorem 5.2.1 (a) and (2.9) follows
B, € K(0, By,

o, B); 1=r= 0. (8.13)

In the sense of (2.11) we find for 1 = ¢ << oo using (8.7)

(Bis Bii)o.y = B Bidoy = By - (8.14)
If 9= oo we use (8.12),
By Bl = (Bt Bt = B

This proves the theorem.

8.1.5. Remark. Theorem 8.1.3 is well-known [18], [7], [10].
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8.2. Interpolation of the sequence spaces [

In theorem 8.1.3 we considered the interpolation of By and B}, with the
same p. In 8.3 we interpolate the sapces F;, and B,, with different values of p.
For this purpose we need an interpolation result about the sequence spaces I from
4.1.1 which is given without proof by Peetre [17].

8.2.1. Lemma

LeMMA 8.2.1. Let — 00 << 6y, 07 << 00; Gy # 053 1 < p,q < 0. Then holds
for 0<6<1
I, I, p = Iy with o = (1 — 0)oy + foy . (8.15)
8.2.2. Proof of lemma 8.2.1.
Step 1. For &= (§)j2, € Smi“(”"“") we have

Kt &1, 1) ~ inf (2 279 |£3|7 + tqZZ”lqu§ |7) = Z (21, 112797) |£,]2 (8.16)

9’79

E=g04gt j=0 =0 =
5etq

Step 2. Because o, — 0, %* 0 we can divide the interval (0, o) in parts
gle=Dlo=al < ¢ < ghl=mly oo <k << 0. We find for &= (§)72, (and
& =0 for j<0)

[re]

g 5y @
e, gy, = [ s

0

~ z 2= opk— )] z min (2777, 2011q+k(ro—ﬂ1)9)1§ lq]q
k=—ow J=—o0

k=-—o0

Zo 3 2Tl = ol

We estimated the sum over j by the term with j = k. This shows

(g 1, p € by - (8.17)
Step 3. With the usual interpretation we have for the dual of I7
@y =1z g+ 1 =1. (8.18)
Using (2.12) and (8.17) we find
L= () 07, 15, 1 = 0 1, (8.19)

The lemma follows from (8.17) and (8.19).



SPACES OF DISTRIBUTIONS OF BESOV TYPE ON EUCLIDEAN *.SPACE 51

8.2.3. Theorem.

TaEOREM 8.2.3. Let — o0 << 0y, 0y << 00; Gy £ 03 1 <D, ¢,, ¢ < 0. Then
holds for 0 <0 <1
(o la)s,, =& with o = (1 — 0)gy + b0y . (8.20)

%’ "N
8.2.4. Proof of theorem 8.2.3. Let ¢, < ¢,. Then holds
b= (0, 172, , < (g, 1) € (e, 18, , =12

This proves the theorem.

)ep )ep

8.2.5. Remark. Sequence spaces of type [, with weights show an interesting
behaviour by interpolation. For the simplest case, the ordinary [, -spaces, holds
for 0<O0<L;, 1=p.gpq = 05 @ g

1 1—-0 6

bis U)o =1,y — = — . 8.21
(90 91) P 9. P q qo + 91 ( )
l“, are the »Lorentz sequence spacesy, defined by
© P 1
w == ()0 =12 1§ F?* <o} 1=p<o; 1 <g<o0;
7=t 1 (8.22)

o= {516 = ()20 &g = sup Gt < o} 1<g< .
(E,*), o is the rearrangement sequence, Sj = &y &) = EF | = 1&¥ = ... Here
i€l is only a quasinorm [27]. With the aid of the reiteration theorem we
formulate interpolation theorems for the [, spaces. For 0<0<1;

1 < gp, gy << 00; 1 = py, p; = o0, holds
1 1—6 6

(1

Ve =l =
FoPo %Pl) » P qp q qo + ql

(8.23)

(8.20) and (8.23) show similar behaviour. It would be interesting to give a systematic
treatment of interpolation of general sequence spaces with weights.

8.2.6. Remark. The real interpolation methods in particular the L-method
[19] are applicable also for quasi-Banach spaces. So we can extend the parameters
p,q for the spaces I and [, to the interval (0, oo].

8.3. Interpolation of the spaces F,,

With the aid of 8.2 we are able to interpolate the spaces Fj,.

8.3.1. Lemma.
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Lemma 8.3.1. Let — o0 <8y, 8 << 005 1 <Py, Py, G ¢ < 003 0 <0 < 1.
If {oui.o ts a system of functions of type 4.2.1 then there exists a positive number ¢
with :

Po%’ P1th (7% qn)e, P

P = ® 4 dx
- )O’PZch I 5 Py

1 1 —0 7,
JE€ W Frgdopr — = + o
° e P Do »

8.3.2. Proof of lemma 8.3.1. We use the functional L (2.17) with 4, = Fp,
and 4, = Fp . With the aid of (2.18) and theorem 4.2.2 we get

o

17l A =c gt inf [H{ak,O}HPsZ 4t a, HIP Jda| dit

(F, . F3 Y I I
Pody P19/ 6, p K ay, 0(x)+ak’ 1(%) 9 ¢

0 n =(f* o))}

Changing the order of integration and using again (2.18) we find (8.24). This proves
the lemma.

8.3.3. Theorem.

THEOREM 8.3.3. Let — o0 <C 8,8 << 00; 1 << Py, Prs Qo» @1 << 0; 0 <0 < 1.
() For sy=£s8, §=(1—0)sy-+ 0s;; 1/p = (1 — 0)/py + O/py; holds

(F g Mongo,p = Brp - (8.25)
(b) For sy=s, =85 gy a5 (1— 0)/py+ 0/py = 1jp = (1 — 0)/gy + 0, holds
(F;’O'In’ F;‘J%)@:P = B;P * (8«26)

(¢y For sy=1s,=18; qy=1¢,=¢; 1/p = (1 — 0)/p, + 0/p, holds
0 = F,,. (8.27)

P’ qu)e’P
8.3.4. Proof of theorem 8.3.3.

Step 1. Proof of (a). Lot fEWF, , F Then follows from lemma 8.3.1

Pods® plql)eap'
and theorem 8.2.3.

e h%“lf IF * gibinde ~ 11, -

Polo’ " P1th rp

This shows
(F2 . F

s
Po%’ P1‘I1)9sP = BPP *

(8.28)
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Now the theorems 6.1.1 and 6.2.1 show that CF(R,) is a dense subset in the
considered spaces. So we are able to apply (2.12). We find from (8.28) and the
theorems- 7.1.7 and 7.2.2

By = Byy) DWWl Fp5 o, ) = Py Fria o,y

PP P/%’? T P Po0’ P191

Together with (8.28) (a) follows.
Step 2. Proof of (b). We have

(BB, =L 1) (8.29)

9 /0

Using again lemma 8.3.1 we get (8.28). A duality argument shows that (8.26) is true.
Step 3. Proof of (¢). We have

@ L), =L

9 "¢/e

We find then the relation (8.27) in the same manner as in the first and second
step. This proves the theorem.

8.4. Special cases of theorem 8.3.3

8.4.1. Let — o0 <Csp, 8, << a0; 1 <<py,py << o0; 0<<O<1; and

1 1—90 6 o o
— = — —, §= (1 — B)s Sy
» " +,p1 ( )So + Osy

Then holds
(B Brin e, :B;P. (8.30)

PoPo® T PiPL/O

This follows form B, = F,, and theorem 8.3.3 (a), (b). (8.30) due to Grisvard
[7], see also Peetre [17].

842, Let — oo <88 <C 005 §57 8; 1 <pypp << o0; 0< <1, and
1 1—06 9 ( o 0
— = 4+ —, §= (1 — O)sy, + Os, .
I A Po o P

1) See (8.23). (8.29) is well known [10]. We give a short proof using the L-method [19]
(see (2.18)). We may set s = 0. For & (£J) —o bholds

» D dt

) 0lao 1g @
g 5]y e U i
‘I\:—r kfsk

< 2 ft 7=1 min ( ]Ekf‘lo t[é‘k[‘h Yt = GZl§k1P == CHEHP .
k=0 § b

Using a duality argument we get (8.29).
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Then holds
(Hy, Hy:

p‘)e, P

—B,. (8.31)

This follows form Hj, = F,,;, theorem 4.2.6, and theorem 8.3.3 (a). This result is
stated by Peetre [17] without proof. For the special case p, = p, = p (8.31) follows
also from 5.2.5, theorem 8.1.3, and the reiteration theorem 2.2.3.

84.3. Let — 0 <<s<<o0o; 1<ppp<<o0; 0<0<1; and

1 1 -6 6
? - m o m
Then holds
(H,, H,), , = H, . (8.32)

This follows from theorem 8.3.3 (¢) with ¢, = ¢, = 2. (We used again Hj, = Fy,).
We remark that (8.32) follows immediately from the lifting theorem 5.1.1, H) = L,
and (L, L,), , =L

8.4.4, Let — ooP.< 8y 81 << 003 So A Sy 1< Popp << ooy 0<<h <1, and
L a0y s,
p Do V41
Then holds
(Hpy, Bppe,p = By - (8.33)

This follows form theorem 8.3.3 (a), and Hy = Fj,, By, = I}

Pa2? PPy Pyt

845 Tet — o <<s<< ooy 1<p < oo, 0<b<<1, and

1 1—6 6
p 2 + »
Then holds
(Hs, B:y)» = By - (8.34)

This is a special case of (8.30), Bj, = F3, = H;.

9. Equivalent norms

For applications of the spaces B;, to differential equations some equivalent
norms are convenient. Using the general interpolation theory, 2.2.5 and 2.2.6,
and theorem 8.1.3 it is not difficult to give suitable equivalent norms.
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§
9.1. The spaces H,

9.1.1. Theorem.

TarEorEM 9.1.1. Let 1 < p << o0; s =0, integer. Then holds

0, = {flfeS’, ;{ €L, j= ln} ={fIf€S8’, D€L, x| =s}, (9.1)
and
n an r\1 1
Il s ~ (HfJI’L’P + _ZI 7 | )P ~ (| ]Z/ IDfIE,)T - (9.2)

9.1.2. Proof of theorem 9.1.1.
Step 1. We start with a remark to formula (3.3'). Let ¢ € S8'(R,), Fg € C*(R,),
and
cf

[(DPFg) &) = &P (9.3)

for all B. Then (3.2) is true (this is a special case of theorem 3.5), and we have,
see (3.3)

IFES - Fg)llz, = ellfil, - (9-4)
f€8(B,). If f€L, weapproximate §3 f, 7> f. The assumption (9.3) shows tha
P
{FFf;- Fg)}; is a Cauchy sequence in L,, and
FAEFf; Fg) 5> FX(Fg - Ff) .

For j-» oo follows (9.4) for arbitrary f € L, (we replace Ff-Fg by Fg-Ff in
the sense of multiplication of Ff €8 with Fg).
Step 2. We set & =&1... 8" o= (x,...,x,). For ¢,€8

8

Fg, = &0+ 1EP) % o s,
the agsumption (9.3) is true. From (9.4) and the definition (4.8) follows
1Dy, = dF-E TS, < CF A+ EREfl, = ¢Ifl,. fEH,. (9.5)
p

Step 3. We denote the Fourier transformation in R, with F, and in R, with
F,. Further we consider a function p(f) € O°(R,),

o) =0 for [t <%, o)=1 for t =1; p(t) = — 1 for t < —1.
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For g€ 8,
=(1+1¢“{§1+29 Ny,

the assumption (9.3) is true. For a function f € L » Of[0x; € L, (j=12,...,n)
follows from (9.4)

Iflys = dlF1(1 + Z 0 (EENFS Iz, = lIfllz, + ZHHF EE S, mplle,m, o -

For the function p°(f) is the one dimensional case of (9.3) true. We apply (9.4).
In view of Fy'&F,f = co’f/ox} it follows that
IP 1
| )P . (9.6)
1

bp

of

"
! J

I7e <c<HfH” +21
(9.5) and (9.6) prove the theorem.

9.1.3. Remark. H,= W, s=0, s an integer, are the Sobolev spaces,
introduced by Sobolev [23, 24].

9.2. The spaces B;,

9.2.1. Semi-groups in L,. We consider the strong continuous semi-groups of
isometric operators in L,

f] fxlz"' 1ax+t: ]+17'-'9xn): fELpr (97)

0 =i < oo; j =1,2,...,n. For these groups the assumptions of 2.2.5 and 2.2.6
are true. It is easy to prove that the infinitesimal generators A; are

o of
(4;)(@) = o, (), (Aj):{ﬂfesg fE€L, %eLP}. (9.8)
Iteration shows
of
D(A}‘):{flfesf, ol €Ly l:o,l,‘..,k}. (9.9)

9.2.2. Theorem. We write
(Ah, W)@ = fl@y, -2, w + R, Lpys -+ o %,) — fx), ;2, kf = Ah, k(Ah, W) -

THEOREM 9.2.2. Let 0 << s << oo with the decomposition s =j -+ x, j inleger,
0<=<1 1l<p<<oo; 1=¢qg= w. Then for q<< oo holds

12) For s=0(2) the function o(t) is not necessary.
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:{ﬂfeS'[vw Li z

1‘

‘ 1

F+M@<4<mw

k=1 ax] ‘
and for q= oo
o'’f
= {fifesg Ilfilﬁs A anl + 1fls, < oo} . (9.10b)

Further holds
I/ H ~IfI%,

P‘I

([#x] =0 for 0<<n<<l, {#]=1 for x=1).

9.2.3. Proof of theorem 9.2.2. Theorem 5.2.1 and theorem 5.2.3 show
B, c H, ¢ B, Then follows form the reiteration theorem 2.2.3 and from theorem
8.1.3

(L, HI’;)S, =B% 0<f<1l; 1=¢qg= o, (9.11)

Py

k > 0, integer. On the other hand (9.9) and theorem 9.1.1 show Hj = = D(45).
(9.10) follows now from (2.16), (2.13) and (2.14). This completes the proof.

9.2.4. Remark. (9.10) is the definition of the spaces B, given by Besov [1].

There are many other equivalent norms for the spaces B,,, see also Nikol’skij [14],

and Taibleson [25]. Grisvard considered Besov spaces for vector-valued functions

[71.
9.2.5. Theorem. We consider an other equivalent norm.

THEOREM 9.2.5. Let 0 <Cs << oo with the decomposition s =j + x, J inleger,
0<x=1 1l<p<oo; 1=Zq=Z 0. Then

z{ﬂfGSCHﬂ§ —
Pq

k=1 |o|<j

v dht
f "ZEWWWM“—}+W%<4 (9.12)

(and the usual modification for q = o),

WAL, ~ I (9.13)

9.2.6. Proof of theorem 9.2.5. Let 0 <<x <1 and |x] =j. Then D% is
a linear continuous mapping from HJ into L, and from H’;"' into H}, theorem
9.1.1. The interpolation property 2.2.2 and (9.11) show that D% is a linear con-

tinuous mapping from BI7* = (H], Hi*), =~ into (L, H)), = By, ie.
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“Daf“Bz‘ = C”f”Bj+z .
e P

Now the theorem follows from (9.10). If » = 1 we consider D% as a mapping
from H] into L, and from HJ*? into H). The interpolation property shows

that D"‘f is & continuous mapping from Bitt= (H], H’“)%’q into (L,, H ;)% = B},
ie.

DAl y = ellfll st
PQ
The theorem follows again from (9.10).
9.2.7. Lemma. We want to simplify the norm || fH;Ls . For this purpose we need
the following lemma. P

Lemma 9.2.7. Let 1 <<p << ow; 1 =g = o0.
(a) For 0 <<x<<1 holds (with the necessary modification for q = )

dh
2 f WAl S ~ f M+ B SO, G (©14)
(b) For = =1 holds (with the necessary modification for q = o).

o f dh
];f A I, — Nf{kl'q]]f(x+2k ) = 2@+ B+ f@lE, - (915)

9.2.8. Proof of lemma 9.2.7.
Step 1. Let 4> 0. Then for ¢ < co holds

dz, . . .dx ¢
n »>q = zl—f-zq H

Ry y (A5 ... +x,2,)§+—2“

n

(9.16)

where ¢ is independent of 1. First we estimate the right hand side of (9.14) by

the left side. We set
ROh=(hy,..., k), hi=1(0,...,0,h,0,...,0) (place j).

2 ]5

With the aid of (9.16) follows

B~ f( - b an B~ g
R/ll fer -+ 1) — flat, W:cz W + B — f@l, =

n
0
n

dh
= Z il 1A, f”L T =2 2,1 R A 11, 5



SPACES OF DISTRIBUTIONS OF BESOV TYPE ON EUCLIDEAN #-SPACE 59

For ¢ = oo we have an analogous estimate. In the same way we show that the
right side of (9.15) is smaller than the left side.

Step 2. We prove the other inequality of (9.14). We choose a system of orthogonal
coordinates represented by the orthonormal vectors v;

'Vj *V = 6]': . (917)
Then holds for 2> 0

e ) = @z, = 3 + i cos 0y 22) = f@l,

With the aid of the transformation 1 = h|cos (v, ;)| we find
di
f AL, o <o f J=sleos G, ) Pf G + ) — f@E, 5 - (9.18)

This is also true for cos (v, %) << 0 after the transformation y =z — »,4. We
consider now all systems of orthogonal coordinates, represented by (9.17). If
o, = {z||z| = 1} is the unit sphere in R, with the usual measure and topology,
then the set of all systems of orthogonal coordinates (represented by (9.17)) is
a closed subset of w,X...Xw, (n times). In w,X... Xw, we introduce the
product measure and product topology. We integrate (9.18) over all systems of
orthogonal coordinates. It follows

N dh i
[, =3 [ 4 f 6w+ ) — F) iy -
1]

_ g e M
ch e+ ) — el

For g = oo we have an analogous estimate. This proves (9.14). In the same way
we prove (9.15), see [28].

9.2.9. Theorem. We write (A,f)(x) =f(x - h) —f(x), RER,, and Af =
A -

THEOREM 9.2.9. Let 0 << s << oo with the decomposition s =j -+ =, j integer,
0<x=1;, 1<p<<o; 1=Zq= 0. Then holds

lo =i

dh L
—Anres g, = | [ s wpam, Gl < o (8.19)

(and the usual modification for q = o),

1, ~IfI, - (9.20)
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9.2.10. Proof of theorem 9.2.9. The proof follows immediately from lemma
9.2.7 and theorem 9.2.5.

9.2.11. Remark. If p=¢9 and 0 <% <1 we have

D~ — D~ ip 1
I, ~ { [/ [;' ) = DIOF gty 411, @20

oo lx — ymtr

The spaces B;, = W, are introduced by Slobodeckij [22]. We can give an
analogous formula for » = 1.

9.2.12. Remark. The considerations show that

. dh 1L
[f B S IATEADAE =l A S (9.22)
B ol = P || P

J

is also a norm equivalent to HfHBs , § =7+ %, j integer, 0 <Cx = 1.
Y

10. Interpolation of the spaces B;, and F,, complex method
10.1. The spaces By,

10.1.1. Theorem.

THEOREM 10.1.1. Let — o0 <8y, 81 << 00; L <Py, P1s Qo 1 << 0, and
0 << 0 << 1. Then holds
[Brg Brals = B s (10.1)
(1 — )5y 4 6 1 1—6 6 1 1—0_;_0 (10.2)
s = (1 — 0)s, s, = + = = —. .
0 Yo Po P 9 9o il
10.1.2. Proof of theorem 10.1.1.
Step 1. We consider a function f€ B, with
N
fx)y = z a;(x) (10.3)
j=0

in the sense of definition (4.5). Let {¢.};>, be a system of functions of type 4.2.1
with N =1 and

2 Fp)@) = 1. (10.4)
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For a complex number z, z =z -+ 1y, 0 <x <1, we construct
(e, 2) = XY orOa) (10.5)
@ (1 —z . z) .
2) = s —} — (1 — 2)8y — 28,
41 q % % ( )So 1
) (1 —z . z) (1 —z z)
c) = I - + .
% 1 9o 4 P Do V2
@ =1 <l;z+z) ( (l—z z)
05(2) = 1 — —, 2) = + —7.
: T\ g o) WP =P\, 2
(If ap(x) =0 we set a(x,2) =0), and
2 Ni2 2
f Z ‘Z (pk—}-] * ak xz, Z Z (er Z k4-j ZU, 9 (106)

(p;=0 for j <0, =0 for j <0 and j > N). This is a representation of
f(x,2) in the sense of 4.1.3. It is not difficult to see that

a}@ﬂd(z) € :;[LPD’ LPA]

(10.7)
in the sense of 2.2.8. It follows that
a(x, 2) € L, L, ] (10.8)
and
f@,z) € I[By,, By,
With the aid of theorem 3.5 (scalar case) follows
ifw i, = = 3 e e ale i) Wl = el 0y, | = iy,
and

If@, L+ at)l ., = cl{akl,

1° (L
P1‘11

Further we have f(z,0) = f(x). Then follows from 2.2.8 and an infimum con-
struction in the sense of (4.6)13) that

Il s, 1 = dlfil,

Pod’ P1‘l1

Functions of type (10.3) are dense in B . This and the last inequality show that

‘1 c [ Po‘Io P1‘11]9 ¢ (109)

1) By the infimum in (4.6) we may assume that for the functions f(z) from (10.3) all
representations of the type (10.3).
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Step 2. We use the duality for the complex method described in 2.2.9. The spaces
B;, are reflexive, see theorem 7.2.2. The same theorem, (10.9) and 2.2.9 lead us to

[Bpgy Boals = (B Bpigols) € (Byg) = By (10.10)

Podo’ 7 1t 1 e NN

(10.9) and (10.10) prove the theorem,
10.1.3. Remark. Theorem 10.1.1 is well-known and proved by Grisvard {7] and
Taibleson [26].

10.2. The spaces F,,

10.2.1. Theorem.

TaEoREM 10.2.1. Let — o0 <<S§p, 8 < 03 1 <Py, 01,90 @y < ©;  and
0<6 <l Then
oo Fogde = Fop
(1 0y, 1+ 0 1—0+0 1 1~0+0 (10.11)
= _— S, S; - = -, T = _— .
0 Yop Po VST) 90 5l

10.2.2. Proof of theorem 10.2.1. The proof is almost the same as in 10.1.2. First
we consider a function f(x) € F;, with (10.3) and a system {g,} of type 4.2.1
with N =1 and (10.4). We replace (10.5) by

a®, 2) = 299){a,}] H"Z(’)H{“ }oll@"(’) “‘Q‘(’)( z), (10.12)
(ty)
1—2z z
01(z) = sq % + q_l — (1 —2)sp — 28y,
) (1——2 z) (1—z+z>
2) = -] — —1,
% P Do - Y2 1 0 4

) (1——2 z) <l—z z)
03(2) =1 —p 2o +p1 s 04(2) = ¢ % +q1 .

(an(x,2) =0 for a(x)=0). We construct f(»,z) in (10.6) and find that
flx,2) €I[Fy, , Fp.1, and with the aid of theorem 3.5 (b)

Pofo?

I D, S A, o 1561 i, = el (o

Podo qul

In the same manner as in 10.1.2 we get

C [ Pa% Fls;x%:]e *

The theorem follows now by a duahty argument (see theorem 7.1.7) as in 10.1.2.
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10.2.3. Remark. We note some special cases. We have H, = Fp,, theorem 4.2.6.
We find that
(Hy, Hy], = 1,
— 00 < 8, 8 << 0; 1 < py, py << o0y 0O <Y (10.13)
) 1 1—10 0
8§ = (1 — O0)sq + Osy; = 7 —{—2—0—1.

This result due to Calderén [3]. An another special case is F,, = B;,. We find
[Hy, By, = F,

PiP1 pPg’
— 00 <L 8 8 << 0, 1T Py, pp << 03 0O << (10.14)
(0 05, 2 0 1 1—6+0 1 1—0+6
s = (1 — 0)s, 8, — = — = = —.
o p Do p’ g 2 Py
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