The Cauchy problem for systems in L, and L, ,

ParLrp BRENNER

0. Introduction

We shall consider the Cauchy problem
{ oul/ot = P(D)u, x€R*, 0 <t <T, (0.1)
u(x: O) = uO(x)>

where # and %, are complex N-vector functions and where P(D) is an NXN
matrix of pseudo-differential operators, that is, P(D)w is defined by

P(D)u(z) = f exp (— 2midz, y))Py)uy)dy

where # is the Fourier transform of % and where P(y) is the symbol of P = P(D).
We assume that the operator P has order d > 0. The principal part Py of P
is defined by the nonvanishing symbol Pu(y) = lim,_ A"°P(4y). The operator
P(D) is a partial differential operator if and only if P(y) is a polynomial. We
define d = min {d, (d — dy)/(1 + e)}, where d; is the order of P — P, and
where & = 0 if PsP = PP, ¢ = |1/2 — 1/p| otherwise. Then d — d for homog-
eneous operators P. For details see [7] and section 5 below.
For x>0 we let w,(y) = (1 4 |yP)** and define for 1 <p < o

el o = I F=2(w, )

where F-1 denotes the inverse Fourier transform.
We say, with some abuse of language, that (0.1) is well posed in L, ,, if there
is some constant C = C(T') such that for all u, € €y there exists a well defined

solution u of (0.1) in Ly (cf. section 1) which satisfies
e, O, < Cllugll,,oe 0 <t <T. (0.2)

It is known that (0.1) is well posed in L, if and only if
sup {lexp ((P(y)); y€R", 0 <t <T} <O < 0. (0.3)
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Kreiss [15] has given a complete characterization of the N X N-matrices which
satisfy (0.3). In particular, if the eigenvalues of P; are imaginary, y € R", then
a necessary condition for (0.3) to hold is that Pa(y) is uniformly diagonable on R
For d =1, this is also sufficient.

Even if (0.1) is well posed in L,, it need not be well posed in L, for p £ 2
(cf. Littman [19] for the wave-equation, and also the more general results below).
However, provided that (0.1) is well posed in L,, and under the assumption that
P(y) is in “€®, the problem (0.1) is well posed in L,, for «>nd|1/2 — 1/p|
(Theorem 5.5 below). In section 5 we will give necessary and sufficient conditions
for (0.1) to be well posed in L, ,, assuming that (0.1) is well posed in L, and that
the eigenvalues of Pg4(y) are imaginary, y € B" (e.g. if 09/0¢ — P(D) is strongly
hyperbolic; cf. [23] and section 6 below). The results are somewhat negative in
character. Among the results proved in section 5 we mention the following for
differential operators:

THEOREM 0.1. Let 0 <o« << J[l/z — 1/p|. Assume that P is a differential
operator and that the eigenvalues of Pa(y) are vmaginary for y € R*. Then (0.1)
is well posed in L, . and in L, if and only if

0
PyD)y= > A; —,
d() 7 ]axj

(0.4)

L=

where Ay, ..., A, are commuting diagonable matrices with reol eigenvalues.

For symmetric hyperbolic systems and « = 0, Theorem 0.1 was proved in [3]
and later, still for « = 0, for a larger class of hyperbolic systems by Kopéadek [13].
See also the paper [14].

We will also give analogues to Theorem 0.1 for pseudo-differential operators in
section 5.

As a consequence of Theorem 0.1 the Cauchy problem for the wave-equation is
not well posed in L, ,, 0 <« < [1/2 — 1/p|]. For o = 0 this result is due to
Littman [19]. In this particular case the bound |1/2 — 1/p| can be improved. Using
the methods of Littman, Muravei [22] proved that the Cauchy problem for the
wave-equation is not well posed in L, , for 0 <« < (n —1)1/2 — 1/p]. We
generalize this as follows: Assume for simplicity that N = 1, and that Pa(y) is
imaginary. Define the rank » of P; as the maximum rank of the »X#n-matrix
(9*Pa/0yidyn)i,. Then (0.1) is not well posed in L,, for 0 <« < rd|1/2 — 1/p|.

The corresponding result for systems is proved in Theorem 5.4. For n > 1
the rank of |y| is #n — 1, and this proves the above result of Muravei. For other
examples, see section 5.

Let L denote the N-vector functions with components in L,, andlet M"Y
denote the multipliers on FL). The natural norm in M)"" is denoted M ™(:).
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To prove the results mentioned above, we notice that (0.1) is well posed in L, ,
if and only if

MY Nwgtexp (tP)) < O(T), 0 <t <T. (0.5)

For p =2, « = 0, this reduces to (0.3) above. We shall prove that (0.5) implies
at least locally on R™\{0}, that the m’th powers of exp (Ps) are O(m*?) in
MN. For non-homogeneous operators, the lower order terms introduce an error-
term for & > 0 and d is replaced by d; for details see section 5. Under suitable
smoothness assumptions, the growth of powers of elements in M II,V’N is studied in
sections 2 (for N = 1) and 3. The methods used rely on the technique developed
by Hormander [6], and the methods used in [3], [4]- The results obtained will in
particular imply theorems like Theorem 0.1 above.

The author wishes to express his gratitude to Professor Lars Hormander, who
kindly pointed out a number of embarrassing mistakes and unproved statements in
the original version of this paper, and whose constructive criticism has been of great
help. The author also wishes to thank Professor Vidar Thomée for his encourage-
ment and for many helpful discussions, and thanks Professor Jéran Friberg and Mr.
Lars Wahlbin for reading various versions of this note. For N = 1, some special
cases (e.g. Proposition 5.2 for N = 1) have been obtained by Sjdstrand [27].

1. Multipliers on FL,

For complex N-vectors u and v, {u,?) shall denote their scalar product and
jv] the Euclidean norm. The norm of an N, X N,-matrix 4 will be the operator
norm |A] = sup {|4v]; jv] < 1}. The transpose of 4 is denoted ‘4.

By €(B) we will denote the set of N-vectors, and occasionally N X N-matrices,
with elements in C*(B). If g € C°(R") and if

sup { ||| Drg(x)]; x € B"} < + oo

for m = 0,-1,... and for any multi-index %k = (ky, ..., k), k| =k + ...+ kn,
we say that g €S. Here D* = (— 2ui)7'M(9/0z,)" ... (0/0xa)'». We give the
linear space S the topology defined by the above family of semi-norms. The set
of complex N-vectors with components in S is denoted S¥. The dual space S’
of 8 is the space of tempered distributions.

The convolution u %g between a N,XN; matrix p of tempered distributions
and a function g € 8™ is defined by u(g(x — -)) (which has the obvious sense).
The Fourier transform & of a tempered distribution u is defined by f(f) = ,u(}\),

J €8, where ? is the function

fo) = Ffy) = f exp (2midz, y>)f(@)dz.

RP
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The Fourier transform is defined for matrix- and vector-valued tempered distri-
butions by applying the transform elementwise. If KC §8’, then FK denotes
the corresponding set of Fourier transforms.

By LY we mean the set of functions v = (v,...,vy) with v, €L,
j=1,...,N. For p << o welet

1
oy = ( f lv(x)l"dx) ’
Rn

[oll; = ess sup {[v(z)[; @ € £"}.

and for p = o

We shall in the following assume that 1 <p < oo.
Classically a multiplier on FL, is a function A such that for each f€ L,

1<p L2, l}'\ is the Fourier transform of an IL,-function. By the closed graph
theorem this defines a bounded operator on L, This operator is obviously
translation invariant. Following Hormander [6] we make the following definition:
we say that an N, X N; matrix u, with elements in §’, is a multiplier from FL;,V‘
to FLY:, and write g € Mp»™, if

P b
M) = sup {[|is = flls £ € 8™ |l <1} < + oo

For Ny=N,=1, we also write M, for M;'. We use the convention that
MY™N(p) =+ o if ugMy*™. For p=1 and oo we identify MM with a
subset of €, whenever convenient.

Lemma 1.1.

() MYN = Mp™, 1p+1/p' =1, and MY*™ € MY-™ C MM
Further M,(-) is a logarithmically convex function of 1[p.

(i) MYe™ is the set of essentially bounded measurable Ny,xX N, matrix functions,
and MY»™() =esssup |-|. MY»™ is the set of N,yXN, matrices with
elements that are Fourier-Stieltjes transforms of bounded measures.

(i) M ;V N is @ Banach algebra under pointwise matrix multiplication and addition,
with norm My™(-). It is non-commutative for N > 1. Further,if u € My=™
and v € My»™, then yu €M™ and MYMe(vu) < M:,v"Nz(y)Mll,v”N’(w).

(iv) Let f,€ My*™ and My (f)<C, i=1,2,.... If fi>f a.e. then
M(f) < C.

(v) Let a: R*— R™, m <n be an affine ana surjective transformation, and let
a*f(y) = flay). Then MY*™(a*f) = My™(f), with norms in R" and
R™, respectively.

(vi) If f€M*™ N €, then the conclusion of (v) is valid for all affine maps.

Proof. For the case N; = N, = 1, these statements can all be found in Chapter
Lin [6], and for (v) and (vi) in [18]. Most of the generalizations to N; and/or N, > 1
are obvious, and in those cases we only give the references to [6] and [18].
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(i) For Ny = N, =1, this is Theorem 1.3 in [6].
(ii) Theorems 1.3 and 1.5 in [6].
(iii) Corollary 1.4 in [6].
(iv) This is a special case of Corollary 2.7 in [18]. We give here another proof.
Lot » € 8™ and v € 8™. By Parseval’s formula and Hélder’s inequality
we have (1/p + 1/p’ = 1),

] f (i), v(y»dy) < Clal
R®

By dominated convergence (we use (i) and (ii)) then

l f Syyuly), o(y)>dy ’ < Cifadll|[2]],
Rn

By the converse of Hélder’s inequality, this means that f€Mo=™.
Notice that since f is the limit of a sequence of measurable functions, f
is certainly measurable.

(v) This is Theorem 1.13 in [6].

(vi) In view of (v) we may assume that m <<n and that e is the inclusion
of B™ in R" The statement is then Proposition 3.2 in [18]. The following
proof was suggested by Lars Hormander: Write R*= R @ V and
let 4: B~ — R* and j: ¥V — R" be the inclusions. For ¢ > 0 the mapping
a,=1i® &:R"—~R" is affine and surjective. Hence Mp»™(a¥f) =
M}=™(f), using (v), and since aff —i*f as &—0, (iv) above applies
and proves the statement.

In connection with (ii) we notice (N; = N, = 1 and with the convention that

M, € C) that y € M, if and only if

uly) = f exp (— 2z, yD)R()
Rl'l
with

M) = f dpE)| < o.

In particular: If f€ L, then f& M, and Ml(f) = ||fllz

Let B be a closed set in R", with positive measure. We say that an N, XN,
matrix function ¢ is a multiplier from FIL;* to FL}* on B, ¢ € MJy™, if
there is a u € M)»™ such that ¢ = 4 on B. We use the quotient norm

My (p) = inf {M}*™(u); p = ¢ on B}

For Ny =N, =1 we also write M, and M, p(-). We give some facts about

M, p in the following lemma.
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Lemma 1.2.
() If BE B, then MP,B((P) gMp,B'((P)‘
(i) Mpg"(vp) < Mpp"(@)Mp% ).
(iii) If a € R\{0} and g, €R", then M, z(¢) = M, p(a*p) = M,5_,(2,),
where @,.(y) = ¢y + Y-
(v) If k€8 vanishes outside B, then
M M(oh) < M (@)l

(v) If MP3™(p) <C for all compact balls BC R", then Mp»™(g) <C.

Proof. The statements (i), (ii), (iii) and (iv) are all immediate consequences of
the corresponding facts for M)*™ and the definitions. The proof of (v) was given
in Lemma 3 in [3].

We will later have use for the following version of the Hormander-Mikhlin
theorem (for a proof see Theorem 2.5 in [6]).

Lemma 1.3. Let @ € C*(R*\{0}) for some v > n/2, be homogeneous of degree
zero on R*. Then @ € M, for 1 <p < co.
Under the assumptions in Lemma 1.3 we have for ly| > 1,
Dply) = O(lyl™™), o <. (1.1)
In order to conclude that ¢ € M; = M, we have to strengthen (1.1). We then
get the following variant of Bernstein’s theorem (cf. Proposition 2 and Lemma 3
in [24 — IIIJ).
Lemma 14, Let r € C°(R") and assume that
Drr(y) = O(ly|=*7™), o] <9, (1.2)
for some s> 0, as |y|— o. If v>nf2, then r €M, C M,.
Proof. (After Hormander [6].) We will prove that 7 € L,. Let y;(y) = yp(27y)
where o € C® has support in 1/2 < ly| <2 and where >2 y;=1 for y+#0
(cf. Lemma 2.3 in [6]). Let y_, =1 — > . From the classical Bernstein

theorem y_.r € FL,, since y_,r € 0y, v > nf2. It is left to estimate (pr)" for
j =0 in L, and then add the results. Let 7; = yy. Then

( / |?,-(x)|dx)2 < f (1 4 2¥|xY)~"da f (1 -+ 2% [ |7)(x) "d. (1.3)
But
] “ ) 12
( f |(1+2211x12>”/2r,-(x)12dx) <03 ( [ !21'“'13%/),-<y)r(y)12dy) -
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Using (1.2) and Leibnitz’ formula we get
2D iy)r)] < 0279, || <,

and so by (1.8), since » > n/2, that

" . Wiy O\ ,
f |7(x)dz < €279 ( f W) < (2. (1.4)

Hence
1P < lp-oy + 3 1%k < + e
Jj=
which proves the lemma.

LEMMA 1.5. Let ¢ =r -4 g, €C", where g, € C*(R*\{0}) is homogeneous of
degree zero. If r satisfies (1.2) for some s > 0 as |y| — o, and if v > n/2, then
pE€EM, 1<p< oo. If g, is constant, then ¢ € M, S M,

It is clear that if @ € M;, then also ¢, € M; €O, and so ¢, is constant.
Proof. The Lemma is an immediate consequence of Lemmas 1.3 and 1.4.
We will need the following version of the Wiener-Levy theorem in M, g.

Prorosition 1.1. Assume that |1/p — 1/2] > |l/q — 1/2| and that B& R is
compact. If fi,....fn€EM,sNC and if F is analytic in a neighborhood of
{(hi@), .. . [n); y€B}, then F(fi,...,fn) €M, 5, where B’ is a closed ball
contained in the interior of B.

Proof. Let m, denote the closure of § in M, and m,y the corresponding
restriction algebra on B. Since m, has maximal ideal space R" (Theorem 1.17
in [6]) and separates points on R", the maximal ideal space of m,, 5 is B. Further
M, p2m, g DM, zNC if B’ is compact and contained in the interior of B,
and with p,q¢ as above (Theorem 1.16 in [6], where it is even proved that
my 2. M, N Cy). Standard results from Banach algebra theory now prove the
proposition (cf. [2], Chapter 1, section 4).

Remark. For p =1 or o we can take p = ¢ in Proposition 1.1, since in this
case m, p= M, p for B compact (m; = FL;). We do not know whether this is
allowed in general.

A similar consequence of Theorems 2.6 and 2.7 in [6] is stated in the following
proposition.

ProposITION 1.2. Let f € C(R*\{0}) be homogeneous of degree zero on. R". Assume
that f € M, forall p with 1 < p < oo, and that F is analytic in a neighborhood of
{fy):y €S™'}. Then F(f) €M, for all p with 1 <p < co.
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Here 8! denotes the unit sphere in E". We omit the details of the proof, which
is close to that of Proposition 1.1,

2. Powers of multipliers on FL,

In this section we shall give some results on the growth of powers of elements
in M,, which are modifications and localizations of results proved e.g. by Hérmander
[6], Leblanc [17] and Kahane [9].

From now on we assume that {¢n} is a family of functions which is bounded in
CYR™\8,) where S, is a closed nowhere dense set in R*. When we discuss Cauchy
problems below, such families will be generated by lower-order terms in the symbol
of a pseudo-differential operator, and in that case S, = {0}.

The main results in this section are the following.

THEOREM 2.1. Let 0 <& << |1/2 — 1/p|. Let BS R* be a closed ball. Assume
that @m = ¢ + m™Qu and that ¢ € C*(B) is real. If

M, glexp (im @m)) < Om*, m=1,2,... (2.1)

then ¢ 1s linear on B.

For p=1, w and «==0, the C%-condition is not necessary, as proved by
Beurling and Helson [1]. For « =0 and B = R*, the above result is due to
Hoérmander (Theorem 1.14 in [6]), and the local C2%-version, still for & = 0, can be
found in [3]. As we will see from the proof, Theorem 2.1 is essentially »one-
dimensional». A more precise result in R" is the following (cf. Leblanc [17]).

THEOREM 2.2. Let BC R* be a closed ball. Assume that ¢m = ¢ + M Qm,
that Qm s wuniformly in C®°(B\S,), m > 1, and that ¢ € C°(B) is real. If r
18 the maximum rank in B of the Hessian matrix J(y) = ((0%/0y:09)p(¥): of @
then there is a constant ¢ > 0 such that

M, p(exp (im gm)) = om PP = 1,2, ... (2.2)

We proceed to the proofs of the theorems above. We first state a version of van
der Corput’s lemma (see [26], p. 197).

LevmaA 2.1, Assume that w € Oy(R) and that ¢ € C? with |¢"(¥)] > 06> 0 on
the support of u. Then

|F(exp (ip)u)l, < €8~ Dully (2.3)

where C is independent of u and of .
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Using this we can prove the following:

Lemma 2.2. Assume that ByC R is a closed interval, that ¢ € C*(B,) is real
and that ¢"(y,) 7 0 for some y, € B,. Then there is a constant ¢ > 0 such that

M, 5, (exp (im @) = em!'*~1P 1 =1,2,. .. (2.4)

Proof. We may assume that ¢” # 0 on B, Let 0 # u € C}(B,). By Lemma
1.1(i) we may also assume that 1 <p < 2. We let 1/p -+ 1/p’ = 1. Then, by
Lemma 2.1, Parseval’s formula and Holder’s inequality,

[F(exp (im p)u)ly < [IF(exp (im @)l **|F(exp (im @)u)z"’ (2.5)

< Om~Y2-Yp'l — Q12— Yip,

By (2.5) and Parseval’s formula then

f lufdy = f exp (im g)u oxp (im pudy < ||Flexp (im p)u)l|F(exp (im pyu)l,

< OM,, g (exp (im g))m~ =P,
which proves (2.4).

Proof of Theorem 2.1. We may assume that B is compact. We will prove that
all the second-order derivatives of ¢ wvanish on B\S, which by continuity
implies that they vanish on all of B and so proves the theorem. Let B, S B\S,
be a ball. It is sufficient to prove that ¢ is linear on all lines through B,. By Lemma
1.1(vi) we may then assume that » =1, and so that B, is an interval. By
assumption @, € CY(B;) uniformly in m, and so @m .is uniformly bounded in
M, (since n = 1). Hence

P
M, 5,(exp (im @) < M, g (exp (im ¢,)) My, 5,(exp (— 1@y)) <
< CM, g(exp (im gm)) < Cm*, m=1,2,...

By Lemma 2.2 it then follows, since « << [1/2 — 1/p|, that ¢" = 0 on B, and so
that ¢ is linear on B, This completes the proof of Theorem 2.1.

Corresponding to Lemma 2.1 we have the following result in RB* (cf. Littman
[20] and Leblanc [17]; the author is indebted to Yngve Domar and Noél Leblanc
for these references).

Levma 2.3. Assume that ¢ € C® is real and that the Hessian J of ¢ has rank

at least v on a ball B, and that u € CP(B). Then there is a constant C = C(u, B)
such that

|F(exp (im p)u)||,, < Om™™, m=1,2,... (2.6)

From this Theorem 2.2 now follows as Theorem 2.1 followed from Lemma 2.1.
We omit the details.
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3. Powers of multipliers on FLY

In this section we will first present some general multiplier theorems in M3"".
The proofs of the main results will be postponed till the next section. Here we will
only prove some corollaries, and also give the first step in the proofs, namely the
characterization of the eigenvalues (Proposition 3.1 below).

THEOREM 3.1. Let p # 2 and let ¢ be an N XN-matrixz in €V, for some
v > 1. Assume that there is a constant C such thal

M) Nexp imp) <C, m=4+1,4+2,... (3.1)
Then there exist mutually orthogonal idempotents K; € M;,V’N N € and real linear
Junctions «; such that ¢ = >%_H,.

As mentioned above, the proof is postponed till section 4.

CoROLLARY 3.1. Let p # 2 and let P be a homogeneous matriz polynomial of
degree d > 0 with real eigenvalues. Then exp (iP) € My~ if and only if

P(y) = zlAjyj’ (3.2)
]=
where A, ..., An are diagonable, commuting matrices with real eigenvalues.

Remark. In [4 — II] Theorem 3.1 was stated for p =1, c0o without any
regularity assumptions. The proof of this result was not correct, however, since
Proposition 1 in [4 — II] is only valid locally, not globally as incorrectly stated (cf.
the discussion in the end of section 4 below). But the following result was proved:

THEOREM 3.1'. Let ¢ be an N X N-matriz such that for some constant C,

MY¥Nexp (im @) <O, m=41,4+2,.. : (3.1

Then there exist mutually orthogonal idempotents E; € M NN

(x] S‘uch that @ = Z;=1“JE’J'

and real linear functions

As Corollary 3.1 will follow from Theorem 3.1, Corollary 3 in [4 — II] follows
from Theorem 3.1° (that is, Corollary 3.1 for p = 1, co, assuming that P is a
homogeneous matrix function, not necessarily a polynomial).

Before we prove Corollary 3.1 we state and prove a lemma which may be of
some independent interest.

Levmma 3.1. Let ¢ be an N X N-matrix function. If the eigenvalues of ¢ are
real on R", and if for some constant C,
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M) Nexp (tm ) <C, m=1,2,... (3.3)

then (3.1) holds. Conversely, if (3.1) holds then the eigenvalues of @ are real on R".

Proof. Since My"N € M"Y and M, = L,, (3.1) implies that the eigenvalues
of exp (1 ¢) have bounded positive and negative powers on RE", ie. they have
modulus 1 on R". This proves the last statement in Lemma 3.1.

If (3.3) holds, then also det (exp (#m ¢)) and so det (exp (¢m @)), is uniformly
bounded in M, for m =1,... Since all the eigenvalues of exp (ip) have modulus
1, we also have

exp (— im @) = ym det (exp (tm @)).

Here the elements of ., are sums of products of elements of exp (im @), with
the number of terms and factors bounded independent of m. Since by (3.3) the
elements of exp (9m ¢), and 80 ym, are uniformly boundedin M, for m = 1,2, ...,
this proves the lemma.

Proof of Corollary 3.1. Assume first that exp (¢P) € MII,V' N We then prove
that the powers of exp (iP) are bounded in Mp'": For m >0 we have
mP(y) = P(m"'%), and so the positive powers of exp (iP) are uniformly bounded
in M;V’N, by Lemma 1.1(v). By Lemma 3.1 this means that (3.1) holds, with
¢ = P.

Now P €€, and so by Theorem 3.1 we can find continuous mutually
orthogonal idempotents E; and real linear functions «; such that P = Z;_:]_(XjEj.
This means that d = 1, the o;’s are homogeneous, and so for ¢ > 0, that

r

Ply) = 2 a(y)Ejlty)-

=1

If we let t—0 we get by continuity that P(y) = >7_;xi(y)E;(0), and so (3.2)
follows. The converse follows as in [4] by the fact that we can find a common
diagonalization of the A4;s.

If ¢ is homogeneous and satisfies the regularity assumptions in Theorem 3.1
only on R"\{0}, we have the following result.

THEOREM 3.2. Let p % 2, and n > 1. Assume that ¢ is homogeneous of degree
d > 0, that the eigenvalues of @(y) are real for y € R, and that ¢ € TV (R*\{0}),
for some v > 1. If exp (ip) € M"Y, then there exist mutually orthogonal idempotents
E; € M"Y 0 €T (R™\{0}), homogeneous of degree 0, and real linear (homogeneous)
Junctions o; such that ¢ = >%_ ;8. In particular & = 1.

Remark. For p =1, o we have by convention that M)'NC ¢, and then
Theorem 3.2 actually says that the Ej’s are constant, and so ¢ can be written in
the form (3.2).
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We will now state analogues of Theorem 2.1 in M,"". In order to get useful
results we have added the assumption that we have boundedness in M"Y, For the
applications we have in mind this is a quite natural assumption, and it is
automatically satisfied (by M"Y C M}*Y) in Theorems 3.1 and 3.2. We can then
also replace the global condition corresponding to (3.1) by a local condition. This
will be important in later applications.

As before we assume that {Q.} is bounded in CYR*\S,), m > 1, where S,
is a closed nowhere dense set. We let ¢ =1 if ¢Qn = Qup, and let ¢ =1 + «
otherwise.

TaEOREM 3.3. Let 0 <& < |1/2 — 1/p|, and let ¢ € €Y, for some v >1,
be an N X N-matriz function with real eigenvalues on R". Let ¢m = ¢ + M Qm,
with Qm as above. Assume that for each compact ball B S R*\S, there is a constant
Cgp such that

M (exp (hpm)) < Cpm®, 1 <k <m=12,... (3.4)
and further that for some constant C,
Mylexp (im o)) <C, m=1,2,... (3.4

Then there exist mutually orthogonal idempotents E; € My N €+ and real linear
Junctions o5 such that ¢ = >%_,08;

CorOLLARY 3.3. Let 0 <« << [1/2 — 1/p|, and let P be a homogeneous N X N
matriz polynomial of degree d > 0 with real eigenvalues on R*. Let ¢m = P -+ m™°Qm,
with Qm as above. If for each compact ball B C R™\S, there is a constant Cp such
that (3.4) holds, and if (3.4)’ holds for ¢ = P, then

P(y) 221 Ay
i=
where A, ..., An are commuting, diagonable matrices with real eigenvalues.

The proof of Corollary 3.3 from Theorem 3.3 is the same as the.proof of Corollary
3.1 from Theorem 3.1.

THEOREM 3.4. Let 0 <o << |1/2 — 1/p|, and let n > 1. Assume that ¢ is a
homogeneous N X N marriz function of degree d > 0, that the eigenvalues of ¢ are
real on R, and that ¢ € €VT(R"\{0}), for some v >1. Let, as above,
Pm = @ + M Qm. Assume that (3.4) holds for each compact ball BC R*\S, U {0},
and that (3.4) holds. Then there exist mulually orthogonal idempotents
E; € € R"™\{0}), homogenecous of degree zero, and real linear functions o such
thot @ = 27 _jo5E;. In particular d = 1.



THE CAUCHY PROBLEM FOR SYSTEMS IN I, AND L, 4 87

Remark. By Mikhlin’s theorem (Lemma 1.3) we get that if » > »n/2 — 1, then
E; € MY for 1 <p < co.

In the remaining part of this section we will prove the parts of Theorems 3.1
through 3.4 which concern the eigenvalues. '

Levma 3.2. Let A be a Banach algebra with norm || If a,b €A then
llexp (t(a + b))l < M () exp (M),
where  M(t) = sup {|lexp (sa)]; 0 <s <i}.
Proof. Let g(t) = exp (t(a + b)). Then
9'(t) = ag(t) + bg(t), 9(0) =1,
and so

96) = exp (1) + [ exp (¢ — s)a)by(e)ds.

This gives the estimate, 0 << v <<{,

lg()ll < M(t) + M() /Ilbllllg(S)lldS-

Gronwall’s lemma then implies that
lg@®ll < M(2) exp (M (£)bl),
which is the wanted inequality.
ProrositioN 3.1. Let QC R* be open and connected. Let 0 <o << |1/2 — 1/p|.

Assume that ¢ is a matriz function in €VTY(Q) with real eigenvalues on Q and that
for each compact ball BC Q\S, there is a constant Cy such that

My (exp (ihpm) < Cpm®, 1<k<m=12,... (3.5)
where as above @m = @ 4+ M~ °Qun. Then there exist functions f,, .. ., fx of the form
Biy) = Bio+ 3 B §=1,..., N, (3.6)
i=
where Bir are real constants such that By(y), . .., Bx(y) are the eigenvalues of @(y),

counted with proper multiplicities, for y € Q.

Proof. Let BC 2\8, be a compact ball. Then there is a ball B'’C B such
that the eigenvalues of ¢ have constant multiplicities on B’. The eigenvalues f;
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of @ can be chosen continuous on B’ and such that exp (if;) is an analytic
function of the elements of exp (ip) on B'.

We will first prove that the functions f; are linear on B’. It is sufficient to
prove that the functions f; are linear on each line through B’. In view of Lemma
1.1(vi) it is then no restriction to assume that B’ is a compact interval and that
# =1 in this part of the proof.

In Lemma 3.2, let 4 = fo’BN and ||| the corresponding norm. Let o = impn
and b = im(p — @w), and introduce

C(m) = sup {|lexp (ikgn)l; 0 <k <m, k integer}.
Then, in the notation of Lemma 3.2,
M(1) = sup {[lexp (ispn); 0 <s <m} < O(m) exp ([loml).
Lemma 3.2, with ¢=1, then gives
lexp (img)l| < C(m) exp (gull + C(m)m exp (lpnilllp — @nl).

Since {@u} is uniformly bounded in €YB’), and CYB') € Myp for n=1,
formula (3.5) and the above estimate show that if @Qm # @mp, then
MY (exp (img)) < Cm*exp (Om't*m=°) < Om* If ¢Qum = Qmp, we have
trivially

MY (exp (imp)) < MY (exp (img)) exp (MYS(Q)),
and so we have in both cases that
Mg (exp (imp)) < Om®, m=1,2,...
By Proposition 1.1, exp (if;) belongs to M, 5, where we take
o< |1/2 — 1/q] < |1/2 — 1/p|

‘(and where we may have to shrink the ball B’ somewhat). In the same way we

can find eigenvectors v; € M, ;;},X corresponding to the eigenvalues exp (¢f;) such

that |4]=1 on B’. On B’
exp (#mf;)y; = exp (sme)y;.
Multiplying by #f from the left we get, still on B,
exp (imfj) = <{exp (img)v;, v

By Lemma 1.1(iii) and the above remarks, we then have

M, p(exp (imf;)) < MQ,B'(”_;k (exp (ime)y;)) <

< My (exp (ime)) My 5 (o) My (v*) < CMyy (exp (imp) <
< CMYP(exp (imp)) < Om*, m=1,2,...
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Since @ € €V+1(Q) C €X(Q), we have that f; € C¥B’). Theorem 2.1 then proves
that the (by assumption real) eigenvalues 8; of ¢ on B’ can be chosen to be
linear functions. As mentioned above, we can then drop the assumption that n = 1.

Thus we have proved: for any open ball B,C Q, we can find a ball B’'C B,
such that ¢ has real linear eigenvalues on B’, that is

N
det (p(y) — B) = I—[ Bily) — B), y€PB, (3.7)
i=

where f; are of the form (3.6). This means that the set S where (8.7) does not
hold for some set of real linear functions B; is nowhere dense in £. Since the
N 4- I’st derivatives of det (p(y) — B) € €'*(Q) vanish on 2\S8, by (3.7), it
follows by continuity that the determinant is a polynomial so that (3.7) holds for
all y € 2, which proves the proposition.

Finally we give the counterpart of Theorem 2.2 for N XN matrix functions
@ € €°. Assume that an eigenvalue «; of ¢ belongs to C%*B) on some ball B,
and define then 7(xj; B) = inf, 5 rank (0%/0ysdy)x;(y))i,;r We say that ¢ has
rank r on By if and only if r is the largest integer such that there is a ball BC B,
and a real eigenvalue o; of ¢ on B such that r(xj; B) >r. We let 0 =1 if
P@m = Qup, and let ¢ =1+ r|1/2 — 1/p| otherwise.

ProrosiTIiON 3.2. Assume that ¢ € €® is an N XN matrixz function with rank
atleast r on some ball ByC R", and that gm = ¢ + M~ °Qum € € (R"\S,) uniformly
for m > 1. Then there is a constant ¢ > 0 such that

sup Mz (exp (ikom)) = cm™MP-UPl g = 1,2, ... (3.8)

0<k<m

Since the proof of Proposition 3.2 is similar to that of Proposition 3.1, we omit
the details. We only notice that we here use the fact that €*(B)C M, p for B
compact, instead of Proposition 1.1.

4, Proofs of Theorems 3.1 through 3.4
We begin with two lemmas, which are common to all the proofs.

Lemma 4.1. Let B be a real linear function on R™ and assume that

sup M) N(exp (img)) < C. (4.1)

mezZ

Then
MYN(r — 1)(r exp (i) — exp (ig))™) < C, 7> 1. (+2)



90 PHILIF BRENNER
Proof. By (4.1) all the eigenvalues of @(y) are real, y € B* (cf. Lemma 3.1).
Hence for r > 1,
(r exp (iB) — exp (ip))™ :,-;) (r exp (if))~~" exp (ijy).
But, since M ,(exp (if)) = 1,
M7 ((r exp (i)™ exp (ifg)) < v~ M (exp (—(§ -+ 1)if) My (exp (i) < Or =

It follows that (rexp (if) — exp (ip))t € M"Y for r> 1, and also that (4.2)
holds.

Levma 4.2. Let Q2 € B* be open and connected. Assume that ¢ is an N XN-
matriz function in C€N'(Q), for some v > 1, which has a set Py, ..., B. of real
linear functions as all of its eigenvalues on Q. If ¢ satisfies (4.1) for p = 2, then
there exist mutually orthogonal idempotents E; € M"Y N €1Q), with >7_, B = E,
such that

o) = 3. BB, v € Q. (4.3)
j=1

Proof. By Lemma 4.1, (4.2) holds with f=p;, j=1,...,r, and for p=2.
Then (4.2) shows that ¢ (or, which is the same, exp (ip)) has only linear factors
on £, ie.

#0) =3 HOBW). ¥ €2

for some set of mutually orthogonal idempotent matrices H,, ..., B, with sum E.
Following Strang [23], we have a.e.
(r — L)(r exp (i) — exp (ig))™" = (4.4)

= 2. (r— 1)(r exp (if;) — exp (ifs)) " Br — exp (— if)B;, as r— 1+

and so by Lemma 4.1 that E; € M"Y, Hence E; is a bounded solution of
(p — B)E; =0 on Q. It remains to prove that KE; € €+(Q). Since

exp (ip) — exp (ifs)
B =TT R ) — P
& €Xp (¢f;) — exp (:fx)
this follows from the fact that if f, g € C*»*! and if ¢ = 0 = f= 0 and dg # 0,
then flg € C*. (This follows from Taylor’s formula.)

CoROLLARY 4.2, Let Q2 be open, connected, and dense in R*. Assume that (4.1.)
holds with p # 2 and that ¢ € €V (Q) N € (R, for some v > 1. Then (4.3)
holds for y € R* with E; € M""™.
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Proof. By Proposition 3.1, (4.1) implies that, for p % 2, the conditions of Lemma
4.2 hold on Q. As in the last part of the proof of Proposition 3.1, the ;s are
real linear functions on £ = R", too. As above it follows that (4.3) holds on R",
and by Lemma 1.1(iv), (4.4) and (4.2) that E; € M}*", and the corollary is proved.

Proof of Theorem 3.1. By Corollary 4.1, with 2 = R", (4.3) holds on R" with
E; € MY N €+ and with real linear functions B; by Proposition 3.1. This
proves the theorem.

Proof of Theorem 3.2. By homogeneity and Lemma 3.1 it follows that (4.1) holds.
We can again apply Corollary 4.1 (now for 2 — R*\{0}, which is connected since
n > 1) and Lemma 4.2, together with Proposition 8.1, to prove that (4.3) holds
on R, with real linear functions §; and with E; € MY N €+Y(R"\{0}). That
E; is homogeneous of degree zero follows from (4.3) and so Theorem 3.2 is proved.

Proof of Theorem 3.3. By assumption (4.1) and so (4.3) holds for p = 2, Q = R™.
It follows that E; € M} N €+!, by Lemma 4.2. That ¢ has linear eigenvalues
on R follows as above from Proposition 3.1.

The proof of Theorem 3.4 is similarly a modification of the proof of Theorem 3.2.

We take this opportunity to remark that the projections K; € M N €*(R"\{0})
in general cannot be diagonalized globally in €(R*\{0}) (as was incorrectly stated
in Proposition 1 in [4¢ — II] for p = 1, oo; the proof there is actually only valid
locally). As an example we notice that if E; € €°(R"\{0}) is homogeneous of
degree zero, then ;€ ML'™ N €°(R*\{0}), by Lemma 1.3. But as for odd =
there is a nontrivial vectorbundle over S"~!, the unit sphere in R", these Ej’s
can in general not be diagonalized globally in €*(B"\{0}), or even in €(R*\{0}).
Hence there seems to be little hope to go much further than in the statements of
Theorems 3.1 through 3.4.

5. Initial value problems in L, and L,

Let us consider the Cauchy problem
{ oufot = P(Dyu, x€R, 0<t<T, (5.1)
u(zx, 0) = wuy(x) .

where P is an N X N-matrix of pseudo-differential operators with constant coef-
ficients, and where « and w, are complex N-vector functions. This means that
we define P(D)u for u € SV by

P(Dju(z) = [ exp (— 2ice, )Py, (5.2)
R :
where P(y), the symbol of P(D), is an N X N-matrix function, by our convention

in €%, such that for a sequence P, ; of homogeneous matrix functions in
CUR"\{0}) of degree d —j, j >0, we have for each integer m
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DP) ~ 3, Par o) = Ogl*™~), 1ol < g (5.3)

as |y| — co. We say that Pa(y) is the principal part of P(y), that Pa(D) is the
principal part of P(D), and that d is the order of P (and Pj) provided Pai# 0.
We will assume below that in (5.1) P has order d > 0.

Any constant coefficient partial differential operator P(D) is of the above
type. By (5.3) P(y) is in general bounded by some polynomial, and so P(y)i(y)
is in LY for » € 8", and hence P(D) is well defined by (5.2). For more details
about pseudo-differential operators, generally with g = oo, and for operators
with variable coefficients, we refer to Hormander [7], [8].

We say that the Cauchy problem (5.1) is well posed in L, if P(D) is
the infinitesimal generator of a strongly continuous semi-group of operators H(f)
on L, that is: the family E(f) (of solution operators of (5.1)) satisfies

E(0) = E = identity, E(t + s) = E(t)E(s), t,s >0,
and

[E@uolty < O(Dwgllp, 0 <t < T, uy €8V, (5.4)

|p
and

(LB (s + t) — E(s)) — P(D)E(s)lugll, — 0, £—0, u, €S". (5.5)

For 1 < p << oo this is the usual definition of a well posed problem (5.1) and for
p = oo, we say that (5.1) is well posed in L_, although the standard terminology
should be »well posed in Cp.

Symbols for systems such that (5.1) is well posed in L, have been completely
characterized by Kreiss [15]. In particular, if the eigenvalues of the principal part
P4 are imaginary (e.g. when d is odd), then a necessary condition is that there
exist uniformly bounded matrix functions S, 8! on R" such that S-1P,S is
diagonal. For d = 1, this is also a sufficient condition. ‘

We will see below that in general systems that are well posed in L, are not
well posed in L, for p %= 2 (cf. [3]). For a system such that (5.1) is well posed in
L,, one might try to replace the L, norm of u, in (5.4) by the norm

lgllp, o = (w0, %)l

where « >0 and w,(y) = (1 + |y)*®. We denote the completion of SV in
this norm by Lj,, (and also write L, , for N = 1). Hence we replace the condition
(5.4) by

1B@ully < O(Ttgllp,er 0 <t <T', uy € 8™ (5.6)

If the solution of (5.1) exists in the sense of (5.5), and if (5.6) holds, we say for
short that (5.1) is well posed in L, ,, although the standard notion should be
swell posed (L, ,, L, ).

'prou
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We will now present the main results. The proofs will be postponed till the end
of this section. First some more notations, however: If d,; is the order of P — Py,
we define d = min{d, (d — d;)/(1 + &)}, where ¢=0 if P.P = PP,
e = [1/2 — 1/p| otherwise. Then d =d if the order of P — P; is < — &d,
e.g. if P is homogeneous.

TaROREM 5.1. Let 0 <« < d|1/2 — 1/p|. Assume that P is a differential
operator and that the eigenvalues of Paly) are imaginary for y € B*. Then (5.1)
is well posed in L, , and in L, if and only if

o

Pq(y) =21 4;0]0a;, (5.7)
j=
where A, ..., A, are diagonable, commuting matrices with real eigenvalues. In

particular d = 1.

Remark. If (5.6) holds and if the order of P is odd, then it is well known that
the eigenvalues of Py4(y) are imaginary, y € B* (cf. also Lemma 5.1 below).

If the problem (5.1) is well posed in L, for some p, 1 <p < oo, then (5.1)
is also well posed in L,. Again we refer to Lemma 5.1 below.

TaEOREM 5.2. Let p # 2, and let n> 1. Assume that Py € €VH(R"\{0}),
for some v > 1, and that the eigenvalues of Pa(y) are imaginary for y € R*. If
(5.1) ts well posed in Ly, then

Pu(D) = 3 o15(3)0;) Ex(D), (5.8)

where oi; are real constants and where En(D) are operators with symbols which
are mutually orthogonal idempotents in M)V 0 €Y (R™N\{0}) and which are
homogeneous of degree zero. In particular d = 1. Conversely, if P € €* for some
u > nl2, then (5.8) implies that (5.1) is well posed in Lp, 1 <p << oo.

Since MY¥Y = MYN ¢ €, we have the following corollary for p = 1, co.

CororLarY 5.1. Let p = 1, o, andlet n > 1. Under the assumptions in Theorem
5.2 it follows that (5.7) holds for a set of diagonable, commuting matrices A; with real
eigenvalues. In particular, Ps is a first order differential operator. Conversely, if
(5.7) holds, with A,, ..., An as above, and if the term of degree zero in (5.3) is constant,
then (5.1) is well posed in L, (and L), provided P € €* for some u> n|2.

Remark. As mentioned in section 3, although Theorem 1 in [4 — II]is incorrect
as stated, the result of Corollary 3 in [4 — II], and so also Theorem 2 there holds.
Hence Corollary 5.1 actually holds without any regularity assumptions on Pj.
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THEOREM 5.3. Let 0 <o < ci[l/2 — 1/p|, and let n > 1. Assume that Pq € €V*t*
on B™N\{0}, for some v > 1, and that the eigenvalues of Pa(y) are imaginary for
y € R If (5.1) is well posed in L, , and in L,, then (5.8) holds where again o
are real constants, and where E(D) are operators with symbols which are mutually
orthogonal idempotent matrices, which are homogeneous of degree zero on R*, and
which belong to M"™ N €+Y(R"™N{0}). In particular d = 1.

If v>mn/2 —1, then Ep also belongs to My'™ for 1 <p < . Conversely,
if P €€ for some u>nf2, then (5.8) implies that (5.1) is well posed in Ly,
1<p < oo

In general the bound é[l /2 — 1/p| above is not the best possible, in the sense

that the problem (5.1) need not be well posed in L,, for «> c~l[1/2 — 1/p|,
even if it is well posed in L,. However, to obtain results of the type (5.7) and

(5.8), the bound d [1/2 — 1/p| is essential. This will be clear from an example
given in the end of this section, for N = 1.

If we merely want criteria for the non-existence of estimates of the form (5.5)
we can use Proposition 3.2. Consider the system (5.1). We have defined the rank
of P; as the largest integer r such that there is some ball B and an imaginary
eigenvalue «; of Py on B such that «; € C¥B) and such that

k( 3206]' ) -
ran 0yi.0y1 ) i =

on B. Also, let now ¢ =min{d, (d — d,)/(1 + re)}, ¢ as above.
We then have the following result:

THEOREM 5.4. Let r be the rank of Pa. Assume that P € €°(R"). Then the
Cauchy problem (5.1) is not well posed in L, , for 0 <o < rd[1/2 — 1/p|.

Applications of Theorem 5.4 to specific cases, such as the wave- and the
Schrddinger equation, will be given below.

A Cauchy problem (5.1) which is well posed in L,, is also well posed in L, ,
for « large enough, provided the symbol is smooth. In view of Theorem 5.4 the

following result is in a sense the best possible (cf. Lemma 1.4).

THEOREM 5.5. Let P be an N X N-matriz of pseudo-differential operators of order
d> 0 on R, with symbol P € €°. Assume that the Cauchy problem (5.1) is well
posed in Ly Then (5.1) is also well posed in L, , for « > nd|1/2 — 1/p|.

Before proving the theorems, we give some examples.
As a first example we consider the Cauchy problem for the wave equation
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Pufof = S7_, 0%uldai, ®€R, 0<t<T,

u(x, 0) = uy(x), (5.9)

ou/ot(x, 0) = upe(2).
It is easy to reformulate (5.9) as a Cauchy problem for a first order system of pseudo‘—
differential operators, where the principal part P, of the symbol has eigenvalues
of the form - 2mijy|. The Hessian is Jau(y) = 4 2#nily |3 (Y 12E — (yun)).

As a second example we take the Cauchy problem for a Schrédinger type equation.
Let am be real and symmetric and consider

oulot =14 gy q ayd®u/oxdn, x€R, 0<t<T,
(5.10)
u(x, 0) == uy(x).
Here Puly) = — (27)% > pi_1 auyayi. Hence J(y) = 2(am) determines the rank

of Pg.
There is a general problem, which in a sense includes (5.9) and (5.10). Let 8 > 0
and let Py(D) be the pseudo-differential operator which has the symbol

dktykyt)ﬂlz,
1

M

Pyly) = %£

T

where au = ax and Z;;,zl auyeyt >> 0, y € B*. Consider the Cauchy problem

ou/ot = Pg(D)u, x€R", 0 <t < T,
{ (5.11)

u(x, 0) = uy(x).

Since an orthogonal change of variables does not alter the property of being
well posed in L, ,, and since (aum) is symmetric and non-negative, we may assume

that  Pyy) = (X5, 95)", where r=rank (au). The matrix Jj,(y) which
determines the rank of P, is in this case

I, y) = iplyf*(yIPE + (B — 2)(ywy)), y € R".

LemMA. Let r>1, >0 and J,, be as above. Then the rank of Jg, is for
y#0

@ r—1 for =1
@) r for B 1.

Proof. We may by homogenity assume that |y| = 1. Since the columns of
(yuyn) are of the form wi(yy, ..., #), it follows that (ysxy) has rank 1. Hence this
symmetric matrix has only one non-zero ecigenvalue. As the trace of (ywy) is
ly|2=1, the eigenvalue is |y|> = 1. Hence the symmetric matrix J; (y) has
for |y] =1 a diagonal form which is a multiple of
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g—1 0
1...1,
0 1
which proves the lemma.

From this lemma and Theorem 5.4 we then have the following result:

ProposiTiON 5.1. Let n > 1, n = rank (au). Then the Cauchy problem (5.11)
is not well posed in L, , for
np|1/2 — 1/p|, g+1,

0<ua<< {
(0 — D12 — 1fp|, =1

For the wave-equation (5.9) this result was obtained by other methods
by Mauravei [22], who also proved that (5.9) was well posed in L,, for
o> (n— 1)]1/2 — 1/p|. For the Schrédinger equation cf. Lanconelli [16]. By
Theorem 5.5, (5.11) is well posed in L, , for o> nf|1j2 — 1/p| for 1, and
so Proposition 5.1 is in a sense best possible also in this case. Cf. also [27].

We now proceed to the proofs of the above theorems. We first transform (5.6)
to multiplier form (cf. Theorem 2 in [3]). As above w,(y) = (1 - |y[2)*~.

Lemma 5.1. If the Cauchy problem (5.1) is well posed in L, , then
My Nwrety < OT), 0<t<T. (5.12)

o

Conversely, if P € €* for p > n[2, then (5.12) implies that (5.1) is well posed in L, .-

Proof. Assume first that (5.1) is well posed in L,, Since by (5.6)
u(t, ) = E(t)u,(x) belongs to Lf,v , we can take Fourier transforms in the distribu-
tion sense, of the elements of (5.1) with respect to =« (f fixed) and get
by the definition of P(D) that

du(y, )/ot = P(y)i(y, 1), yE€R, 0 <t <T,
{ Uy, 0) = d(y)
and so with
@ly) = exp (PY)), Uy, t) = py)u(y).

Then (5.6) implies by definition (5.12).
On the other hand, assume that (5.12) holds. With 2, = ¢, we have

u(, 1) = pe % 0(@)

and so u(.,f) € €° since the elements of u €8’ and since differentiation is con-
tinuous in 8. From
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a(p,
g :P(Pt: (pOZE,

it follows that

t+h

@ = @ + hP(}J; -+ /(T — )P, dt.

Hence, using (5.12) we have

3t 4 ) — i, ) — PO, ), < (] sup [PD)u(, o), < O BlIPDF el
If P(D)u, € LY, for fixed wu, € S™, this will prove (5.5).

For 2 <p < o, P(D)yu, €Ly, for any o >0 by the Hausdorff-Young
inequality. For 1 < p < 2 this is certainly the case if P(y) € €* for some u > n/2,
by Lemma 1.4 (Bernstein’s theorem). Together these results prove Lemma 5.1.

Remark. If 2 <p < oo, then (5.12) alone implies that (5.1) is well posed in
L, ., by the above proof. For « = 0 this is also the case for 1 <p < o if
g PE€MYYN, 0 <t <T, eg. if P is homogeneous and has imaginary eigenvalues,
cf. Lemma 3.1.

We use Lemma 5.1 to obtain necessary conditions for the Cauchy problem (5.1)
to be well posed in L, and in L, ,.

Lemma 5.2. Assume that (5.1) is well posed in L,. Then exp (P,) € MIZ,V’N.
Proof. If (5.1) is well posed in L, then (5.12) holds for x = 0. Let ¢ = s
and y,(y) = ¢7™. By Lemma 1.1(v) then
MY N(y) < O(T), 0<<s <1,

and since by (5.4), y.(y)— exp (Pai(y)), at least for y % 0, and since Py is con-
tinuous (d > 0) we have by Lemma 1.1(iv) that exp (P.) € M,"".

For « > 0 we have the following local result as a consequence of (5.12). Here
e = |1/2 — 1/p|, and d(r) = mia (¢, (d — dy)/(1 4 re)), r > L.

LevMma 5.3. Let « >0, d > 0. Let BC R”\{O} be a compact ball. Assume that
(5.12) holds. Then
WA (Exp (P A m=Hr90,))) < Cym®, 1 < j <, (5.13)
where {Qum} is bounded in CYR™\{0}) and where Qun-—>Py or 0 as m-—> oo,
on R"\{0}.

Proof. Write P = Ps-- @ where (the principal part of) ¢ has degree
d; <d - 1. By (5.12)
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M Nw  exp (((Pa+ Q) <C, 0 <t <T.
Put ¢t = Tjut. From (5.3) we have after a change of variables that
M (T ) ") exp ((Pg + p7749Q,)) <€, 1 <j <p,

where Q,(y) = Tu Y*Q(T~""u"*y) is bounded in CYR"\{0}). Let B be a closed
ball, with 0 € B. Then
MN’}_Z,V(eXp (J(Pq + M—l+d1/dQu)) < OMP,B(wa(ﬂlld-)) < CBMa/d’ 1<) <p.

p-

Let now m = ‘u"N(’)/d, and let Qn = m" )y~ T49Q . Then

N ‘ . d—dy
Q)L+ er) — (@ — dy) = (1 + er) (d(r) - 8,“) <o,

and hence @, has the properties stated in the lemma. Further, u*? = m™)
and m < pu, and so (5.13) is proved.

LuvMMma 5.4. Let P =P + P" where the degree of P” € €* is <0, u> nf2.
If p=1 or o0, we also assume that the zero-order term of P" s constant. If

M Nexp (tP) < ¢, 0<t<T,
then
MY Nexp (tP)) < O), 0<t<T.

Proof. Immediate from Lemma 1.5 and the formula proved in Lemma 3.2.

Proof of Theorem 5.1. By Lemma 5.1 and 5.2, or 5.3 and 5.2 (for p = 2), if
a > 0, we see that the conditions of Corollary 3.1 and 3.3, respectively, are satisfied.
This proves (5.7). Here we used r = 1 in (5.13).

To prove the converse, notice that (5.7) implies that exp (tP;) € M*™ uniformly
for 0 <t < T (e.g. by Corollary 3.1). Since d = 1 and P is a polynomial, Lemma
5.4 implies that (5.12) holds; by Lemma 5.1 and the regularity of P, (5.1) is then
well posed in L,.

Proof of Theorem 5.2. The proof of (5.8) is similar to the proof of (5.7), now
using Theorem 3.2. Also the proof of the converse of Theorem 5.2 is similar to the
above proof of Theorem 5.1.

The proof of Corollary 5.1 is evident from the fact that MY ¥ S € for p = 1, oo,
and so the projections X; are constants.

Theorem 5.3 follows from Theorem 3.4 and the converse from Lemma 1.3, in
analogy with the above proofs.

Proof of Theorem 5.4. By Lemma 5.3, if (5.1) is well posed in L, , then for
each compact ball B,C R*\{0}, we have

MYN(exp (j(Pg 4 m~09Q,)) < Cpm™, 1 <j <m.
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If x < rd|1/2 — 1/p|, this contradicts the assumptions of Theorem 5.4 and Proposi-
tion 3.2. Hence (5.1) is not well posed in L, , for 0 <« < rd[1/2 — 1/p| in this
case.

To prove Theorem 5.5 finally, it is sufficient to prove the following result.

ProrosITION 5.2. Let ¢ € C* be the symbol of an N XN matriz of pseudo-
differential operators of order d > 0. Assume that exp (ip) € MY'N. Then

MYyNw, ey < Cp, 0 <t < T, (5.14)
Jor o> nd|{1/2 — 1/p].

Proof. We will provide bounds for p = o0, « > nd/2, and then interpolate
with the known bound for p = 2. To handle the non-commutativity we proceed
as follows. Let ¢ = exp (itg). Then

dge
a e

Multiplying with w,' and then differentiating we get that
0 e Ty
3 Dt e) = igD(wlg) + 2 DM gD (w0 ).
Vi
The summation is over all y’, 9" such that y" + " =, with »’ % 0. Solving
this we have

7' #0

D'(wy ) = @D"wy’ + f gy 2, D7 (i)D" (wy )T, ¥ Y =y
0

Using (5.3) we get for |yl > 1 that
sup | D(wy'p)| < Op(ly| 77+ C >y sup D7 (wylg)], v + 9" = 7.
y'#0

0T
After |y| steps we have for 0 <t <T, ly| > 1,
1D (wy )| < Oply|@ D=, (5.15)

Hence we may apply Lemma 1.4 as soon as (d — 1)|y] — & << — |y] for |p| <,
some v > n/2, le. for & > nd/2. Hence (5.14) is proved for p = 1, oo and also
holds for p =2 (x = 0) by assumption. The general case then follows by an
interpolation argument (see e.g. [21]). Another proof is based on the Carlson-
Beurling inequality
M, (f) < O ID7fRID i)',

with summation over multi-indices y’, y” with sum (1,...,1). From (5.15) and
a simple computation we then have that (with y; as in Lemma 1.4, now writing
yo for yo +y_.)
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MM (wy ) < Cp27mmBHEIE 5 > 0,
and hence by Lemma 1.1(i) and our assumptions that
M pyp) < Op2700 HRTRL, 0,

Adding these inequalities, (5.14) follows for « > nd[1/2 — 1/p].

‘ By the method used, we can also prove that wj'exp (ity® — ty?) € M, for
0<t<T, if «>|1/2— 1/p|=d|l/2 — 1/p|. Since d =3 in this example,
it follows that the factor d cannot be replaced by d in Theorem 5.1, even for
N =1L

6. Corrections to the papers »Power bounded matrices of Fourier-Stieltjes
transforms I, II»

We give here a short list of corrections of some of the incorrect statements in [4],
most of which were pointed out for the author by Lars Hormander.

[4 — 1]: Theorem 1 is only proved for I'= R", and as stated does not even
hold for I'= T™. The error occurs in the last sentence in the proof on top of page
120.

Theorem 2, which was proved by a similar argument, is for the same reasons
only proved for I = R" or T".

The example on p. 125 is correct, in spite of the erroneous proof of the fact that
%(1 — 2) € B. Using the method of the stationary phase, one can however prove
this in a straightforward way, as was suggested by Lars Hormander.

[4 — IT]: Proposition 1 in section 2, p. 41, is proved only locally, not globally
as incorrectly stated (cf. the discussion in section 4 above). Hence neither Corollary
1 nor Theorem 1 are proved. But from the proof of formula (4) on p. 44 we have
the result stated as Theorem 3.1’ of the present paper (see section 3 above). Hence,
as mentioned in connection with Theorem 3.1’, both Corollary 2 and Theorem 2
are correct. Finally, Corollary 1 on p. 44 is not-correct, and the statement »H in
p» should be replaced by »H in p°%. The error here comes from not taking in
account the well-known fact that B is not symmetric on its maximal ideal space
(the Wiener-Pitt phenomenon).
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