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I n t r o d u c t i o n  

Weighted L 1 algebras on t l  were introduced by Beurling in [1]. A Beurling 
algebra L~ is defined as the convolution algebra of (equivalence classes of) functions 
f, Lebesgue measurable on R and satisfying 

R 

where p is the weight-function associated with the algebra in question. In order 
that  L~ be an algebra, a condition of the type 

p(x + y) ~ p(x)p(y) 

has to be fulfilled by p. According to the size of p, t~eurling talks of different 
cases. If, for simplicity, we assume p to be even, we consider the limit 

log p(x) 
~ l i m -  

which can be shown to exist. I f  ~ > 0, we have the analytic case. When ~ --~ 0, 
the quasi-analytic aud non-quasianalytic cases are distinguished according as 

f log p(x) dx 
1 -~x  2 

R 

diverges or converges, respectively. 
A central problem in the s tudy of any Banacb algebra is that  of its ideal structure, 

in particular the problem of spectral analysis. We say tha t  spectral analysis holds 
in an algebra B if every closed (proper) ideal in B is contained in a regular maximal 
ideal of B. The General Tauberian Theorem of Wiener [15] tells us tha t  spectral 
analysis does hold in ordinary LI(R), and this result has been extended to Beurling's 
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non-quasianalytic algebras, which are, among other things, regular algebras; see [3] 
and [12]. In  the quasianMytie cases (including the analytic ones), however, it is 
not evident that  spectral analysis should hold. Indeed, Nyman [14] proved that  in 
particular analytic eases it does not, and he also demonstrated that  the same thing 
occurs in several non-analytic (though quasianalytie) cases. Korenbljum [11], 
apparently unaware of Nyman's  work, gave a precise description of the "evasive" 
ideals in the analytic eases considered by  Nyman. 

In the present paper, imposing a few reasonable conditions on the weight- 
functions, we prove that  spectral analysis fails in quite general quasi-analytic and 
analytic algebras, and we exhibit chains of ideals not contained in any regular 
maximal ideal. In particular, our results contain the description of Korenbljum's 
ideals. W~hereas Korenbljum shows that  these are all the "strange" ideals that  exist 
in the ease considered by  him, we have so far not proved the corresponding facts in 
general' cases. 

Geisberg and Konjuhovskii  have dealt with the quasi-analytic ease in a series 
of papers [5], [10], [6], [7], independently of the present author, who has only very 
recently become aware of their work. Their results overlap with ours; in certain 
respects they go further than this paper, in others they do not reach as tar. Their 
methods are largely different from ours. 

Following Domar [4], we shall not only consider algebras L~, but  also Ll-spaces 
where translations are bounded operators. The problem of spectral analysis is quite 
relevant here, if closed translation invariant subspace (CTIS) is substi tuted for closed 
ideal, and a CTIS is called regular maximal if its codimension is 1. We establish the 
failure of spectral analysis here, too, but  the description of ~>strange~) CTIS is not 
quite complete. 

This paper is a slightly revised version of a doctorate thesis written under the 
guidance of Professor u  Domar to whom the author extends his sincere thanks 
for valuable help and kind interest. 

1. Assumptions 

Throughout the paper, we let p be a real-valued, continuous function on 11 
satisfying the following set of conditions, (1.1--4). 

p(@x) > p(x) -- p ( - -  x) > p ( 0 )  = 1 for every x E l t  and @> 1. (1.1) 

f log p ( x ) .  
i T = (1.2) 

R 

p ( x ) = e x p  [x]q(x) , x E l t ,  where 0 < q ( x ) < q ( 0 ) = M  and (1.3) 

q(@x) < q ( x )  if ~o> 1. 
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p ( x  + y) . 
sup as local ly  bounded  as a funct ion of x E R. (1.4) 
yeR P(Y) 

Def ine  L~ to  be the  B a n a e h  space of  all complex-va lued  f ,  measu rab l e  on R 
and  with  f ini te  n o r m  

i]fll ---- I/file = [IfJ[L~ - -  f If(x) Ip(x)dx. 

R 

(As usual,  we iden t i fy  funct ions  t h a t  are equal  a lmos t  everywhere . )  The  dual  space 
(L~)* of  l inear  funet ionals  on L~ can be represen ted  as the  space L,~p of  measu rab le  
funct ions  F wi th  f ini te  norm 

/F(x) l 
IIF!I = IIFI[* = ess sup 

~ p(x) 

via  the  dua l i t y  

f .  
F ( f )  = F �9 f(O) = ] f ( x ) F ( - -  x)dx.  

R 

The t r ans la t ion  opera tors  T~, x C tl, are def ined  by  

(T~f)(y) = f i (y )  = f ( y  - -  x), y e tl. (1.5) 

As a consequence of our  assumpt ions ,  Tx is bounded  on L~. Indeed ,  b y  (1.4), 

p(x + y) 
[ITx]] = sup - <  oo. 

yeR P(Y) 

Since p is an  even funct ion,  ][Txll = ][T_~II , and  b y  the  m o n o t o n i c i t y  of  p it  is 
also clear t h a t  ]]Tx]l _< lIT,ll i f  0 < x < n. I f  n is a na tu r a l  number ,  i t  is easy  
to see t h a t  [IT,,][ _< ]]Tll]". F r o m  these facts  we get  the  e s t ima te  

HT~Jt <_ Ce Al~t (1.6) 

for some constants C and A. 
From (1.3) we see that the limit q0 ---- lim~_~q(x) exists and is ~ 0. In Beurling's 

classification,  the  ana ly t i c  case corresponds  to  q0 > 0 and  the  non-anMyt ic  to  
q0 ~ 0. We  shall  have  to  t r e a t  these cases s epa ra t e ly  in a few proofs  la ter  on, and  
for the  fo rmer  case we shall  also d e m a n d  some ex t r a  hypothes i s  on p .  F o r  the  sake 
of  reference we s ta te  here  

A D D I T I O N A L  A S S U M P T I O N  I .  

qo > O, and  z(q(x) - -  qo) is non-decreas ing  for x > O. (1.7) 
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ADDITIONAL ASSUMPTION II. 

qo = 0. (~.s) 

We also need, occasionally, that  L~ is a Banach algebra, which is ensured by 

ADDITIONAL ASSUMPTION I I I .  

p(x § y) < Cp(x)p(y). (1.9) 

Here, as well as in the rest of the paper, the letter C is used to denote a constant, 
not necessarily the same constant on different occasions. 

2. Fourier transforms 

The Fourier transform f of an f e L~ is defined by 

f(~) = f e-'Xr dx, 
R 

;Tg 

where ~ = ~ @ i~ is a complex number; ](~) is well-defined if I~l ~< ~ q0. I f  

L~ is a Banaeh algebra, i.e. when the Additional Assumption I I I  is fulfilled, the 
Gelfand space of regular maximal ideals of L~ can be identified with the set 

Se = $: 1~[ <~ ~ qo in the complex plane under the usual topology; see Loomis 

[12], No. 23 D. 
As noted in the introduction, the natural substitutes for regular maximal ideals 

in the general case are regular maximal CTIS. (We nse the writing regular maximal 
to indicate that  the codimension is 1.) We shall find tha t  these correspond to the 
points of Sp in the same way as the regular maximal ideals in the algebra ease. 
Indeed, a regular maximal CTIS can be described as the annihilator of a translation 
invariant one-dimensional subspaee of (L~)*, which we can describe as 

{~F: 2 ~ C} 

where F is a fixed nonzero member of (L~)*. By translation invariance, for every 
t E R there is a number ,~(t) so that  

F(x + t) = ~(t)F(x) (2.1) 

for ahnost all x. We can assume F normalized so tha t  

l i m -  F(x)dx exists and equals 1. (2.2) 

0 
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Then 

_1 F ( t - t - x  x =  - t x x =  ~( t ) - I  x x.  (2.3) 

0 0 0 

The far left member of this tends to F(t) a.e. as e --> 0, and thus we have 

F ( t )  = ~(t) a .e .  (2.4) 

I f  e and C are suitably chosen we have from (2.3) 

= c [ r(t + x)gx 
0 

from which one sees that  X is continuous. We can then as well assume F to be 
continuous, by (2.4) and the fact that  2' is only "defined a.e." The relation (2.1) 
is strengthened to 

F(x + t) = F(t)F(x), 

holding everywhere by continuity. This implies the existence of a constant C and 
a number ~ = ~ - ~ i ~ E C  such tha t  

F ( x )  = Ce ~:x, x C R .  

C must be 1, by (2.2), and to make FC(L~)*  we must also have ]~[ ~ q o ,  

so that  $ E Se. We have thus shown tha t  a regular maximal CTIS in L~ cor- 
responds to a number ~ E Sp such that  

f e-'~Xf(x)& = 0 
R 

for all f in the CTIS. 
This is precisely the same description as for the regular maximal ideals in case 
is a Banach algebra. 

3. A chain of functionals with empty "Carleman Spectrum" 

In  this section we shall construct non-zero functions G o E (L~)* (~ E R), that  
will later be seen to annihilate certain CTIS in L~, although these CTIS are not 
annihilated by any exponential e ~r ~ E Sp. A very similar construction is found 
in [8], and similar ideas occur in [6] and [7]. 
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L~MMA3.1. Let z = x + i y ,  y >  0, and define 

=Jr (t -- x) ~ + y2 t2 + i logp(t)dt. (3.1) 
R 

Then u is harmonic in y > 0 and has boundary values equal to log p(x) on R. 

Proof. For  f ixed R > 0, let pR(t) = p(t) if  ]t] < B and  pn(t) = 1 otherwise. 
Define uR(z) b y  (3.1) using Pn instead of  p; u R is clearly harmonic in y > 0 
and  has bounda ry  values log p(x) for lxl < R. Staying inside a (semi-)circle 
x ~ + y~ _< r ~ we est imate 

f 1 1 + 2 x t - - x  2 - y 2  l 
]u(z) -- uR(z)i < 2y ((t -- x) 2 + y2)(1 -r t 2) ]t[q(t)dt <_ 

I,l>n 

f l + 2 r l t , + r  2 ( r ;1) f dt 
< C y  ltl((t__x)2_~_y2)dt < C y  2 r + - -  ( t - - x )  2 + y 2 ~ 0  as R----> ~ ,  

]~l>n ltl>R 

uni formly  for x ~ + y2__< r ~ (C is indepeadent  of R). Thus u is harmonic  in 
y > 0. To check the boundary  values, f ix  x E R and choose an  a rb i t r a ry  s > 0. 
Take /~(>  Ix[) large enough to make Iu(x, y) -- un(x, Y)I < e for, say, y < 1. 
Then 

so t ha t  

iu(x,y) -- logp(x)] < e  + lun(x,y) -- logp(x)l, O < y < 1, 

l im sup Iu(x, y) -- log p(x)l _< ~, 
y-+O+ 

and,  since ~ is arbi t rary ,  this  completes the  proof  of the  lemma. 
Le t  v be the  conjugate  harmonic  func t ion  of u in the  upper half-plane,  chosen 

such t h a t  v ( i ) =  0, and  define 

G(z) = G(x + iy) = Go(z ) = e u(~)+i~(~), y > 0. 

GAz) = G(z)e% c, ~ R. 

The boundary  values G~(x)= limy_~0+G~(x + iy) exist a.e., since G~ is locally 
bounded.  They  sat isfy [G~(x)i = p(x), and thus  G~ E (L~)*. (Here and  in the  
sequel we use somewhat  abusively  the  same no ta t ion  for an ana ly t ic  func t ion  and  
its restriction to, or bounda ry  values on, the  line.) 

B y  inspection i t  is seen t h a t  

z f l + z t  
u(z) + iv(z) = 2i t(t -- z)(t 2 + 1) 1tIq(t)dt + iC, y > O, 

R 
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and  taking the imaginary  par t  of this for z = iy w e  have 

f ltlq(t) 
v(iy) = ~ t(t 2 4- y2 i dt + C = C 

R 

the in tegrand being an odd funct ion of t. To make v(i) = 0, we mus t  take  C = 0. 
Thus 

G~(iy) = e "(~y)-~y 

is real-vMued and positive. We introduce 

1 
Ho(y ) = --  - u(iy), y > 0. (3.2) 

Y 
An explicit formula is 

ao 

= f tq(t) (3.3) 
(t 2 + y2)(t2 -~ 1) dt. 

0 

This can be differentiated to yield 
o~ 

f tq(t) tt'o(y ) = 2y (t 2 + y2)2dt > 0, y >  0. 
0 

Thus H 0 increases monotonicMly, and we can define its inverse funct ion L 0 = H o  a. 
The domain of  L 0 will include [0, ~[ ;  indeed, Ho(y ) - - ~ +  ~ as y - + +  ~ gs 
a consequence of  (1.2). 

We need a few e lementary  properties of the funct ions int roduced in this  section 
before we can proceed. 

LEM~A 3.2. 
(a) lu(z + h) --  u(z)l < log lITh][, y >  0, h E R .  
(b) lG~(z -}- t)] __< tiTillG~(z)l, t e R. 
Here, Th is the &anslation operator defined in (1.5). 

Proof. (a) I f  h >  0, 

R 

y_ f 

u(z + It) --  u(z) = lira / [ 

log p(u + h) 
y f p(u) 
= J ( u - - x )  2@y2 

R 

< log IIT.fl § 0. 

we can write 

+ h -- 0 2 + y2 

1 } 
(x --  t) ~ + y2 log p(t)dt = 

R + h  --R-}-h 

du + y l im (u -- @2 + y~ 
7~ R-+r  

- - R  

logp(u) .'~ 

( u -  x? + y2/ < 
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I f  h ~ 0, the same proof applies except for the fact that  the residual terms that  
tend to zero have a slightly different appearance. 

(b) We obtain directly 

[G~(z -~- t) l -~ e u(z+')-~y ~ e ~(~)+l~ 

b y  the preceding estimate. The lemma is proved. 
Now consider the Fourier-Carleman integrals 

co 

qDl(~) ~- f e-~:~G(x)dx (3.4) 

0 

0 

(3.5) 

- - c o  

Yg 2"g 

They represent functions analytic in ~ ~ -- ~ qo and ~ ~ ~-qo, respectively 

(~ ~ ~ q- i~j). For any fixed $ in the respective regions, the function z ~-> G(z)e -~:~ 
is analytic in y -~ Im z ~ 0, and by  Lemma 3.2(b), 

IG(z)e-~" I ~ G(iy)liTxlle "x+~y. 

Since Ho(y ) --)- oo as y---> oo, G(iy) decreases faster than exponentially, and we 
can change the paths of integration in (3.4) and (3.5) to obtain, in both eases, 

co 

q~(~) ~- i f e~XG(iy)dy. (3.6) 

0 

iR . (  

R 

Fig. 1. 
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In  fact, we can integrate  e-~"g(z) around,  say, the contour  / 'n in ]~'igure 1. 
The integrals over parts  of axes tend to (3.4) and (3.6), and  the  other  par ts  t end  
to zero; using (1.6), 

R 

f < f G(iy)ItT~lIeR"+~yc~y < Cenb'+A) f eY(~-n~ if  ~ <  --  A, 
71 0 0 

R 

Y2 0 

(Details concerning G(x) as boundary values of G are left to the reader.) 
The function ~0, det ined by  (3.6), is an entire function,  furnishing the  ana ly t ic  

cont inuat ion of the  :Fourier-Carleman transform. Since it is entire, the  spectrum 
of G, in the sense of Beurling in [2], is empty .  

We note t h a t  for real ~ = ~, ~o(~) is purely imaginary,  and 1~0(~)[ = -- @(~). 
I f  the preceding reasoning is carried through with  G~ instead of G, we see t h a t  

the Carleman t ransform of G~ is the entire function g e-> 90(g -  c~). 

4. Statement of results 

We begin by  defining a number  O by  

O = qo --  qo log qo, (4.1) 

which is in terpreted as 0 i f  go = 0. For  an f ELv 1 we define the following number ,  
t ha t  actual ly  measures "how small"  f(~) is a t  q- co: 

y+(f)  = lira sup ($ -- He(-- log If(~)])) -- Q- (4.2) 
~ +  co 

TUEOR~5* 1. For every real number ~ there exists f E L~ with y+(f) = cr 

Now consider the following properties of an f E L~. 

(A) r+(f) <c~. 
co 

(B) For every e > O, I.f(~)[l~(~ --  ~ -- e) ld~ < co. 

0 

(C) :For every e > 0, G~(iy) �9 f ]](~)]eXed~ = O(e ~x) as y -~  + 0 0 .  

R 

(D) f has an  analyt ic  extension to the lower half-plane, and  the funct ion 
z F-->f(-- z)G~(z) is in H 1, where H 1 denotes the H a r d y  space of the  upper  
half-plane. 
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(E) For every 

(F) 

>_ f ,  a,(x) = f f(x - t)G#(t)dt -~ O. 
R 

f �9 G ~ ( x )  = ff(  - t)a (t)dt = o 
R 

THEOREM II. For every real number ~, the following implications hold: 

A = ~ B < = ~ C = ~ D < = ~ E ~ F .  

T H ~ O R ~  III .  I f  f satisfies any one of the conditions A through F for all real 
a, then f = O. I n  particular, i f  y+(f) = --  co, then f = O. 

To round off, we can "close the circuit" as follows. 

THEOREM IV A. Under Additional Assumptions I and I I I ,  F ~ A ,  so that, in 
this case, the statements A ,  B,  C, D, E,  and F are all equivalent. 

THEOreM IV NA. Under Additional Assumptions I I  and I I I ,  F ~ B, so that, 
in  this case, the statements .B, C, D, E,  and F are all equivalent. 

The algebraic implications of Theorems I and I I  are the following. The space 
L~ contains a continuous chain of closed translation invariant subspaces I s, c~ C R 
(ideals, under Additional Assumption III) ,  which are not contained in any regular 
maximal CTIS, where the word "regular" is used to indicate that  the codimension 
is 1. Thus spectral analysis iafls in L~. Here I~ is defined as the set of all f e L~ 
satisfying, e.g. (E). Under Additional assumptions such that  the conclusions of 
Theorem IV A (A for Analytic) or IV NA (NA for Non-Analytic) hold, the picture 
is clearer than otherwise: we have then several alternative descriptions of the I~. 

In  fact, I~ is nonvoid by  Theorem I; it is closed, since it is defined by  (E) as 
an annihilator; its translation invariance is obvious from (E). The fact tha t  it is 
not  contained in any regular maximal CTIS can be demonstrated in the following 
manner. I t  is easily seen from the representation (E) that  I~ along with any f 
also contains the functions x ~-> eiaXf(x) with fi ~ 0 which have for Fourier trans- 

forms the left translates of ]. Since the L~ classes considered by  us have quasi- 

analytic transform classes (see e.g. [13]), f can only have isolated zeros (of finite 
multiplicity), provided f is not equivalent to zero. I t  follows that  no point $ E Sp 
can be a common zero to the transforms of all f C I~. (In the analytic case, the 
zeros on the boundary cf  S e may  not be isolated. However, it is well known that  
they form a set of linear measure zero. f o r  our purposes it is sufficient that  they 

cannot fill an interval; if they did we could continue J~$) across that  interval by  
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the Schwarz principle of reflection, and we would find f(~) ~= 0. The argument 
above using translates will hold equally well in this context.) I t  is also clear that  
the I~ form a chain of nested sets; indeed 

I ~ c I ~  if c~<fi ,  
~e 

and also, by Theorem III ,  

I _ ~  = f l / ~  = {0}. 
c~EIl 

An interesting feature about I~ is the connexion with H 1. The annihilator 

of H 1, considered as an ideal in LI(lt), is the set H ~ of bounded functions on R 
wi th  spectrum in -- oo < ~ < 0. Such functions have an analytic extension to the 
lower half-plane or, equivalently, a conjugate-analytic extension to the upper half- 
plane. The description of I~ given in (D) can be interpreted to say tha t  the set 

G~ �9 H ~ = {G~F: P E H ~ is the annihilator of I~. The inclusion I~ c I s for 

< fi corresponds to the dual inclusion G~H ~ ~ G~H ~176 which also follows from 

the fact that  e ~ x E H  ~ if and only if 0 < 0 .  

Instead of considering the behaviour of f(~) as ~ --> + 0% we can equally well 
define 

Y- ( f )  = lim sup (l~l - H o ( "  log lf~)l)) -- Q 

and obtain a corresponding chain of CTIS {If}, "'localized at  -- oo". Thus we 
have a doubly indexed chain 

I+~ and I+~ denoting L~. 

(:) In  the particular case when p(x) = exp aIx I , a > O, the ideals identified 

by us coincide with those of Korenbljum in [11]. He defines for f 6 L~ the number 

~+(f) = lim sup e -~/a log If(~)l, 

and considers the ideals Jz of all f with d+(f) < f i ,  where -- oo < f i  < 0 .  Our 
y+(f)  is equal to 

- -  a ( l o g  I O + ( f ) ]  - -  l o g  a -[- 1)  = - -  a l o g  I0+(f)] - -  Q .  ( 4 . 3 )  

In fact, for this case we get G(z) = exp ( iaz .  log (-- iz)), where the log is the 
principal branch (imaginary part  in ( z, z)). Thus G(iy) = exp (-- ay log y) and 
Ho(y ) = a log y. The expression in the definition (4.2) turns out to be 

- a l o g  ( -  l o g  ] ] (~) l )  - -  Q = - a l o g  ( -  e -~/a l o g  ]f(~)I)  - Q, 
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from which (4.3) follows. Korenbljum does not use our G~ for annihilators. Instead 
he introduces the function 

e - -  igx 

g~(x) 
~r'(1 ~- iax) 

which he shows will annihilate f and its translates if (our) y + ( f ) ~  oo and 

/~ ~ Y+ (f) + Q. 
Nyman's  thesis [14] also essentially contains these results, although they  are 

not  all explicitly stated. :For these algebras, N y m a a  and E:orenbljum also prove 

the "generalized Tauberian theorem" that  any f with f(~) ~= 0 for $ C Sp and 
~• = + oo generates the whole algebra Z~. Korenbljum takes a further step 
to show that  any proper closed ideal in L~ which is not included in a regular maximal 
ideal must indeed be of the type  I~ gl I~.  The corresponding questions for general 

/ \ 

present work, but  the author hopes to have the opportunity to return to them. 
Some further comment should be afforded the non-analytic case q0---- 0. The 

first t reatment  of this situation seems to be by  Nyman [14]. His reasoning starts 
from a function, which is essentially our 9, and a contour /~ on which 9(~) is 
bounded and integrable; the contour has a general appearance as in Figure 2, which 
has given rise in closer circles to the name "Nyman's  bott le" for the whole ideu. 
The functional corresponding to our G is defined as 

G(x) = / e~x~(;)d;, 
1 '  

J 

f 

Fig. 2. 
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and the weight-function /o is introduced now, to make G C (L~)*. One explicit 
Y~ X 

case is demonstrated, where ]og p(x) turns out to be asymptotic to 
2 log ]xl" 

Nyman shows tha t  there exists a non-zero f C L~ with ](2) = ~(~)--a, a > 1, or 
at  least something similar to this, such that  

f f(x + y)G(x)dx -~ O. 
R 

The ideas of the proof lean heavily on contour integration and are essentially inspired 
2~ 

from the t reatment  of the case when logp(x) = ~ a]xl, a ~ O. 

As mentioned in tbe introduction, Geisberg and Konjuhovskii have also treated 
the case q0 = 0. They consider algebras, i.e., they assume (1.9), and require explicitly 
certain additional smoothness and monotonicity conditions on p. Under such 
assumptions they can actually prove what  essentially amounts to the equivalence 
of conditions A and D. Their technique involves the function g(x) = 1/G(x), which 
is in LI(R) and has a Fourier transform 0. Their version of condition D is that  

f be representable as the convolution of ~ and some Ll-transform that  vanishes 
on a certain half-line. 

Theorem IV is inspired by I-[irschman's paper [8]. Actually it states a sharper 
version of his Theorem 2, which is formulated so as to deal with the relations between 
the size of a function and its Fourier transform at infinity. I t  says that  if for some 
e > O, f satisfies 

~e _ Ho ( _  log lf( )l) _< - + c ,  > 

then f = 0. Our theorem requires only tha t  the left member tend to -- ~ ,  no 
matter  how slowly. (Hirschman has, admittedly, fewer "technical" assumptions on 
p than we do, and his assumption is tha t  f . p  E L 2, not L1.) In the same con- 
nexion, our Theorem I is nothing but ~irschman's  Theorem 3, where we merely 
take somewhat more out of the proof. I t  could be mentioned tha t  many of the ideas 
employed in the present investigations, notably the use of the functions H 0 and 
L 0, more or less come from reading [8]. 

5. Technicalities 

In the proofs, we use a number of properties of our constructs H 0 and ~. For 
convenience in reading, we collect them here; the reader is advised not to indulge 
in this section at  a first reading, but consult it when it is referred to. 

The function H 0 was defined in (3.2) and (3.3). We introduce the computationally 
simpler function 
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Y 

f tq(t) dt (5.1) 
H(y) = j 1 + t 2 

0 

and its inverse L = H -1 (cf. [7]). The connexion between H o and H is expressed 
in the first Lemma. 

LE~Y~A 5.1. For y > 1, Ho(y ) < H ( y ) ,  and 

Ho(y ) - -H(y)-->O as y - - > +  ~v. 

Proof. Writing H 0 -- H explicitly, we have 

Y 

f f tq(t) 
Ho(y ) -- H(y) = -- j t  2 ~- y2 + (y~ -- 1) (t 2 @ y2)(t2 @ 1) 

0 y 

Here, 

and for finite 

1 

f sq(ys) 1 
A(y)  = - -  J ~ i  e8 -~  - -  ~ go log 2 

0 

1 
y, A(y) <_ -- -~ q(y) log 2. 

For  

dt = A(y) + B(y). 

as y - ~ - ~  oo, 

Furthermore, if y ~ 1, 

f sq(ys) 
B ( y ) =  (y2 __ 1) ( s~§  1)(s2y2+ 1) ds. 

1 

1 <__ s .< oo, q(ys) lies between q(y) and qo, and thus 

f sds 1 
B(y) < q ( y ) ( y 2  1) ( s2+  1)(s2y~@ 1) --<2 q(y) log 2, 

1 

and similarly, 

As y - ~ -  ~v, 

the lemma. 

1 2y 2 
B(y) > ~ qo log y2 -b 1" 

1 1 
B(y) ~ ~ qo log 2, being < ~ q(y) log 2 all the way. This proves 

Some facts about  H and L are listed in the following lemma. 

LEM~A 5.2. 
M 

(a) H(y) ~-2-1og  (y2 -t- 1), where M=q(0). 
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(b) There exist positive constants C, C O such that 

L(~) > Co ec~, ~ > 1. 

(e) I f  a >  O, then 

H(ay) -- H(y) = q(O) log a + 0(y-2), y --> -F ~ ,  

where 0 lies between y and ay. Also, 

H ( ~ ( ~ ) - -  H(y )=q(O) log  q (y )+  O ( y - 2 ) , y - + +  ~ ,  

with 0 between y/q(y) and y. 
(d) For every t > -- H(y), 

L(H(y) + t) < (y~ @ 1)'/2d/q(~ 

where 0 is between y and L(H(y) + t). 
(e) I f  ~ > 0 ,  

oo 

f eL(~)-L(~+~)d~ <: o0. 

0 

(f) For every e > O, there exists a number Y =  Y(e) such that for all y ~ Y 
and all A ~ O, 

yH(2) -- ~ _~ yH(y) -- Qy + ey, 

where Q is defined by (4.1). 

Proofs. (a) is immediate  from the defini t ion (5.1), and  (b) follows direct ly from (a). 
(c) I f  a < 1, the Mean Value Theorem yields 

Y Y 

H(y) -- H(ay) = f tq(t) dt = q(O) f ,~t 
J 1 @ t 2 1 @ t ~ 

ay a)  

where tile integral  is 

1 y2@ 1 1 
log a2y ~ + 1 -- log a - + O(Y-2)" 

%Vhen a > 1, as well as when a is no t  constant  bu t  equal to 1/q(y), the proof 
is praotically identical.  

(d) Firs t  assume t ~_ 0. B y  the defini t ion of L as the inverse of H,  we have 

L(H(r)+t) 
f xq(x) 1 1 @ L ~ 

t =  l ~- x ~ dx = q(O) " ~ l~ l + y ~ '  
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where L stands for L(H(y) + t) and y < 0 < L. Solving for L we obtain 

L = ((y2+ 1)e2,/#)_ 1)I/.., 

from which the expected formula follows. An analogous proof holds if t < O. 
(e) By  the Mean Value Theorem of Lagrange, L(~ + ~) -- L(~) = ~L'(~ + 0~), 

0 < 0 < 1 ,  and since 

1 1 + L(y) 2 L(y) 
L'(y) -- H'(L(y)) -- L(y)q(L(y)) >- M ' 

0r 0r 

this is greater than ~r L(~ + 0~) _> ~/L(~);  the statement follows, using (b). 

t 
(f) We claim tha t  H ( 1 ) - - H ( y ) + Q - - - < _ s  for all 2 > 0  if y is large 

Y 
enough. Differentiating the left member of this with respect to 2 we find tha t  
it has a maximum (for fixed y) when 2 and y are connected by the relation 

1 + ~ 2  

The maximum value is found to be 

Q + q(O) log q(Z) - q(~) + 0(~-2), 

where 0 is between ~ and y; we have used (c). As ~ and y tend to + o% 
appropriately connected, this expression tends to zero, and so it is surely < e 
if y is large enough, s being any prescribed positive number. The lemma is proved. 

Now we connect the function ~0 of (3.6) with the function L. 

LEMMA 5.3. I f  S > O, there exists a number ~:o = $o(e) such that 

e L(~-q-0 ~ [~o($)l ~ e L(~-q+~) for ~ > ~o. (5.2) 

Proof. Observing that  
O3 

[~0(~)] = f eY~-YH~ 
0 

we begin with the right-hand inequality. Splitting the integration at 

Y = Y0 = L(~ -- Q + e)/$, 
we have safely 

Yo Yo 

f < sup e-yHo(D . f eY~dy < 1-- eL(~-Q+O 
0 y_>O 0 
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if ~ is large enough. In  the other integral we put 2 = L ( ~ - - Q d - e )  so tha t  
--~ H(2) d- Q - e. We are required to prove tha t  

co 

f ey(U(z)-~o(y)+Q-~)dy ~ l e ~, 

:4(H(~)+Q-~) 
if A is large. The left member is majorized by 

The integral tends to zero as ;~ ~ o% so we are left with proving that  the supremum 
indicated is < Ce ~. In fact, whe~ y > A/(H(2) + Q + e), 

if 2 is large enough, by  Lemma 5.1. Differentiating A with respect to y we get 

OA e 
- -  H ( A )  - -  H ( y )  - -  qo log q0 - -  ~ + q0 Oy 

y 2  

1 +y2 q(Y)" (5.3) 

When OA/Oy ~ O, for y - ~ y l ,  A can be written 

Y~q(Yl) 
Yl " ~  <Ylq(Yl). 1-4-yl -- 

Since the last two terms in (5.3), grouped together, tend to zero as y--> -~ •, 
and since Yl is large when 2 is large, we see tha t  aA/Oy is negative for all y 

such that  H(y)>  H ( 2 ) -  q01og q 0 -  ~- Thus the maximum of A is assumed 

when y satisfies the opposite inequality, i.e., 

y l ~ L ( H ( ~ ) - - q o l o g q o - - 8 ) .  (5.4) 

I f  q0----0 we have directly Y 1 ~ 2  and 

A < 2q(yl) < ). 

as soon as 2 is large enough to force Yl past the point where q(Yl) -~ 1. Otherwise, 
apply Lemma 5.2 (d) to (5.4). With the appropriate 0 we get 

y~<(2~+l )V ,  e x p { - - q ~ 1 7 6 1 7 6  
- -  q ( O )  - -  

< (2.2 -? 1)v, e-~qo-q./q(o), 0 -- 8q(O) > O, 
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and 

A = (22 -~ 1)'/~e-aq(yl)qo -~~176 < "V/22 + 1 < 2 + 1 

for 2 large enough, since both Yl and  0 t end  to in f in i ty  wi th  2. This proves ha l f  
of the Lemma.  

The lef t -hand inequal i ty  in (5.2) remains to prove. Since Ho(y ) ~ H(y), we 
have to show t h a t  

co 

f e-YH(Y)+:4H(~)+q+Ody ~ e z 
0 

for sufficiently large 2, where 2 = L(~ --  Q - e). Firs t  consider the case qo > 0. 
Then 

m 2/qo )./qo 

f >-- f ~ exp(-- ~oIl(2/qo)) f e:~(m2)+O+4dY >~ 
0 0 0 

> C e x p  H ( 2 ) - - H  --q01~ q- 2 +  

where C is of the general size e~Z/2qo/H(2) ~ 1 if  2 is large. B y  L e m m a  5.2(c), 

H(Z) -- H(X/qo) = q(O) log qo + O(Z-~) �9 

I f  go ~-~ 1, we have here 0 > 2/q o. In t roducing  this and  observing t h a t  log qo ~ O, 
we have the desired est imate.  I f  O < q o <  1, we have instead O >  2, and if  2 
is large 

H(2) -- H(2/qo) ~ qo log qo --  

which takes care of t h a t  ease. I f  qo = 0 we have def ined Q = 0 and  are required 
to prove 

c~ 

I e-YH(Y)+Y(H(a)+Ody ~ e z. 
O 

We get 
~/~(z) 

)} e x P  H ( 2 I - - B  . 
0 0 

Here, by  L e m m a  5.2(c) 

H 2 1 
< q(2) log ~ + O(2-2), 
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and so 
oo 

0 

Since q(k) --> 0 as 2 - +  oo, the  "coe f f i c i en t "  log q(a) q- s/q(k) is u l t i m a t e l y  > 1 
so t h a t  i t  bo th  t akes  care o f / - / ( k )  in the  d e n o m i n a t o r  and  gives the  desired es t imate .  
The  p roo f  is complete ,  

Concerning the  g rowth  of  1~(2)1 we give ano the r  l emma.  

LEMMA 5.4. A s s u m e  that the Add i t i ona l  A s s u m p t i o n  I I  is  fu l f i l led ,  i.e. that  qo = O. 

T h e n  for  every s ~ O, 

f l~(~ d2 < ~ .  

~ ) l  2 

0 

Proof .  L e t  s ~ 4~, and  no te  t h a t  Q = 0. Using the  preceding  l e m m a  we f ind  
20 such t h a t  L(2 - -  ~) _~ log I~(2)] _~ L(2 ~- ~) for  2 ) 20. Then  the  in teg rand  
is ma jo r i zed  b y  exp  (2L(2 - -  3~) - -  L(2 - -  r])). I n  the  p roof  of  L e m m a  5.2(e) we 

saw t h a t  

1 + L 2 o  
L(} - -  V) - -  L(} - -  3~?) = 2 v Loq(Lo ), 

where L o = L ( 2 -  ( 1 ~  20),~), 0 < 0  < 1. Thus  we get  

L(2  - -  3~)q(Lo) - -  2~L o 2~ 
A = 2L(2 - -  3~) - -  L (2  - -  V) = q(Lo ) - -  L o �9 q(L~" 

Since we suppose  t h a t  q(x) -+ O, we can  t ake  2o so large t h a t  q(Lo) ~ ~ for  all 
~ 20; since L is an  increasing func t ion  we get  

LoV - -  2 v L  o 2~ ~ Lo + ~ _ Lo 
A ~ q(Lo ) L~q(Lo ) - -  q(Lo ) 

Thus  
1~(2 - ~)l 2 

T~(2)I e -L(~-3~), 

which p roves  the  l emma.  

6. Proofs of Theorems II and III 

I n  the  chain  A ~ B <=~ C ~ D ~ E ~ E we proceed  f rom left  to  r ight .  I n  
the  proofs  we can  assume ~ = 0. The  general  case can be reduced  to  this  u p o n  
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replacing f ( x )  by  f ( x )e  - '~',  which corresponds to replacing f(~) by  ](~ d-~) .  
The details are left  to the  reader. 

A ~ B. Using L e m m a  5.1 we see t ha t  we could have def ined y+(f)  equivalent ly  
by  the formula 

y+(f) = l im sup (~ --  H ( - -  log If(~)])) --  Q- (6.1) 
~-++ oo 

The assumption ~ , + ( f ) ~  0 is t hen  easily rewri t ten in the following form: For  
every s > 0, there exists ~0(e) such t h a t  

/](~)] --~ e-L(*-Q-*) i f  ~ > ~0(s). (6.2) 

F r o m  L e m m a  5.3 follows tha~ if  we take  ~0(s) large enough we will also have 
]~(~ -- 3s)] ~ e L(*-~-2*), so t h a t  

c o  c o  

c~ , 
qt*t 

~o(~) ~o(~) 

by  L e m m a  5.2(e). The integral  over (0, ~0(s)) is of course finite.  Since s is arbi t rary,  
the proof  of A ~ B is complete. 

B ~  C. We assume t h a t  for every s >  0, 
co 

o 

and we consider 

J (y )  = G(iy) ]f(~) leY~d~. 

R 

The par t  of this t h a t  corresponds to the integral  over (-- 0% 0) clearly tends to 
zero, and  the  other ha l f  is 

co 

f eY ~ < e-YH~ ]](~)ll~(~ --  e) id~. sup < 
- ~>0 @(~ - 8 ) J  - 

0 

< C d  y-yH(y) sup e y~-L(~-Q-2~), C = C(e). 

I-Iere we have used Lemmas  5.1 and  5.3. Le t  2 --~ L(~ --  Q - 2e) to get 

J (y )  < Ce3"ye y(Q-H(y)) �9 sup e yn(z)-z. 
z>0 

Now invoke L e m m a  5.2 (f) to see t h a t  i f  y is large enough we have 

J (y )  <__ Ce3~X. e~:r _.= Ce4~ '. 

Since s > 0 was arbi t rary,  we have proved (C). 
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C ~ B. Assuming (C), we can write, wi th  a n y  s ~ 0, 

oo ao oo 

f" f f If(~)II~(~ - -  2s)Id~ ---- [](~) Id~ G(iy)e($-2~)Ydy -~ 
0 0 0 

ao oo oo 

f f'J' f e-2~yG~(iy)dy ~)le/d~ < e-2~y. Ce~Ydy ~ ~ ,  

0 0 O 

where the  order of in tegrat ion can be changed due to posit ivity.  
C ~ D. F ix  e ~ 0. Under  the assumpt ion (C) it is clear t h a t  f has an analyt ic  

cont inuat ion to y ~ 0. Le t  us denote f(z) ~- f ( - -  z). In  order to show tha t  /G E H 1 

we begin by  considering F =fG~,  i.e. F(z)----f(--z)G(z)ei% In t roduce  the 
smoothed funct ion Fh by  the relat ion 

h 

1 f _ F ( x ~ t ~ - i y ) d t ,  h ~  O, z - - - - x ~ - i y .  F h ( z )  = ~h 
--h 

Fh is holomorphic in y ~ 9. Since F C L ~ on the real axis, the boundary  values 
of Fh will be bounded and  in L 1. We claim tha t  Fh C H 1. Since H 1 is a closed 
subspaee of L 1 and  I ] F h -  FILL,-+0 as h - +  0 ~-, this will imply  tha t  F C H 1. 
We est imate  

h 

f [F,(iy) I <__ ~ [f(-- t --  iy)G~(t -~ iy)]dt < ]j($) le~yd~ �9 G(iy)e -~y . max  lIT, If < C, 
Ig<_h 

--h R 

where we have used L~mma 3.2 (b). Thus Fh is bounded on the positive imaginary  
axis, as well as on R. Return ing  for a momen t  to F ,  we have, by  vir tue of the 
relat ion (1.5), 

]F(z) l <_ G(iy)llT~][ f [f(~)]eY~d~. e-~y ~ CHT~I] < Ce AI~;. 
Q.o 

R 

Fh, being a local mean-value of F ,  is of the  same order, and  thus  Phragm6n-  
LindelSf 's  principle tells us t ha t  Fh is bounded in y ~_ 0. Bu t  a bounded funct ion 
with  bounda ry  values in L 1 must ,  in fac~, be in H 1. This is seen by  representing 
i t  wi th  Poissou's formula and est imat ing the L 1 norms on parallels to R. 

So we have proved t h a t  ]G~ E H 1 and  thus  for ~ < O, 

0 = f e-i~f( - x)G~(x)dx --  (fG) ~" (~ --  ~). 

R 

But  here s was an a rb i t ra ry  positive number ,  and  (fG)~ is continuous, which 

implies t ha t  (fG) ~ (~) ---- 0 for all ~ ~ 0; this concludes the proof  of (D). 
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D ~ E.  By  assumption,  f is analyt ic  in y < 0 and  the  integrals  

f I f ( - -  x - -  i y )G(x  ~- iy)]dx 

R 

are bounded  for y ~ 0. Then,  using L e m m a  3.1 (b), 

f z - x _ + ) . ( x  + = f f (x - - x + 

t t  t t  
V 

<_ [IT, I] " IIfGIIH1, 

which is independen t  of  y > 0. This means  t h a t  all the  funct ions z e-->f(t - -  z)G(z) 
are in HL  B y  the  H e t heo ry  (see e.g. I-[offman [9]), we have  then  

ff( t - - x ) G ( x ) e - i ~ d x - - - - O ,  ~ _ ~ 0 ,  t E R .  

Thus  i f  f l ~ 0  we get  

f f ( t  - -  x)G~(x)dx 

R 

which proves  (E). 

- ff(t - x)G(x)e-i(-~)Xdx ---- o, t c R,  

R 

E ~ D. The assumpt ion  (E) has the  following consequence.  Def ine  g(x)---- 
f ( - - x ) G ( x ) ,  x C R .  Then  g C L I ( R )  and ~(~)----0 for ~ 0 .  Thus  g E H  1, so 
t h a t  g(z) can be def ined for y ---- Im  z ~ 0, and f has an analyt ic  cont inua t ion  
to y ~ 0 def ined by  f ( z )  z g ( - -  z ) /G( - -  z), which makes  sense since G(z) is 
never  zero, G being def ined as exp (u -~ iv). The s t a t emen t  (D) follows. 

E ~ F .  Trivial.  
Theo rem I I  is proved.  Theorem I I I  is now a simple eonsequence  of Theorem II .  

B y  this,  a ny  one of  the  assumptions  A, B, C, D, and  E implies F. Now consider 
an f e L~ t h a t  satisfies F for all real  a. Then,  in par t icular ,  

0 = f �9 G~(O) = f f ( - -  t)G(t)e'~'dt = (fG)~ ( - -  a), ~ C R.  

R 

Since f G  E LI(R),  Four ier ' s  inversion formula  implies f ( - -  x)G(x)  = O, a.e., and  
since IG(x)] ~-- p (x )  ~ 0 we obta in  f ( x )  = 0 a.e., as required.  

7. Proof of Theorem I 

Firs t  we observe t ha t  i t  is sufficient  to f ind  an f ~ 0 wi th  r+(f) < § ~-  
B y  Theorem I I I ,  this f mus t  also have y+(f)  > --  m. Since 
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y+(x e--> ei:~f(x)) = y+(f) + fi, 

we can then  obtain ~ny real value for y+. 
The construct ion is identical  to t h a t  of  Hirschman [8]. Le t  

1 
f(x) = 

~(i  - x)~G(-- x)" 

Obviously f E L~ and f r 0. Consider the formula defining u(x ~ iy): 

/{ 1 
u(z + iy) = 2y (t - x) 2 + y2 t~ + 1 ]tlq(t)dt. (7.1) 

R 

F r o m  this i t  is seen tha t  u is bounded from below in every Strip 0 < y < r; in 
part icular  

u ( x + i y )  ~ 0 ,  0 < y <  1. (7.2) 

I t  is permi t ted  to differentiate (7.1) wi th  respect to x under  the sign of integration.  
The result  shows t h a t  

u(x --~ iy) ~ u(iy), x E R, y > O. (7.3) 

The formulas (7.2) and (7.3) imply  t h a t  the analyt ic  cont inuat ion of f So the lower 
half-plane satisfies 

1 
If(x - -  iy) ~ ~(l  _~ x2) ' 0 ~ y < l ,  

and  tha t  it  follows easily by  contour integrat ion and  Lebesgue's domina ted  con- 
vergence theorem tha t  

f f(~) = e-y~ e-i*~'f(x - -  iy)dx 

R 

independent ly  of y ~ 0. Es t imate  the  size of If(~)]: 

,f~)l <e-'~ f lf(x--iY)ldx <e-'~-'*~)'l  f az _ _ x 2 + (Y ~- 1) ~ --~ e-Y~+xHo(Y). 
t t  R 

Thus log If(~)l ~ yHo(y) - -  Y~" We choose y to suit our purposes: y : L0($ -- 1) 

gives Ho(y ) --~ ~ --  1 and  log I ~ ) i  ~ --  L0(~ --  1), whence immedia te ly  
y+(f) ~ 1 --  Q ~ ~- ~ ,  and  the proof is complete. 

8. Proof of Theorem IV 

In  the proof  we use the  following Iemma, to which the au thor  has found no 
convenient  reference. 
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LEMM~ 8.1. I f  f is in H 1 of the upper half-plane, then 

is independent of 0 

. - ~ o o  

r o o 

in 0 ~ 0 ~ .  

Here To, of course, denotes the oriented half-line {re% r ~_ 0}. 
Remark. I t  is actually true that  the integral is absolutely convergent. This is 

not needed in our application of the lemma, and since there does not seem to exist 
a very simple proof of it, we abstain from including one. 

_Proof. Consider the contour integral 

f f(z)dz = O, 
r 

where /7 = /'(R, S, 8) is the closed quadrilateral with vertices at  6(cot 0 -~ i), 
S -+- iS, S + iR, R(cot 0 + i); see Figure 3 for further notation. As for the integral 
over 73 it is well known (see [9]) tha t  f(z)--+ 0 uniformly as Iz]--> ~ inside 
any half-plane y = Im z >_ 6 > 0. Thus --> 0 as S --> ~ for fixed R and 8. 
We are left with 

f f(z)dz = 0, 
_r,r 

where / "  = /"(R, 8) is shown in Figure 4. Let first 6 --> 0 + ;  with f ~ H 1 the 
passage to the boundary values has no hazards. Turning to Y3 we represent f 
by the Poisson integral 

iR 

7~ 

Fig. 3. 
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~R 

x 

Fig. 4. 

f f(t) f ( x  + iR)  = - -  (t - -  x) ~ -r R 2 dt, 
R 

and,  invoking  absolu te  convergence,  in te rchange  the  order  of  integTations to g e l  

Since 

o o  

f f if (, )) - -  = f ( x  + i R ) d x  = -~ f(t) + a r c t an  ~ - -  cot 0 dt. 
7a B co t  0 R 

f f ( t )d t  = 0 

R 

for f 6 H 1, this  reduces  to  

i f  (_~ ) arctan cot 0f 
f ( t )  a r c t an  - -  cot 0 dt - ~  ~ f ( t )d t  

R R 

(8.1) 

= 0  

as R - ~  ~ ,  where  we use Lebesgue ' s  t h e o r e m  on d o m i n a t e d  convergence.  T h u s  
we have,  with ya ex tended  to inf in i ty ,  

O9 

and  since Y 4 = - - - P o  the  L e m m a i s  p roved  for 0 ~ 0 < ~ ;  the  ease 0 = : ~  is  
i m m e d i a t e  f rom (8.1). 

W h e n  p rov ing  the  Theo rems  I V  A and  N A  we assume,  as we did  p r e v i o u s l y ,  
t h a t  ~ = 0. Thus  our a s sumpt ion  is 
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f f(x - -  t ) G ( t ) d t  

tt 

In t roduce  the funct ion h by  

= 0 ,  x E R .  

oo 

= f f(x - t)G(t)dt = - f f(x - t)G(t)dt. 
0 - - c ~  

:For x -< 0 we can est imate lh(x)l using the f i rs t  representation: 

(8.2) 

(s.3) 

oo 

i (x) l <_ f If(x - t) lp(x  - t) p ( t )  t~) dt  < Ilfl!p sup p(t) (8.4) 
p(x - ,_>0 p( t  § Ixl)" 

0 

a n d  an  analogous es t imate  holds for x ~ 0, obtained from the second integral  
in (8.3). By our assumptions on p we conclude t h a t  h E L~(R).  We c~n consider 

h as a tempered  distribution; as such it  has a Fourier  t ransform h, a pseudo- 

measure.  We might  t r y  to compute  ]~ quite formally,  and  f ind  

~(~) = 2(~)v(~). (8.5) 

t Iowever ,  the integrals involved in the formal  a rgument  are not  convergent.  Never- 
theless we shall prove the following lemma. 

LEM~A 8.2. Under the Additional Assumption I l l ,  ensuring that L~ is a Banach 

algebra, (8.5) holds true in the sense that h is actually a function and as such equal to 
].q~. 

Proof of the lemma. Use Theorem I to f ind  a funct ion k E L~, k r 0, wi th  

smal l  y+(k) -~ a. This can be done so tha t  the funct ion k~ = ~k is in LI(R) and  
we can form 

ks(x) J ]c(~)q~(~)e~d~. (8.6) 
t t  

I~(~)] ~ CeL(~+~) for some fi, and  so i f  we take  Is] ~ -- c~ I n  fact,  by  L e m m a  5.3, 
large enough, 

[~1(~)I -< C eL(~+~)-L(~-~), ~ > 0, 

which  is in LI(0, oo) by  L e m m a  5.2 (e); for negat ive 2, ~ ( ~ ) :  0([2] -1 ) as 

--> --  oo, and  it  is sufficient to require ~c to be in LI( - oo, 0) or even sl ightly 
less; this  is clearly feasible. (Convolve k by  any th ing  in L~ wi th  y_ ~ Jr oo.) 
I t  follows from (8.6) t h a t  /c 1 E L~(R).  
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Now s tudy  
oo 0 

where the double representat ion is a consequence of the choice of /~ and  the  fac t  
that A ~ E (Theorem II). We have also k(x -- .)G(.) E H I for every x (translating 

k does not  affect y§ and A ~ O). By  L e m m a  8.1 wi th  0 = ~/2, 

-e-co 

K(x) = i f k(x _ iy)G(iy)dy. 
0 

But 

k(x --  iy) = ~ J k(~)ei~+~Yd~, 
I t  

and we get for any  A > 0, by  absolute convergence, 

.4 A 

f �9 f ~  �9 r f~ (~)~ '~f~(~)~  
i G(~.y)dy k(~)e'~X+~Yd~ = 

0 I t  I t  0 

Since k~ is integrable, and  the inner integral in the right member  grows 
monotonical ly  to [~(~)] = -- i?(~) as A -~ oo, the passage to the l imit  is legi t imate  
and  yields 

K ( x )  = ~ ( x ) ,  x r R. 

Thus k 1 is also given by  the integrals in (8.7). Now since both  f and  k are in L~ 
and we assume the lat ter  to be a Banach algebra, the following c~Iculations make  
sense: 

f ,  = f f(x _ t)kl(t)dt 
I t  

co 

and similarly 

0 R 

co 

t t  0 

co 

u)dt = f G(u) . f �9 k(x -- u)du, 
0 

co 

l~ �9 h(x) = f G(u) . k �9 f(x -- u)du, 
0 

so t ha t  f */~1 ~ k * h. Taking Fourier  t ransforms (in the dis tr ibut ion sense), we 
have 
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~)r, since we know that  k: = k~, 

f(~)k(~)~(~) ---- k($)h. 

We see that  h can be represented by the function :(~)T(~) near every point where 

/~(~) r 0. :By small translations of ]c (as in the discussion followir~g the statement 

of  Theorem IV NA) we conclude that  h(~)=-f~(~)~0(~) everywhere (h does not  
really depend on k), which proves the lemma. 

Proof of Theorem I V  A. Under the Additional Assumption I, the formula (8.4) 
will actually imply that  h E L:(R). Indeed, if 

p(t) = e x P (2 tq o ) . e xP(2 t (q ( t  ) -- q0)), 

where the second factor is non-decreasing for t > 0, we obtain 

$r x .  

lh(x)] < Ce -  ~ q.t : 

:But then f~ is a bounded function, and we have from (8.5) that  

C 

Lemma 5.3 now contains all tile hard work needed to establish the relation 

[](~)I ~ Ce-L(~-Q-~) if ~ > t0(e), 

which is equivalent to y+(f) _< 0. The proof is complete. 

Remarlc. The only place in the proof where the Additional Assumption I is 
applied is to establish that  h E L:(lt). Any other assumption that  accomplishes the 
same feat can be substituted for it. 

Proof of Theorem I V  ~'A. First we observe that  the Schwarz inequality gives 

oo co oo 

0 0 0 

:By Lemma 5.4 it is then sufficient to prove that  

co 

0 
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But ]f~2 = ( f ,  f ~ ,  where ~x)  = f ( - -  x). Our assumption f ,  G -= 0 implies that  

also f �9 f ,  G = 0. We conclude that  it is sufficient to prove 

co 

f ](~) I~(~)ld~ < 

0 

for I E L ~  satisfying f ( ~ ) > 0  and f , G ~  O. We also remember that  
~(~) = ii~(~)l. 

Let g be an even function in LI(R) such that  the Fourier transform ~ has 
compact support and s~tisfies ~(~) >_ 0, ~(0) = 1, ~(@~) <h(~)  if @ >__ 1. 
Remembering the function h obtained from f and G in Lemma 8.2, we get 
for all s > 0, by Parseval's theorem, 

0 <_ - -  i q~ e~)d~ = - -  i �9 h(x)g x, 

R R 

where the right hand member can be estimated: 

< ~ -  IlhHL~ ]ff Idx = 2~llhllL~Hg]lil, 
8 

R 

independently of s > 0. Thus the integral of [f(~)~(~)~(s~)I is uniformly bounded. 
As s --> 0 ~-, ~(s~) tends monotonically to 1 from below, and Beppo Levi's con- 
vergence theorem gives (8.8). The proof is complete. 
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