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Introduction

Weighted L' algebras on R were introduced by Beurling in [1]. A Beurling
algebra L, is defined as the convolution algebra of (equivalence classes of) functions
J» Lebesgue measurable on R and satisfying

1flls = f @) p)de <
R

where p is the weight-function associated with fthe algebra in question. In order
that L, be an algebra, a condition of the type

P+ y) < p@)p(y)

has to be fulfilled by p. According to the size of p, Beurling talks of different
cases. If, for simplicity, we assume p to be even, we consider the limit

log p(x)
]

& = lIm

|%] >0
which can be shown to exist. If « > 0, we have the analytic case. When « = 0,
the quasi-analytic and non-quasianalytic cases are distinguished according as

/Iogp(x)d
1+ a2

R

diverges or converges, respectively.

A central problem in the study of any Banach algebra is that of its ideal structure,
in particular the problem of spectral analysis. We say that spectral analysis holds
in an algebra B if every closed (proper)idealin B is contained in a regular maximal
ideal of B. The General Tauberian Theorem of Wiener [15] tells us that spectral
analysis does hold in ordinary L*(R), and this result has been extended to Beurling’s
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non-quasianalytic algebras, which are, among other things, regular algebras; see [3]
and [12]. In the quasianalytic cases (including the analytic ones), however, it is
not evident that spectral analysis should hold. Indeed, Nyman [14] proved that in
particular analytic cases it does not, and he also demonstrated that the same thing
occurs in several non-analytic (though quasianalytic) cases. Korenbljum [11],
apparently unaware of Nyman’s work, gave a precise description of the “evasive”
ideals in the analytio cases considered by Nyman.

In the present paper, imposing a few reasonable conditions on the weight-
functions, we prove that spectral analysis fails in quite general quasi-analytic and
analytic algebras, and we exhibit chains of ideals not contained in any regular
maximal ideal. In particular, our results contain the description of Korenbljum’s
ideals. Whereas Korenbljum shows that these are all the ‘“‘strange’ ideals that exist
in the case considered by him, we have so far not proved the corresponding facts in
general cases.

Geisberg and Konjuhovskii have dealt with the quasi-analytic case in a series
of papers [5], [10], [6], [7], independently of the present author, who has only very
recently become aware of their work. Their results overlap with ours; in certain
respects they go further than this paper, in others they do not reach as far. Their
methods are largely different from ours.

Following Domar [4], we shall not only consider algebras L,, but also L'-spaces
where translations are bounded operators. The problem of spectral analysis is quite
relevant here, if closed translation invariant subspace (CTIS) is substituted for closed
ideal, and a CTIS is called regular maximal if its codimension is 1. We establish the
failure of spectral analysis here, too, but the description of »strange» CTIS is not
quite complete.

This paper is a slightly revised version of a doctorate thesis written under the
guidance of Professor Yngve Domar to whom the author extends his sincere thanks
for valuable help and kind interest.

1. Assumptions
Throughout the paper, we let p be a real-valued, continuous function on R
satisfying the following set of conditions, (1.1—4).
plox) = p(x) = p(— x) > p(0) =1 for every t €R and o> 1. (l.1)

log p()
J L1 e dx = 0. (1.2)

p(@) = exp (Z 1x]q(x)>, v€R, where 0<g@) <gO)=I ad

q(ox) < q(x) if o> 1.
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P+ y)
sup

is locally bounded as a function of = € R. (1.4)
er PWY)

Define Lll, to be the Banach space of all complex-valued f, measurable on R
and with finite norm

= 1Al =1y = [ 1@ pa)e
R

(As usual, we identify functions that are equal almost everywhere.) The dual space
(L,)* of linear functionals on L, can be represented as the space Ly, of measurable
functions F with finite norm

| ()]

\F — *®
[l ” HFHP esxsefs{up p(x)

via the duality

F(f) = Ff(0) = [ f)F(— e
R

The translation operators 7., z € R, are defined by
(TA)y) = fly) = fly — =), y €R. (1.5)

As a consequence of our assumptions, 7, is bounded on L. Indeed, by (1.4),

P+ y)
I1T| = sup < 0.
y€R ()
Since p is an even function, ||7.|| = |7T-4, and by the monotonicity of p it is

also clear that [T <|T.]| if 0 <2z <wn. If n is a natural number, it is easy
to see that [|[T.| < ||74|". From these facts we get the estimate

174 < Cett™ (1.6)

for some constants C and A.

From (1.3) we see that the limit ¢, = lim, ,  ¢(x) exists andis > 0. In Beurling’s
classification, the analytic case corresponds to ¢, > 0 and the non-analytic to
qo = 0. We shall have to treat these cases separately in a few proofs later on, and
for the former case we shall also demand some extra hypothesis on p. For the sake
of reference we state here

ADDITIONAL ASsuMPTION 1.

9o > 0, and 2x(g(x) — gp) is non-decreasing for x > 0. (1.7)
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AppITIONAL ASSUMPTION IT.
gy = 0. (1.8)
We also need, occasionally, that L, is a Banach algebra, which is ensured by

ADDITIONAT AssumprioN III.

plx £ y) < Op(x)p(y). (1.9)

Here, as well as in the rest of the paper, the letter C isused to denote a constant,
not necessarily the same constant on different occasions.

2. Fourier transforms
The Fourier transform f of an f € L, is defined by

flo = f e () da,

R
. n
where (=& + i is a complex number; f({) is well-defined if |n] < o 9o If

LII, is a Banach algebra, i.e. when the Additional Assumption I1I is fulfilled, the

Gelfand space of regular maximal ideals of L, can be identified with the set

2
S, = {C gl < 5 qo} in the complex plane under the usual topology; see Loomis

[12], No. 23 D.

As noted in the introduection, the natural substitutes for regular maximal ideals
in the general case are regular maximal CTIS. (We use the writing regular maximal
to indicate that the codimension is 1.) We shall find that these correspond to the
points of 8, in the same way as the regular maximal ideals in the algebra case.
Indeed, a regular maximal CTIS can be described as the annihilator of a translation

invariant one-dimensional subspace of (LII,)*, which we can describe as

{AF: ) € C}

where F is a fixed nonzero member of (L,)*. By translation invariance, for every
t € R there is a number A(f) so that

F(w 4 t) = At)F(x) (2.1)

for almost all . We can assume F normalized so that

£

limi F(x)dx exists and equals 1. (2.2)

R £
&>0 0
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Then

1 . 1 . 1 .
. f Fit o)l = - Of AOF (@) = 4(0) - of Pla)da. (2.3)

The far left member of this tends to F(!) a.e. as ¢ — 0, and thus we have
Iy = A@) ae. (2.4)

If ¢ and C are suitably chosen we have from (2.3)
Ay =0 fF(t + x)dx
0

from which one sees that 4 is continuous. We can then as well assume F to be
continuous, by (2.4) and the fact that F is only “defined a.e.” The relation (2.1)
is strengthened to

P+ 1) = F)F (@),

holding everywhere by continuity. This implies the existence of a constant ¢ and
a number = & + in € C such that

F(z) = Ce*, z €R.

7
C must be 1, by (2.2), and to make F € (L))* we must also have |y] nglo’

so that { €8, We have thus shown that a regular maximal CTIS in L, cor-
responds to a number { €S8, such that

fe_icxf(x)dx =0
R
for all f in the CTIS.

This is precisely the same description as for the regular maximal ideals in case
L! is a Banach algebra.

P

3. A chain of funectionals with empty “Carleman Speetrum’’

In this section we shall construct non-zero functions @, € (L;)* (x € R), that
will later be seen to annihilate certain CTIS in L}, although these CTIS are not
annihilated by any exponential %%, { € S,. A very similar construction is found
in [8], and similar ideas occur in [6] and [7].
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LevMa 3.1. Let z =x + iy, y > 0, and define

i)
ue) =, y) = [ Gy poy) s (3.1)

R

Then w is harmonic in y > 0 and has boundary values equal to log p(x) on R.

Proof. For fixed R > 0, let pg(t) = p@) if |{] < B and pg(t) = 1 otherwise.
Define wug(z) by (3.1) using py instead of p; wuyp is clearly harmonic in y > 0
and has boundary values log p(x) for x| << R. Staying inside a (semi-)circle
22+ y* <»* we estimate

11+ 20t — a2 — y?
(¢ — 2P +y)(1 + &

[u(z) — uglz)] < 2y

[¢]>R

1+ 2rjt| + 72 ] 2 41 dt
SOy/]t dtSC’y(Zr+ R )f(t—x)2+y2—_>0 as R — oo,

) ltlg(t)dt <

((E — ) + 97)
(>R [{|>R
uniformly for 22 4 ¢2 <72 (C is independent of R). Thus % is harmonic in
y > 0. To check the boundary values, fix « € R and choose an arbitrary &> 0.
Take RE(> |z]|) large enough to make [u(x,y) — ugx(x, y)] < & for, say, y << 1.
Then

ju(z, y) — log p(x)| < e - |ug(x, y) — log p(x)], 0 <y <1,

80 that
lim sup ju(x, y) — log p(z)| <&,
y—>04

and, since ¢ is arbitrary, this completes the proof of the lemma.
Let v be the conjugate harmonic function of % in the upper half-plane, chosen
such that o(i) = 0, and define

G(z) = Q(x + iy) = Gyfz) = @0 4 > 0.
G, () = G(z)e™, « €R.

The boundary values @, (x) = lim, , G (¢ + iy) exist a.e., since G, is locally
bounded. They satisfy |G (x)| = p(x), and thus G, € (L})*. (Here and in the
sequel we use somewhat abusively the same notation for an analytic function and
its restriction to, or boundary values on, the line.)
By inspeection it is seen that
. z 14zt .
w(z) 4 iv(z) = % /m [tlg@)dt + +C, y > 0,

R
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and taking the imaginary part of this for z = iy we have

N )
v(zy):Efmdt+C:C

R

the integrand being an odd function of ¢. To make ¢(¢) = 0, we must take C = 0.
Thus

G,liy) = )=

is real-valued and positive. We introduce

1
Hyy) = — " u(iy), y > 0. (3.2)

An explicit formula is

Hyy) = (5 — 1) f : @ . (3.3)

£+ ) 4 1)
This can be differentiated to yield

0.

Hyly) = 2 fﬂdt>0 >0
e A
Thus H, increases monotonically, and we can define its inverse function L, = Hy'.
The domain of L, will include [0, oo[; indeed, Hy(y) —> 4+ o0 as y— 4+ oo as
a consequence of (1.2}.
We need a few elementary properties of the functions introduced in this section
before we can proceed.

Lemma 3.2.

(@) |u(z+ k) —ulz)] <log|Tu, y >0, h€R.

(b) 16,z + 1) <ITIIG,()), tER.

Here, T, is the translation operator defined in (1.5).

Proof. (a) If h > 0, we can write

R

Y 1 1
we ) — ) =g {@c TRt -t y2}1°gp(”)d‘ =
u_]_h) R4tk —R+h
log p(u + h) f log p(u) )
nf(u it ¥ (Rf oty ) waptg) =

< log |7 -+ 0.
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If B < 0, the same proof applies except for the fact that the residual terms that
tend to zero have a slightly different appearance.
(b) We obtain directly

|G (2 + 1)} = exleti—oy < u+lslTii—ay

by the preceding estimate. The lemma is proved.
Now consider the Fourier-Carleman integrals

n) = [ G @ (3.4
g
0
Pe(8) = — fe—ic"G(x)dx. (3.5)
7 7

They represent functions analytic in 5 < — 5 and #n > 5 o respectively
(¢ = & + ). For any fixed ¢ in the respective regions, the function z > G(z)e™*

is analytic in ¥y = Imz > 0, and by Lemma 3.2(b),

|GR)e ™| < Giy)|Te™* .

Since Hy(y) — o as y— o, G(iy) decreases faster than exponentially, and we
can change the paths of integration in (3.4) and (3.5) to obtain, in both cases,

0

§(o) =i f £9Giy)dy. (3.6)

0

-

y
iR e

Fig. 1.
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In fact, we can integrate e "**G(z) around, say, the contour [I'p in Figure 1.
The integrals over parts of axes tend to (3.4) and (3.6), and the other parts tend
to zero; using (1.6),

-]

R
H
| f ‘ < [ Gy T e +osdy < Certrta) f SCBNGy 0, if < — 4,
Y1 0 0

R
‘f} < e_RH“(R)HRfCe("J“A)"dx — 0, if n<—A.
Va2 0

(Details concerning G(x) as boundary values of G are left to the reader.)

The function ¢, defined by (3.6), is an entire function, furnishing the analytic
continuation of the Fourier-Carleman transform. Since it is entire, the spectrum
of @, in the sense of Beurling in [2], is empty.

We note that for real { = &, (&) is purely imaginary, and |p(&)| = — ip(&).

If the preceding reasoning is carried through with @, instead of G, we see that
the Carleman transform of ¢, is the entire function ¢+ ¢({ — ).

4. Statement of results

We begin by defining a number @ by
Q= — ¢ log ¢ (4.1)

which is interpreted as 0 if ¢, = 0. For an f € L] we define the following number,
that actually measures “how small” f(&) is at -+ oo:

v (f) = lim sup (§ — Hy(— log |f(£)]) — @ (4.2)

&>+
TuroreM 1. For every real number « there exists f € Ly with y (f) = «.

Now consider the following properties of an f € L.
(A) 7 (f) <o

(B)y For every &> 0, f ]f'(f)[]rp(E — & — g)|dé < 0.
(C) For every &> 0, G (iy) -f]f(&)]eyfdé = 0(e”) as y—> -+ oo.
R

(D) f has an analytic extension to the lower half-plane, and the function
2> f(— 2)G(z) isin H1, where H! denotes the Hardy space of the upper
half-plane.
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(E) For every f =u, f*Gyx) = / e — )@, (tydt = 0.
R

) £#6,) = [ flo = e, mar o
R

TreorEM II. For every real number «, the following implications hold:

A=>B<=C=D<«FK=1F.

TrroreM IIL. If f satisfies any one of the conditions A through F for all real
o, then f= 0. In particular, if y (f) = — oo, then f= 0.

To round off, we can ‘“‘close the circuit” as follows.

TurorEM IV A. Under Additional Assumptions I and I1I, F = A, so that, in
this case, the statements A, B, C, D, E, and F are all equivalent.

TuroreEM IV NA. Under Additional Assumpltions 11 and III, F = B, so that,
in this case, the statements B, C, D, E, and F are all equivalent.

The algebraic implications of Theorems I and II are the following. The space
L; contains a continuous chain of closed translation invariant subspaces I,, « € R
(ideals, under Additional Assumption III), which are not contained in any regular
maximal CTIS, where the word “regular’” is used to indicate that the codimension
is 1. Thus spectral analysis fails in L. Here I, is defined as the set of all f€ L}
satisfying, e.g. (E). Under Additional assumptions such that the conclusions of
Theorem IV A (A for Analytic) or IV NA (NA for Non-Analytic) hold, the picture
is clearer than otherwise: we have then several alternative descriptions of the I,.

In fact, I, is nonvoid by Theorem I; it is closed, since it is defined by (E) as
an annihilator; its translation invariance is obvious from (E). The fact that it is
not contained in any regular maximal CTIS can be demonstrated in the following
manner. It is easily seen from the representation (E) that [, along with any f
also contains the functions x> ¢®f(x) with # < 0 which have for Fourier trans-
forms the left translates of f Since the L classes considered by us have quasi-
analytic transform classes (see e.g. [13]), f can only have isolated zeros (of finite
multiplicity), provided f is not equivalent to zero. It follows that no point { € S,
can be a common zero to the transforms of all f €I, (In the analytic case, the
zeros on the boundary of S, may not be isolated. However, it is well known that
they form'a set of linear measure zero. For our purposes it is sufficient that they

cannot fill an interval; if they did we could continue jA(C ) across that interval by
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the Schwarz principle of reflection, and we would find f(é‘) = 0. The argument
above using translates will hold equally well in this context.) It is also clear that
the I, form a chain of nested sets; indeed

Icl if <8,
%

and also, by Theorem III,
I'—CX) = n I(x = {O}'
a€R

An interesting feature about I, is the connexion with H!. The annihilator

of HY, considered as an ideal in I*(R), is the set H® of bounded functions on R
with spectrum in — oo << § < 0. Such functions have an analytic extension to the
lower half-plane or, equivalently, a conjugate-analytic extension to the upper half-
plane. The description of I, given in (D) can be interpreted to say that the set

G, H® = {G ,F: F € H*} is the annihilator of I,. The inclusion I,c I, for
o << B corresponds to the dual inclusion Gaﬁ o) Gﬁlﬁ , which also follows from
the fact that € € H® if and only if 8 < 0.

Instead of considering the behaviour of f(f) as &— 4 o, we can equally well
define

y—(f) = lim sup (1] — Ho(— log |f(£)])) — @

E>—o0

and obtain a corresponding chain of CTIS {I '}, -localized at — o”. Thus we
have a doubly indexed chain

Uy =1, NI — 0 <o, f <+ o},
I,, and Iy, denoting L.
7
In the particular case when p(x) = exp (—2— alwl) , @& > 0, the ideals identified

by us coincide with those of Korenbljum in [11]. He defines for f € LII, the number
04(f) = lim sup ¢~ log [f(®)],
and considers the ideals J; of all f with 6,.(f) <p, where — oo < f < 0. Our
y.(f) is equal to
— aflog [0, (f)] —loga + 1) = — alog [0, (f)] — @. (4.3)

In fact, for this case we get G(2) = exp (iaz - log (— 2)), where the log is the
principal branch (imaginary part in (— =z, 7)). Thus G(iy) = exp (— ay log y) and
Hy(y) = alog y. The expression in the definition (4.2) turns out to be

& — alog (— log |f())) — @ = — alog (— e~ log [f(£)]) — @,
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from which (4.3) follows. Korenbljum does not use our G, for annihilators. Instead
he introduces the function

e—i/uc ’
9:) = T T ia)

which he shows will annihilate f and its translates if (our) y,(f)<< oo and
# =y )+ @

Nyman’s thesis [14] also essentially contains these results, although they are
not all explicitly stated. For these algebras, Nyman and Korenbljum also prove
the “generalized Tauberian theorem” that any f with ﬁé‘) # 0 for (€S, and
7.(f) = + oo generates the whole algebra L;. Korenbljum takes a further step
to show that any proper closed idealin L) which is not included in a regular maximal
ideal must indeed be of the type I, N I;. The corresponding questions for general

7
L,;, where p(z) may not be exp ) alz|), a > 0, have not been attacked in the

present work, but the author hopes to have the opportunity to return to them.

Some further comment should be afforded the non-analytic case g, = 0. The
first treatment of this situation seems to be by Nyman [14]. His reasoning starts
from a function, which is essentially our ¢, and a contour I' on which ¢({) is
bounded and integrable; the contour has a general appearance as in Figure 2, which
has given rise in closer circles to the name “Nyman’s bottle” for the whole idea.
The functional corresponding to our @ is defined as

) = f e (0)dL,

I

\
\
/

/

Fig. 2.
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and the weight-function p is introduced now, to make @ € (L})*. One explicit
x

7
case is demonstrated, where log p(x) turns out to be asymptotic to 5 log o]

Nyman shows that there exists a non-zero f€ LII, with f(f) = @)™ a>1, or
at least something similar to this, such that

ff(w —+ y)G{x)dx = 0.
R

The ideas of the proof lean heavily on contour integration and are essentially inspired

7
from the treatment of the case when log p(z) = 5 alz|, a> 0.

As mentioned in the introduction, Geisberg and Konjuhovskii have also treated
the case ¢, = 0. They consider algebras, i.e., they assume (1.9), and require explicitly
certain additional smoothness and monotonicity conditions on p. Under such
assumptions they can actually prove what essentially amounts to the equivalence
of conditions A and D. Their technique involves the function g(x) = 1/G(x), which
isin LYR) and has a Fourier transform §. Their version of condition D is that
f be representable as the convolution of § and some L!-transform that vanishes
on a certain half-line.

Theorem IV is inspired by Hirschman’s paper [8]. Actually it states a sharper
version of his Theorem 2, which is formulated so as to deal with the relations between
the size of a function and its Fourier transform at infinity. It says that if for some
e> 0, f satisfies

E— Hy—log lfe)) < —et+C, &> &,

then f= 0. Our theorem requires only that the left member tend to — oo, no
matter how slowly. (Hirschman has, admittedly, fewer “technical” assumptions on
p than we do, and his assumption is that f-p € L2, not L'.) In the same con-
nexion, our Theorem I is nothing but Hirschman’s Theorem 3, where we merely
take somewhat more out of the proof. It could be mentioned that many of the ideas
employed in the present investigations, notably the use of the functions H, and
Ly, more or less come from reading [8].

5. Techniecalities

In the proofs, we use a number of properties of our constructs H, and ¢. For
convenience in reading, we collect them here; the reader is advised not to indulge
in this section at a first reading, but consult it when it is referred to.

The function H, was defined in (3.2) and (3.3). We introduce the computationally
simpler function



122 ANDERS VRETBLAD

y

H(y) = f ¢ dt (5.1)

142
(1}

and its inverse L = H~1 (cf. [7]). The connexion between H, and H is expressed
in the first Lemma.

LemMa 5.1. For y >1, Hyly) < H(y), and
Hyy) — Hy) -0 as y— + 0.

Proof. Writing Hy, — H explicitly, we have

H()—H()——fytqw dt+<2—1>f Ot — () + BW)
WEEE T e g TV T ) eyt T AW TR
Here,
1
89(ys) 1
A(y)=—f82+1ds—>—§qolog2 as y— + oo,

0

1
and for finite y, A(y) < — Eq(y) log 2. Furthermore, if y > 1,

) d sq(ys)
B(y)=(*—1) J(sz + 1)(s2%2 + 1) ds.

For 1 <s < w0, ¢(ys) lies between ¢(y) and ¢, and thus

[o4]

d 1
By <awwr— 1) [ i

and similarly,

1 2y?
By) =g wolog 5y

g(y) log 2 all the way. This proves

b |

1
As y—+ o, By) >3 qlog?2, being <

the lemma.
Some facts about H and L are listed in the following lemma.

LeMma 5.2,

M
(2) H(y) <~ log (4* + 1), where M = q(0).
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(b) There exist positive constants C, Cy such that
L&) > Oy, &> 1.
() If a> 0, then
H(ay) — H(y) = q(6) log a 4 O(y™?), y— + oo,
where 0 lies between y and ay. Also,
H (5(%)) — H(y) = q(0) log q(y) + O(y?), y —+ oo,

with @ between y/q(y) and y.
(d) For every t> — H(y),

L(H(y) + t) < (2 -+ 1)),

where 0 is between y and L(H(y) -+ ¥).
(e) If >0,

f eL(E)—L(S—i-oc)dE < .
0 .
(f) For every &> 0, there exists a number Y = Y(e) such that for all y > Y
and all 1 >0,
yH(A) — 2 <yH(y) — Qy + &y,
where @ 1s defined by (4.1).

Proofs. (a) is immediate from the definition (5.1), and (b) follows directly from (a).
(¢) If a <1, the Mean Value Theorem yields

y y

) — ) = [0 a=q0) [

ay ay

where the integral is

1 ¥ 41 1
il - — low — —2
3 log R T loga -+ O(y™2).
When a > 1, as well as when « is not constant but equal to 1/g(y), the proof
is practically identical.
(d) First assume ¢ > 0. By the definition of L as the inverse of H, we have
L(H(y)+1) @) .y
xq(x 1
f = / 1+x2dx:q(6)-210g 1+ 47

v
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where L stands for L(H(y) %) and y << 0 << L. Solving for L we obtain
L = ((42 + 1)e2t/q(0) _ 1)‘/2’

from which the expected formula follows. An analogous proof holds if ¢ < 0.
(e) By the Mean Value Theorem of Lagrange, L(£ + «) — L(&) = «L'(& -+ 0x),
0 <6 <1, and since

1 1+ L{yy* _ Ly)
L'(y) = = = > ,
W= W) T Tade) o
this is greater than %L(E + 6x) Z%L(E); the statement follows, using (b).

A
(f) We claim that H(A) — H(y) + ¢ — ?7 <e¢ for all A >0 if y is large

enough. Differentiating the left member of this with respect to A we find that
it has a maximum (for fixed y) when 1 and ¥ are connected by the relation
14 22
YT Gy

The maximum value is found to be

Q + q(0) log q(2) — q(4) + O(A72),

where 0 is between 1 and u; we have used (¢). As 4 and y tend to + oo,

appropriately connected, this expression tends to zero, and so it is surely <e

if y islarge enough, ¢ being any prescribed positive number. The lemma is proved.
Now we connect the function ¢ of (3.6) with the function L.

Levma 5.3. If ¢ > 0, there exists a number & = &y(e) such that
07 < p(E)] <M for £ &, (5.2)

Proof. Observing that

[ve}

p(E)] = f e gy,

0
we begin with the right-hand inequality. Splitting the integration at
y =y = L& — ¢ + &)/¢,
we have safely
Yo Yo

1
< —yHy(y) , f Yy < — LE—Q+e)
< sup e erdy < 5 ¢ ;

y=0

0 0
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if & is large enough. In the other integral we put A= L(§ — @ -+ &) so that
&= H(1) + @ — &. We are required to prove that

0
1
HED-Fs) Q=0 Jyy < -
e dy =9 e,
HH@)+Q—2)

if 4 is large. The left member is majorized by

sup exp (y (H(A) _Hyy) - Q — %)) ) f o2y,

The integral tends to zero as 2 — o0, s0 we are left with proving that the supremum
indicated is < Ce*. In fact, when y > A/(H() - @ -+ &),

y(H(/l) — Hy(y) + @ — g) < y(H(l) — H(y) + Q — Z—) = A,

if 1 is large enough, by Lemma 5.1. Differentiating A with respect to y we get

M mm—n 1 ‘ Y 5.3
oy —HAO —HY) — wlog o — 4+ 0 — 77290 (5.3)
When 04/dy =0, for y =1y;, 4 can be written
2
419(%1)
) Ty =< %9(W)-

Since the last two terms in (5.3), grouped together, tend to zero as y — + o,
and since g, is large when 2 is large, we see that 9A4/dy is negative for all y

&
such that H(y) > H(A) — q,log ¢, — FY Thus the maximum of A is assumed

when ¢ satisfies the opposite inequality, i.e.,

€
h = L(H(l) — Qo log g — g)- (5.4)
If ¢o=0 we have directly 3 <1 and

A4 < qy,) < A

as soon as A islarge enough to force g, past the point where ¢(y,) = 1. Otherwise,
apply Lemma 5.2 (d) to (5.4). With the appropriate § we get

— o log go — 8/3} <

1/2
Y < (224 1) exp { 40)

< (22 1)k e70gym2l0) 5 = — >,
8¢(0)
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and
A= (2 )" gy < VA1 <241

for 4 large enough, since both ¥, and 6 tend to infinity with A. This proves half
of the Lemma.

The left-hand inequality in (5.2) remains to prove. Since Hy(y) < H(y), we
have to show that

w0
/e—yH(y)+y(H(l)+Q+£)dy > et
b

for sufficiently large A, where A = L(§ — @ — ¢). First consider the case ¢, > 0.
Then
g

f f > eXp( H () ) / DTy >

A A &l
ool () vrnn) 2+
o A

0

where C is of the general size e**®/H(4) >1 if 4 is large. By Lemma 5.2(c),

H(2) — H(}g0) = q(0) log g + O(27%).
If g > 1, we have here 8 > A/¢g,. Introducing this and observing that log g, > 0,
we have the desired estimate. If 0 << ¢, << 1, we have instead 6 > 4, and if
is large

H(2) — H(Ag0) = gplog ¢y —

which takes care of that case. If ¢, = 0 we have defined Q = 0 and are required
to prove

wo
f O HEO gy > o

exP{ (i )( HO) = (?(%)“)}

) 1
H (q”(;)) — H(2) < q(2) log T 0(34~2),

We get

© Hq(2)
/=) =5

Here, by Lemma 5.2(c)
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and so

fw>-0— x {Z(l (z)+i)}
J THO PR Ty

Since ¢(A) — 0 as A-— oo, the “coefficient” log ¢(A) - ¢/g(4) is ultimately > 1
8o that it both takes care of H(1) in the denominator and gives the desired estimate.
The proof is complete.

Concerning the growth of |p(§)| we give another lemma.

Lemma 5.4. Assume that the Additional Assumption 11 is fulfilled, i.e. that g, = 0.
Then for every -&¢ >0,

lpE — o)
0/ e

Proof. Let & == 47, and note that € = 0. Using the preceding lemma we find
&, such that L(¢ —#) <log p(&)| < L(& 4 ) for &> &. Then the integrand
is majorized by exp (2L(§ — 3n) — L{(§ — 7n)). In the proof of Lemma 5.2(e) we
saw that

. 14 L
(¢ —mn) — L& —3n) =29 IRy
where L, = L(§ — (1 - 20)n), 0 < 8§ << 1. Thus we get
L(§ — 3n)g(L,) — 2L, 2n
A =2LE — 3n) — L —9) = — .
(=3 = LE =) o(L,) L, o)

Since we suppose that q(x) — 0, we can take &, so large that ¢(L,) <<# for all
&> & since L is an increasing function we get

Ly — 2L, 2 7 ( )
A < - — = — L —)} < — L
ST0m Ly T @\ T L) =T

Thus

& —aF
@ =

which proves the lemma.

6. Proofs of Theorems II and III

In the chain A => B« C = D < E = F we proceed from left to right. In
the proofs we can assume « = 0. The general case can be reduced to this upon
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replacing f(x) by f(z)e™™*, which corresponds to replacing f(é‘) by f(é + «).
The details are left to the reader.

A = B. Using Lemma 5.1 we see that we could have defined y.(f) equivalently
by the formula

. (f) = lim sup (¢ — H(— log |f(£)])) — @ (6.1)

E->+ 0

The assumption p, (f) <0 is then easily rewritten in the following form: For
every &> 0, there exists §y(¢) such that

[FE)) < e M09 if 2> £(e). (6.2)

From Lemma 5.3 follows that if we take &,(¢) large enough we will also have
lp(& — 3e)| < el¢~2"%) g0 that

f PO p(E — 3¢)1de < f (HE-0-2-LE-0-0gg < oo,
50(3) 50(5)

by Lemma, 5.2(e). The integral over (0, &y(¢)) is of course finite. Since ¢ is arbitrary,
the proof of 4 = B is complete.
B = C. We assume that for every &> 0,

[ 1F@ipte — 91 < <o,
0
and we consider

T(y) = G(iy) f Feyerde.
R

The part of this that corresponds to the integral over (— oo, 0) clearly tends to
zero, and the other half is

y5

—yH,(y) 7 _ . €
< ol f Ferlipte — aide -sup s <

< Oy 7H) gup ¢¥~LE-0-2) O —= (Cl(e).
3

Here we have used Lemmas 5.1 and 5.3. Let 4 = L(§ — @ — 2¢) to get

J(y) S 0338}'6.?(0—11(3')) . Sup eyH(;')—;*.
>0

Now invoke Lemma 5.2 (f) to see that if y is large enough we have
J(y) < 07 - e = Ce'.

Since &> 0 was arbitrary, we have proved (C).
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C = B. Assuming (C), we can write, with any ¢ > 0,

f 7€) 196 — 26)1d = f 7(&)1ae f Gliy)e— W dy —

= f e 2@ (iy dyf[j &)|er dé </ e~y . Oedy < oo,

where the order of integration can be changed due to positivity.

C = D. Fix ¢ > 0. Under the assumption (C) it is clear that f has an analytic
continuation to ¥ <C 0. Let us denote f(z) = f(— z). In order to show that fG €em
we begin by considering F = fGe, ie. F(z) = f(— 2)G(z)¢"*. Introduce the
smoothed function F, by the relation

1 . .
Fh(z):ﬁfﬁ’(x—{—t—i—zy)dt, h>0, z=uz+ 1y.
—h

F} is holomorphic in y > 0. Since F € L' on the real axis, the boundary values
of Fy will be bounded and in L!. We claim that F, € H'. Since H! is a closed
subspace of I! and ||F, — Fl;,—~0 as kA -0+, this will imply that F € H™.
We estimate

. 1 . . 2 .
[Fa(iy)] < 5 f [f(—t —iy)G. (¢ +y)ldt < f]f(f)}e‘fydg " G(iy)e”* - max ||T| < C,
(2 H=<h
- R
where we have used Lemma 3.2 (b). Thus F, is bounded on the positive imaginary
axis, as well as on R. Returning for a moment to F, we have, by virtue of the
relation (1.5),

P@)] < Glin)T] f &)t - e < OIT.) < Ce.

Fy, being a local mean-value of F, is of the same order, and thus Phragmén-
Lindel6f’s principle tells us that Fy is bounded in y > 0. But a bounded function
with boundary values in L' must, in fact, be in H'. This is seen by representing
it with Poisson’s formula and estimating the L' norms on parallels to R.

So we have proved that fGS € A' and thus for & <0,
f (= ) @) = (f8) ¢ — o).

But here ¢ was an arbltrary positive number, and ( fé)" is continuous, which
implies that (f@)"(£) = 0 for all & < 0; this concludes the proof of (D).
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D = E. By assumption, f is analytic in y << 0 and the integrals
[ 11— 2 — iwte + iy
R
are bounded for y > 0. Then, using Lemma 3.1 (b),
[1se == — )6t 4 ipar = [ i@ — o0 =+ ipiae <
R R

<\l 1f6)

): e

which is independent of y > 0. This means that all the functions z > f(f — 2)G(2)
are in H!'. By the HP theory (see e.g. Hoffman [9]), we have then

ff(t — z)Q(x)e *dx = 0, § <0, t€R.
R

Thus if >0 we get

ff(t — )Gy(x)dr = /f(t — 2)Q(x)e Py — 0, t €R,
R R

which proves (I).

E = D. The assumption (E) has the following consequence. Define g(x) =
f(— 2)G(z), « €R. Then g € LX(R) and g(&§) =0 for £ <0. Thus g € H%, so
that ¢(z) can be defined for ¥y = Imz > 0, and f has an analytic continuation
to y < 0 defined by f(z) = g(— 2)/G(— 2), which makes sense since G(z) is
never zero, G being defined as exp (v -+ 7). The statement (D) follows.

E = F. Trivial.

Theorem II is proved. Theorem III is now a simple eonsequence of Theorem II.
By this, any one of the assumptions A, B, C, D, and K implies F. Now consider
an f € Lll, that satisfies F for all real «. Then, in particular,

v
A

0 =f*G[0) = ff(— HeHe™dt = (fG)" (— &), x €R.
R

Since fG’ € IA(R), Fourier’s inversion formula implies f(— x)G(x) = 0, a.e., and
since |[G(z)] = p(x) > 0 we obtain f(z) = 0 a.e., as required.
7. Proof of Theorem I

First we observe that it is sufficient to find an f 0 with y (f) <+ <.
By Theorem III, this f must also have y_ (f) > — oo. Since
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V(@ > P f(x)) = 7+(f) + B,

we can then obtain any real value for y,.
The construction is identical to that of Hirschman [8]. Let

1
I®@ = =)

Obviously f€ L, and f+# 0. Consider the formula defining u(z - iy):

) 1 1
u(x + 1y) = 2yf{(t TR e 1} [tlg(t)dt. (7.1)
R

From this it is seen that « is bounded from below in every strip 0 <<y << r; In
particular ‘

uw(x +iy) >0, 0 <y<l. (7.2)

It is permitted to differentiate (7.1) with respect to « under the sign of integration.
The result shows that

wx + 1y) > u(ly), ©€R, y> 0. (7.3)

The formulas (7.2) and (7.3) imply that the analytic continuation of f to the lower
half-plane satisfies '

1
o 1
Atey 'Y<t
and that it follows easily by contour integration and Lebesgue’s dominated con-
vergence theorem that

fw— iy < -

f&y = e [ e — iy)dn
/

independently of y > 0. Estimate the size of | f(&)l:

- 1 dx
g —y& — —yE—uliy) , _ - —yEtyH,(y)
&) <e ng]f(x wy)|de < e v 7_61?[/‘362 (y 1)2 = TR

Thus log [f(é)l < yHy(y) — y& We choose y to suit our purposes: y = Ly(& — 1)
gives Hy(y)=¢&—1 and log|f(§)] < — Ly& — 1), whence immediately

y.(f) <1 — @ < -+ o, and the proof is complete.
8. Proof of Theorem IV

In the proof we use the following lemma, to which the author has found no
convenient reference.
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Lemma 8.1, If f is in H* of the upper half-plane, then

/ f)dz = €° ]w flre®)dr

is independent of 8 im 0<0<m.

Here I,, of course, denotes the oriented half-line {re”:» > 0}.

Remark. It is actually true that the integral is absolutely convergent. This is
not needed in our application of the lemma, and since there does not seem to exist
a very simple proof of it, we abstain from including one.

Proof. Consider the contour integral

ff(z)dz =0,

where I'= I'(R, 8, 8) is the closed quadrilateral with vertices at d(cot 6 + 1),
S + @6, S + iR, R(cot 0 + 3); see Figure 3 for further notation. As for the integral
over y, it is well known (see [9]) that f(z) — 0 uniformly as [z]-> co inside
any half-plane y = Imz > § > 0. Thus fﬁ —0 as 8§~ oo for fixed R and 4.
We are left with

[ feriz=o,

where I = I"(R, §) is shown in Figure 4. Let first 6-— 0 +; with f€ H! the
passage to the boundary values has no hazards. Turning to p; we represent f
by the Poisson integral

73

Y2

Fig. 3.
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*H

iR %

%

y=8 - ———-SI J

Fig. 4.
: R ()
flx 4 iR) = ;fm dt,
R

and, invoking absolute convergence, interchange the order of integrations to get

f— ff + iR)d —l/ft<z—'— ¢ (—t~ te))clt
— | = (x + 1 )x_nR ()2,arcanR—co .

Reote
Since
f f)dt =0 (8.1)
R
for f € H*, this reduces to

1 t arctan cot 0
;I—ff(t) arctan (E — cot 0) dt — — ———————ff(t)dt =0
R R

o2

as R — o, where we use Lebesgue’s theorem on dominated convergence. Thus
we have, with y, extended to infinity,

f fyte + [ feyz—o

and since y, = — I, the Lemma is proved for 0 <6 < n; the case 6 =x is
immediate from (8.1).

When proving the Theorems IV A and NA we assume, as we did previously,
that « = 0. Thus our assumption is
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ff(x — HG\dt = 0, x € R. (8.2)
R

Introduce the fuunction % by

k) = | fxz — )GW)dt = — | flx — H)G()dt. (8.3)
/ ]
For x << 0 we can estimate |h(x)| using the first representation:
< _ _pn_ P () 34
) ijx ol — ) e < Iflpsup

and an analogous estimate holds for « > 0, obtained from the second integral
in (8.3). By our assumptions on p we conclude that A € L*(R). We can consider

% as a tempered distribution; as such it has a Fourier transform l;, a pseudo-
measure. We might try to compute h quite formally, and find

h(&) = FE)p(&). (8.5)

However, the integrals involved in the formal argument are not convergent. Never-
theless we shall prove the following lemma.

Lemma 8.2. Under the Additional Assumption I1I, ensuring that L3 is a Banach
algebra, (8.5) holds true in the sense that h is actually a function and as such equal to

fo.

Proof of the lemma. Use Theorem I to find a function & EL},, k # 0, with
small y, (k) = «. This can be done so that the function &, = (p% isin ZAMR) and

we can form
1 ,a .
=%fmmmwa (8.6)
R

In fact, by Lemma 5.3, |g(£)] < Ce*¢+P for some f, and so if we take |x| = — «
large enough,

l%l(é)] S GeL(E-I—ﬁ)—L(S—a)’ E > 0’

‘which is in IL}0, o) by Lemma 5.2 (e); for negative &, ¢(&) = O(|¢]™?) as

& — — o0, and it is sufficient to require % to be in LM — o0, 0) or even slightly
less; this is clearly feasible. (Convolve k by anything in L; with y- < -4 o0.)
It follows from (8.6) that k, € L*(R).



SPECTRAL ANALYSIS IN WEIGHTED L! SPACES ON R 135

Now study
/ k(x — )G() flc v — DG, (8.7)

where the double representation is a consequence of the choice of £ and the fact
that A = E (Theorem IT). We have also k{x — -)G(-) € H* for every z (translating
k does not affect y, (k), and A = D). By Lemma 8.1 with 0 = 7/2,

-0

Kx) =1 / k(e — 1y)Q(sy)dy.

But
k 1 l x+=yd
x —iy) = =5 &,
R

and we get for any 4 > 0, by absolute convergence,

A A
Lf G(iy)dy f E(g)ess+iras = f 2(5)«;"5"/ Giy)edy.
27 2
0 R R 0

Since 7290 is integrable, and the inner integral in the right member grows

monotonically to |@(§)] = — ip(&) as A — oo, the passage to the limit is legitimate
and yields

K(x) = ky(x), = €R.

Thus %, is also given by the integrals in (8.7). Now since both f and %k are in L
and we assume the latter to be a Banach algebra, the following calculations make
sense:

Jkz)= | flo — Oyt)dt = | flx — t)dt | k(t — w)G(w)du =
/ Jremon]

= | Qu)du | flx — Okt — w)dt = | Gu) - f = k(x — u)du
Joon] /

and similarly
b % h(a) = / Glu) - I * flo — u)du,
0

so that f=xlky =k +h. Taking Fourier transforms (in the distribution sense), we
have
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A

J @k, = k©h
or, since we know that l'c‘l = 70(]7,
F©kE)pE) = k@h.

‘We see that % can be represented by the function f(f)(p(é) near every point where
]::\(E) # 0. By small translations of k (as in the discussion following the statement

of Theorem IV NA) we conclude that ?L(f) = f(E)(p(E) everywhere (h does not
really depend on k), which proves the lemma.

Proof of Theorem 1V A. Under the Additional Assumption I, the formula (8.4)
will actually imply that % € LX(R). Indeed, if
7 7
p(6) = exp 5 ta) - exp | 5 Hal) — ),
where the second factor is non-decreasing for { > 0, we obtain

- ;‘I‘lu{"l

Ih(z)| < Ce
But then % is a bounded function, and we have from (8.5) that

“ < C
Ol =T

Lemma 5.3 now contains all the hard work needed to establish the relation

@) < 07609 if & > g(e),
which is equivalent to y_(f) < 0. The proof is complete.
Remark. The only place in the proof where the Additional Assumption I is
applied is to establish that A € L}(R). Any other assumption that accomplishes the

same feat can be substituted for it.

Proof of Theorem IV NA. First we observe that the Schwarz inequality gives

([ o —Eﬂdf)zs [ idermeras - [EE A g

By Lemma 5.4 it is then sufficient to prove that

f FERlp@)1E < oo
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But |f'|\2 = (f *f~)'\, where ﬂx) = f(— x). Our assumption f=* G = 0 implies that
also f *f* G = 0. We conclude that it is sufficient to prove

f Folp@)ds < @
0

for fe€L, satisfying f(&) >0 and fxG =0 We also remember that
#(&) = ilg(6)]. )

Let g be an even function in I*(R) such that the Fourier transforra g has
compact support and satisfies g(&) >0, g(0)=1, g(of) <& if o>1.
Remembering the function % obtained from f and G in Lemma 8.2, we get
for all ¢ > 0, by Parseval’s theorem,

0<—i f few@ienas = —i- 2" f h@)g (’ﬁ) dz,
R ‘R ¢
where the right hand member can be estimated:
27 z\
<2 iy [ 19(%) b = 20l
R

independently of ¢ > 0. Thus the integral of | f(§)¢(§)§(s§)] is uniformly bounded.
As ¢—>0+, g(e£) tends monotonically to 1 from below, and Beppo Levi’s con-
vergence theorem gives (8.8). The proof is complete.
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