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1. Introduct ion 

In  her thesis [4], R.-M. Herr6  develops Brelot's axiomatic potential theory. 
Within this theory she constructs an adjoint potential theory satisfying the same 
axioms. She applies this to the potential theory associated with an elliptic linear 
second-order differential operator L. When the adjoint operator L* exists in the 
classical sense and has HSlder-eont inuous  coefficients, the adjoint potential theory 
coincides with that  of L*. In  Section 3 of this paper we generalize this fact to the 
case when the coefficients of L are assumed to be locally ~-I-ISlder continuous and 
L* is defined in the sense of distributions. This result easily implies some properties 
of supersolutions of the equation L * u  = 0 proved by  Li t tman [5]. He shows that  
they satisfy a minimum principle and have some approximation properties. 

Under the same assumptions, we prove in Section 4 that  the distribution solutions 
of L * u  ~- 0 are locally ~-I-f61der continuous. In Section 5 we obtain a formula for 
I-Ierv6's L*-harmonie measure of a domain co. This measure is shown to have an 
area density given simply b y  a conormal derivative of the Green's function of L 
in ~o. :Finally, we prove a :Fredholm type theorem for the I)Mchlet problems for 
15 and L* in a given domain. 

The author wishes to thank Professor Kjell-Ove Widman for his valuable help 
in the preparation of this paper, in particular for giving the ideas of several of 
the proofs presented. 

2. Prel iminaries  

Suppose we are given a domain ~2 0 C R n, n > 2, and  a differential operator 

L u  = aiJui j  -~- b~u~ + cu, 
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def ined in D 0. We assume tha t  a (i ~ a jl, t h a t  L is elliptic in Y20, and tha t  the  
coefficients are locally ~-HSlder continuous,  for some ~ wi th  0 < ~ < 1. As 
I-Ierv6 shows, we can let  the  C (2) funct ions u satisfying Lu = 0 be the  harmonic  
funct ions in Brelot ' s  ax iomat ic  po ten t ia l  t heo ry  presented  in Brelot  [2, 3]. In  this 
w a y  we obta in  a po ten t ia l  t heo ry  satisfying Brelot ' s  Axioms 1, 2, and 3' (see I-Ierv6 
[4]). We write ~>L-harmonic~>, ~>L-potentiab>, etc. when we refer  to concepts  of  this 
theory .  

To make  possible the  cons t ruc t ion  of  an  adjoin t  theory ,  we must  l imit  ourselves 
to a domain  D C z9 0 where a posi t ive L-poten t ia l  exists. Depending on the coef- 
f icient  c of the operator ,  Y2 m a y  be chosen in the following way,  as shown b y  
l-[erv6 [4, p. 562]. 

1. I f  c < 0  and  c ~ 0 ,  we m a y  take  z g c t 9  o a rb i t ra ry .  
2. I f  c ~ 0 ,  we m a y  take  any  bounded  z9 such t h a t  ~ c z 9  o. 
3. I f  c is a rb i t rary ,  any  x 0 C D O has a ne ighbourhood which is an  admissible 

D. 

F r o m  now on we f ix  such an .(2. In  the sequel o), 0~1, �9 �9 �9 will always be subdomains  
of  z9 or z9 0. 

We follow the  no ta t ion  of Brelot  and Kervd  and write / ~  for the  ba layaged  
funct ion  of  a nonnegat ive  L-superharmonic  funct ion v and  a set E c ~9. I f  05 
is compact  and conta ined in $2, and  f is def ined and  cont inuous on ~9, then  the  
solut ion of the  Dir ichlet  problem for L in ~o wi th  b o u n d a ry  values f is denoted  
by  Hy .  A point  x 0 E ~ is called L-regular  for ~o if  Hy(x)-+f(Xo) as x ~ Xo, 
x C o9, for a ny  cont inuous f .  As shown by  Hervd,  x 0 is L-regular  if  and  only  if  i t  
is regular  in classical po ten t ia l  theory .  

Kervd  [4, Prop .  35.1] constructs  an L-po ten t ia l  Py in D wi th  suppor t  {y} 
and such t ha t  the  mapping  (x, y)--~ Pz(x) is cont inuous  for x, y C D, x # y. 
The suppor t  of  a po ten t ia l  P is def ined  as the  complement  of the  largest open set 
in which P is harmonic .  The funct ion  _Py(x) is a fundamen ta l  solut ion of L in ~9. 
Kervd [4, Theorem 18.2] shows t h a t  a n y  L-po ten t ia l  P in D can be represented  as 

P(x) =~ f P:~(x)d#(y) (2.1) 

for a unique  posi t ive measure # in s The suppor t  of # coincides wi th  the suppor t  
of the  L-poten t ia l  P .  

F o r  a ny  bounded  ~o of class C (1'~) and  such t h a t  05 c Y2 the Green's  funct ion 
is given b y  

G+(x, y) = _P,(x) - -  H77(x).  

The funct ion  G ~ can be used to  solve a b o u n d a r y  value problem, as follows. I f  f 
is cont inuous in 05 and  locally KSlder  cont inuous  in ~, the unique  solution of  the  
problem 

L u = f  in ~, u = 0  o~1 0oJ 
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is given by 

For this see Miranda [6]. 

u(x) - _ f Go (x, y)f(y)dy. 
( o  

(2.3) 

To construct the adjoint potentials, Kerv~ uses the concept of completely- 
determining open set in /2, which is defined in Herr6 [4, p. 451]. I f  o) is 
L-completely determining, ]-Ierv6 defines the L*-harmonic measure a~' for o~ at 
y E o~ by the equation 

The left side of (2.4) is an L-potential in /2, so because of (2.1), the measure @' 
is uniquely determined by (2.4). tterv6 now calls a function L*-harmonic in % 
if it is continuous there and satisfies 

f u ( y ) =  u(x)d x), y C m ,  

for any L-completely determining m such that  o5 C ml. 
I-Ierv6 shows tha t  the L*-harmonic functions satisfy the axioms of Brelot's 

potential theory. In the adjoint theory the function P*(x) =- Px(y) is a potential 
with support {y} and plays the role of Py(x). Following Kerv6's notations, we 
shall write ~>L*-superharmonic~>, ~>L*-potential~>, etc., for concepts pertaining to this 
adjoint theory. From the definition it can be proved tha t  the property of L*- 
harmonicity in ~o is independent of the domain /2 considered, ~2 ~ (o. I f  the 
adjoint operator 

02 - 0 

L*u -- axiOxi (aqu) --  ~ (b~u) @ cu (2.5) 

exists in the classical sense and has ]-[51der-continuous coefficients, then the L*- 
harmonic functions are simply the solutions of L*u = O. In  the general case, we 
interpret (2.5) in the sense of distributions, for any locally integrable u. 

For each s > 0 we fix a nonnegative C (~) function w~ in R n, with support 
contained in {Ix I < s}, and such that  

We let H(x, y) 
defined by 

f %(x)dx = 1. 

be the fundamental solution of the operator aq (y ) a2 / Oxiax i 



] 5 6  PETE~ SJOG~EN 

H(x, y) -- 
1 

/ ~ : w . .  log (~a~i(y)(xi --  yi)(x i --  yj))-'/' i f  n = 2, 
2~ Y A ( y )  

1 
2-~on V A ( y )  (~aq(y)(x,  --  y,)(xj -- yi)) (2-n)/2 i f  n > 2. (n 

H e r e  ~o= is the  area of the  uni t  sphere in R", and A(y)  and  
d e t e r m i n a n t  and  the  inverse, resp.,  of  the  ma t r i x  (aq(y)). 

(aii(y)) are the  

3. The fundamental equivalence 

We s tar t  wi th  a p re l iminary  regula r i ty  p ro p e r ty  of  the  dis t r ibut ion solutions of 
L * u = O  in a domain  coCs 

L]~MM~, 1. I f  u E L~oo@) satisfies L*u : 0 in the sense of %'@),  then u 
coincides a.e. in co with a continuous function. 

Proof. Assume n > 2, and  t ake  a fundamen ta l  solut ion F(x ,  y) of L in ~o. 
L e t  U be a re la t ive ly  compac t  open subset  of co, and pick y E U so t h a t  

f lu(x) -- u(y)idx = o(~ n) (3.1) 

B~o 

as  e --> 0, where ~ ,  is the  ball  {x: Ix - -  y[ < ~}. Choose ~0 E ~(eo~/~el2) equal  
to 1 in U ~ B ~ .  In  B(~B(,/2 we let  the  der ivat ives  of  ~0 sat isfy ~01 ---- 0(~ -1) and  
~0q=O(~  -2) as ~-->0,  and  outside U we take  ~ independen t  of  ~ and  y. 
Since x - +  7(x)F(x, y) is a C (2) funct ion,  we conclude t h a t  

f u(x)L,~(q~(x)F(x, y))dx = O. 

:But L~F(x,y)----O for x 4 : y ,  so 

~, B~ (3.2) 
f .  

y)dx + ] y))dx = o. 
B e e o ~ U  

W e  know t h a t  F(x,  y) = O(Ix -- yl 2-'~) and  t h a t  

F(x,  y) --  H(x,  y) = O(ix --  y]=-2-,) .  

(Cf. Miranda [6, pp. 18--20]).  Hence ,  (3.1) implies t h a t  the  th i rd  t e rm  in (3.2) is 
o(1) as e -+  O, and  the  f i rs t  t e rm  equals 
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fu(y)aq(y)qaii(x)H( , o(1). (3.3) y)dx + 

B 9  

B y  means  of an  in teg ra t ion  b y  par t s ,  we f ind  t h a t  the  second t e r m  in (3.2) equals  
the  same  expression,  excep t  for  a fac tor  - -  2. ]~ut H is a f u n d a m e n t a l  solut ion 
of  a~J(y)O~/Ox~Oxi, a n d  ~ 0 -  1 can  be considered as a func t ion  wi th  c o m p a c t  
suppo r t  in B ,  so the  in tegra l  in (3.3) equals  u(y). Le t t i ng  e--> 0, we get  

u(y) = f y))d  (3.4) 
o , i  

co\ U 

for a.a. y in  U. Since E(x, y) is cont inuous in  (x, y) for x ~ y, the integral  
in  (3.4) is a cont inuous funct ion of y in  U, and the lemma is proved for n > 2. 

I f  n =  2, we in t roduce  a new var iab le  x 3 and  p u t  M = L +  a2lOx~ and  
v(x, x s ) =  u(x) in w• Then  M is elliptic, and  v sat isf ies  M*v = 0 in the  
sense of  ~ ' ( e o •  since for ~ C ~(o~• we h a v e  

f f f + f f xjx =o 
o) (o 

Thus  we can m a k e  v a n d  hence also u cont inuous  b y  changing t h e m  on null  sets, 
a n d  the  p roof  is complete .  

Remark. As we shall  see la ter ,  u is in fac t  I~51der cont inuous,  and  therefore  
the  p roo f  of  (3.4) holds also in the  two-d imens iona l  case. 

THEOREM 1. Let co ~ f2. A locally integrable function u in co satisfies L*u = 0 
in the sense of ~'(a~) i f  and only i f  u coincides a.e. in a~ with a function which is 
Z*-harmonic in co. Similarly, u is locally integrable in co and satisfies L*u ~ 0 
in the sense of ~5'(co) i f  and only i f  u coincides a.e. in a~ with a function which is 
L*-superharmonic in o~. 

_Proof. Suppose  u is L * - h a r m o n i c  in co, and  let  ~0 E ~(eo). Take  ~o 1 and  o~ 2 
such t h a t  

supp~oC~IC~IC~2C~2Co~, 

and let (0 2 be bounded and of class C 0'~). If u ~ O, define 

v = (R*~'~ 
x - - u  /(o s 

which is the balayaged function of u in the Z*-potential theory in 0) 2. Then v 

is an  L* -po t en t i a l  in co 2 wi th  suppor t  con ta ined  in 0o~j, and  v coincides wi th  u 
in co 1. B y  Theo rems  33.1 a n d  18.2 in I-Iervd [4], the  L*-po tcn t i a l s  can be represen ted  
as in (2.1). I n  this  case we ob ta in  
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[ .  
v(y) = J  G~(x, y)d#(x), (3.5) 

for some posit ive measure  # wi th  suppor t  conta ined in 0%. 
There  exists a posi t ive L*-po ten t ia l  P*  in [2 and thus  also a posi t ive L*-  

harmonic  funct ion  in a ne ighbourhood  of r An L*-harmonic  u of a rb i t r a ry  sign 
is therefore  in % a difference be tween two posi t ive L*-harmonic  functions.  Hence ,  
we obta in  a represen ta t ion  similar to  (3.5) for an y  u, b u t  where # need not  be 
positive. 

Because of (2.3), the  funct ion  ~p satisfies 

y2(x) = -- f G~ y)Ly~(y)dy. (3.6) 

i " '  Now (3.5--6) and Fub  m s theorem imply  t h a t  

f uLFdx - -  - -  f = o, 
and thus  L *u ~ O. 

Conversely,  suppose u is locally integrable  in ~) and satisfies L*u = 0. We 
take  a comple te ly  de termining  ~o 1 wi th  ~51 C ~o and  a poin t  y E co 1. P u t  

f(x) = f P~(x)d(e,(z) -- 

where e x is the  measure consisting of a un i t  mass at  y. F r o m  (2.4) i t  follows t h a t  
f(x) = 0 for x e ~ ,  since / ~  . . . .  Px in t 9 ~ .  Now define 

and 
[ .  

s  = J Pz(x)(gdz) - h~(z))dz. 

Since P~(x) is a fundamen ta l  solution, we see t h a t  f~ is L-harmonic  outside 
the suppor ts  of  g~ and  h~ and t ha t  f~ - -~ f  = 0 in ~9~51 as e - +  0, un i fo rmly  
on compact  subsets of ~Q~51. F r o m  Theorem 35, IV in Miranda [6], i t  follows t h a t  
the first-  and second-order  der ivat ives  of f~ t end  to 0 in ~ r  as e --> 0, uni- 
fo rmly  on compact  subsets. Take  ~ E ~(eg) equal  to 1 in a ne ighbourhood  U of  
~51. Then  

in U, and  L(9)f~ ) ---> 0 un i fo rmly  in o ~ U  as e --> 0. 
Since (?f~ is of class C (2), it  is clear t h a t  

f uL(q~f~)dx = 0 
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or equivalent ly ,  

f uL(~fJx-- f ug~dx § f uh~dx=O. 

B y  L e m m a  1 we can assume t h a t  u is continuous.  Le t t ing  e - ~  0, we get 

u(y) = f %d(y; )~, 

and  the f i rs t  pa r t  of  Theorem 1 is proved.  
The p roof  t h a t  L*u ~_ 0 for an L*-superharmonic  funct ion u is quite similar 

to  the  corresponding proof  for L*-hurmonie  funct ions  and  is omit ted .  
Conversely,  suppose t h a t  L*u is a negat ive  measure  -- /~.  Take  a bounded  

(o~ of class C 0'~) and  such t h a t  ~1 c (o. Because of (2.3), an y  yJ C 95(0~1) satisfies 

f uL~c~x= f f r176 
where the  double  integral  is absolu te ly  convergent .  The f i rs t  p a r t  of Theorem 1 
now shows t h a t  the  funct ion  v def ined by  

is equal  to un L*-harmonic  funct ion ~.e. in (o~. The  in tegral  in (3.7) represents  
an  L*-potent i~l ,  so u coincides wi th  an L*-superharmonic  func t ion  a.e. in (o~ 
and  thus  also in (o. The p roof  of Theorem i is complete.  

4. Regularity of the L*-harmonie lunetions 

THEOREM 2. I f  U iS L*-harmonic in (o C t~, then u C C}~162 

Proof. Suppose n ~ 2, t ake  a compact  set K C ~o, and  let  ~ C 95((o) be 1 
i n a n e i g h b o u r h o o d  U of K.  I f  y E K ,  we have  

f = f _ - - 
for any  ~0 E 95(~o). As in the  proof  of L e m m a  1 we f ind  t h a t  

f + u(x)(a~J(x) - a'J(y))~ (~(z)g(~, y))dx + (4.1) 

f § u(x)(b~(x) ~x~ (q~(x)g(x, y)) § c(x)?(x)H(x, y))dx. 
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,Now take  y and  z E K  wi th  ~ =  [ z - - y l  so small  t h a t  

B --  {x: Ix --  yI _< 2e} c V, 

and  consider (4.1) and the  corresponding formula  for u(z). 
of the  a ~i it  follows t h a t  

and  

F r o m  the  regu la r i ty  

H(x ,  y) - -  H(x ,  z) = O ( ~ I x  - -  yl 2-n + ~lx - -  yl~-"), 

H~(x ,  y) Hx~(x, z) ~-- O(~alx - -  y[1-~ ~_ ~l x _ y]-~), 

H~,~(x, y) - -  Hx~,~(x, z) = O ( ~ l x  - -  yl -'~ + ~Ix- -  yl-~-'~), 

if  x ~ B. Since u is cont inuous,  these es t imates  easily imply  t h a t  the  difference 
be tween the  f i rs t  t e rms  in the  formulas  for u(y) and  u(z) is 0(~ ~) as Q --> 0, 
and the  same is t rue  for the  second and  four th  terms.  

The th i rd  t e rm  in (4.1) we split  as f B  + f u \ ,  + f ( o \ V '  and  the integrals  

over  B in this expression and  in the  corresponding expression for u(z) are 0 ( ~ ) .  
The difference be tween the  integrals  over  ( o ~  U is also 0 ( ~ ) .  The  remain ing  
difference can be wr i t t en  as 

f u(x)(a'J(z) - z)dx + a~J(y))Hxi,~(x, 

U~B (4.2) 

-l- f u(x)(a'i(x) a ;i ))(Hx~ (x z))dx. - -  (Y"" , 7' ' y) - -  Hx,v(x'  
U \ B  

Here  the  second t e rm  is 0 ( ~ ) ,  and the  f i rs t  t e rm  is O(e ~ log 1/~). Hence,  u E ~(0,~)~1or 
for some fi ~ 0. B u t  t hen  we can improve  the  last  est imate.  Since 

f Hxi5.(x, z)dSx = 0 
Ix-=l =r  

for all r, the  fh'st  t e rm  in (4.2) equals 

f (u(x) - u(z))(a~J(z) alJ(u))Hx <x z)ax + 0(~), 
U\B 

which is bounded  by  

o+=>. f z< + o(+> o(+>. 
U \ B  

The  case n ~ 2 now follows as in the  p roof  of  L e m m a  1, and  Theorem 2 is proved.  
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Remark.  I t  is clear t h a t  the  exponen t  cr is best  possible. I n  a similar way,  one  
can prove  regula r i ty  proper t ies  of solutions of nonhomogeneous  equat ions  L * u  -~ f .  
Fo r  example,  i f  f E LF~or t hen  u e C~~ ~) i f  p = n/(2 --  a), and  u is con t inuous  
if  p ~ n/2. 

5. A formula for the L*-harmonie measure 

We shall app rox ima te  the  coefficients of 25 wi th  more  regular  functions,  an d  
s ta r t  b y  examining  how the  Green 's  funct ion  varies wi th  the  coefficients.  F o r  
s --> 0, assume t h a t  

25~u q i bsui =- a~ uq ~- + c~u 

is an opera tor  wi th  coefficients in C(~ for some ~ ~ 9 .  Le t  G: ~ be t h e  
corresponding Green 's  funct ion,  whenever  i t  exists. 

LEM~A 2. Assume that r is a bounded C (~'~) domain with ~ C ~ .  Let the 
C(~162 norms of the a~ be bounded for small s, and let a~ j ~ a ~j uni formly in  
r as s --> O, and analogously for b~ and c~. Then G~(x, y) ~ G~ y) uni formly 
on any compact subset of o)• ~ which is disjoint with the diagonal. 

Proof. Since there  is a posi t ive L-po ten t ia l  in tg, there  exists a C (2'~) func t ion  
v in ~5 which is posi t ive and  satisfies Lv < 0 in ~. Since t h en  also L v ~ 0 
i f  e is small  enough,  GO ~ exists  for such e. 

I n  Boboc  and  Musta t~  [1, Chap. 4], the re  is a cons t ruc t ion  of  the  Green 's  func t ion  
for L in the  fo rm of  an L-po ten t i a l  whose suppor t  is the  poin t  y. F r o m  this  con- 
s t ruc t ion  i t  can be seen t h a t  G:~(x, y) is un i fo rmly  cont inuous  in y when  x and  y 
s tay  wi th in  dis joint  compac t  subsets of  w, and this  con t inu i ty  is un i form in e 
for  small e. Boboc  and Musta t~  assume t h a t  the  coeff icient  c is nonposi t ive ,  b u t  
f this is not  the  case, we can app ly  the i r  p roof  to  the  opera tor  Me: u --> v-lL~(vu),  
n which the  coefficient  of u is negat ive.  Then  the  Green 's  funct ion  of  L~ is g iven by  

v(x), 
i G~'(x, y) -~ G~(x ,  y ) ~ ( ~  

and  the  same equ icon t inu i ty  follows. 
F o r  f C C(~ and  e small, let  u~ be the solut ion of the prob lem 

L ~ u ~ - ~ f  in 04 u ~ = 0  on ~o. 

I f  we define u similarly b y  means  of  L, t h en  the  C(2)(~o) norms of u an d  u~ 
are un i fo rmly  bounded  for small e, as follows f rom Miranda [6, Theorem 35, IV].  
:Now L(u  --  u~) = (L~ - -  L)u~, so supo [L(u - -  u~)[ -~  0 as s --> 0. F r o m  T h e o r e m  
35, I X  in [6], we t hen  conclude t ha t  u~ --> u as e --> 0, un i fo rmly  in co. Since 
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[ ,  
u(x) --  u,(x) = --  J (G~~ y) --  G:'(x, y))f(y)dy, 

the  l emma then  follows if  we choose f su i tably  and use the  equ ieon t inu i ty  of  G:?. 
Suppose t h a t  (o is a bounded  C (''~) domain  wi th  o5 c s Then  ~ is a 

compac t  (n - -  1)-manifold, imbedded  in R ~, and  for topological  reasons each of 
its components  separates R". I t  follows t h a t  &5 ---- &o, which means  t h a t  a t  each 
point  of  this manifold,  o) lies on one side and R"~o5 on the  other .  I t  is easi ly 
shown t h a t  o) is L-comple te ly  de termining  (see the proof  of this fact  for open 
balls in Herv6  [4, p. 565]). 

I f  x E aco, we let  n~ ~ (cos ~1,. �9 cos ~,~) be the  exter ior  uni t  normal  of  &o 
a t  x. The  conormal  der iva t ive  at  x is def ined  b y  a/av ~ aq(x) cos ~jO/Ox~. The 
area measure  of 0~o is denoted  dS. 

TI-IEOI~E~ 3. I f  y is a point  in the C (~'~) domain ~o described above, then the 
L*-harmonic measure ~ is absolutely continuous with respect to dS, and 

d~; aG~(x, y) 
dS - -  o ~  (5.D 

for  x E &o. This  density of o~' is or continuous and positive on 0o~. 

_Proof. Since a~ ~ is independent  of ~Q D ~5, we can assume t h a t  ,(2 is bounded  
and of  class C (~';~), and  t ha t  the  coefficients of  L are def ined in a s l ight ly larger  
domain,  so t h a t  L e m m a  2 applies to f2. Then  we can wri te  Py(x) = G(x, y). P u t  

u = ~ ? , ~ ,  (5.2) 

which is an L-harmonic  funct ion in ~Q~ a(o. Since all the  points  of  &o are regular,  
u equals Py in Y2~o9 and  H ~ in ~o, and  u is cont inuous in ~ and  zero on 0tg. Py 
Due to Theorem 3.1 in W i d m a n  [7], g rad  u is ~-I-ISlder cont inuous  in ~5 and in 
~ o ,  b u t  its b o u n d a r y  values on a~o need not  coincide. We write  au'/Ov and  
au"/3v for the conormal  der ivat ives  obta ined  f rom the  values of  grad u in r 
and  t g ~ ,  resp. Fur the r ,  we pu t  Aau/av ~ 3u'/Ov --  Ou"/Ov. 

Now define 
a~! = a ' J ,w~  

and  analogously for bl, and c,, for s > O, and  wri te  L,  anti  G, = G~ as before.  
B y  O/Ov, we shall mean  the  conormal  der iva t ive  on ao~ associated wi th  L,,  and 
A Ou/av~ is def ined analogously.  We also need the  auxi l ia ry  funct ion  

aa~(x)\, 

def ined for x e 309. 
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F r o m  L e m m a  3.3 in W i d m a n  [7], i t  follows tha t  each second derivat ive u~ i is 
integrable in tg. Therefore, we can apply  Green's and  Stokes's formulas,  and  for 
x E o) we obtain 

au"(z) 
o = -  f a~(x, z)L~u(z)az -- f G~(x, z)--~- dSz + 

.Q \ o) 0~o 

Oa, Ow 

and 

au'(z) 
u(x) -~ -- f G~(x, z)L u(z)c~z + f G~(x, z ) ~  dS, -- 

(o 0(.o 

_ f aG~(x, z) 
d 3%, u(z)dS~ + fb(z)G~(x, z)u(z)clS~. 

0o, &o 

(Cf. Miranda [6, pp. 12--20]). Adding, we get 

s s au(z) 
u(x) = -  . ]  G~(x, z)L~u(z)dz -~ . ]  G~(x, z)A - ~ -  v dSz, (5.3) 

OoJ 

and  in a similar way,  this  formula can be proved for x C ~ 5 .  Now let s --> 0. 
F r o m  the construction of the Green's funct ion in Boboc and  ~ u s t a t ~  [1], we conclude 
t h a t  G~(x, z) -~ O(H(x, z)) in ~ • 9 ,  un i formly  in s. Hence, i t  follows from L e m m a  
2 tha t  the f irst  integral  in (5.3) tends to f G(x, z)Lu(z)dz -~ O, and so 

f Ou(z) u(x) = G(x, z)~ ~ czs~. (5.4) 
0~o 

F r o m  (2.2) and  (5.2) we see t h a t  

au(z) aG~(z, y) A - -  ~o av av~ 

for z r aco, so (2.4) and (5.4) imply  (5.1). I t  follows f rom Theorem 3.1 in W i d m a n  
[7] t h a t  da~/dS C C(~ 

To prove t h a t  aG~(x, y)/O~,~ is negat ive on ao~, we note t h a t  G~(x, y), con- 
sidered as a funct ion of x, is L-harmonic  and  positive in ~o~{y} and zero on aco, 
Le t  co 1 be a domain  obtained by  taking  away  from co a small ball centred a t  y. 
I f  the coefficient c is nonpositive,  the result  follows direct ly from Theorem 3,IV 
in Miranda [6], applied in co 1. For  a rb i t ra ry  c, we take  v as in the p r o o f o f L e m m a  2 
and  apply  the same theorem to G/v and the operator  u---> v-l.L(vu). 

Theorem 3 is proved. 
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6. The Diriehlet problems for L and L* 

For subdomains of t9 0 the Dirichlet problems for L and L* need not be 
uniquely solvable, but we have the following Fredholm type theorem. 

THEOREM 4. Let ~ be a bounded C (1'~) domain with (5 c Y2 o. 
problems 

and 

Consider the 

L u = f  in (o, u : O  on ~(o, (6.1) 

L*v = g in the sense of ~'(~0), v =q~ on a~o, (6.2) 

where f E CI~162 and f is continuous in (o, g E Lp(~o) for some p > n/2, and 
q~ is continuous on ~o). Then either (6.1) and (6,2) are both uniquely solvable, or else 
the corresponding homogeneous problems have the same finite number of linearly 
independent solutions us and v, i ~ 1 , . . . , m .  In  the second case (6.1)is solvable 
i f  and only i f  

f f v ~ d x = O ,  i =  1, m, @ @ 

o )  

and (6.2) i f  and only if  

f gu~dx ~- q~ ~ dS = O, i =  1, . . ., m. 
eo  0 o )  

Proof. I f  we let M be the operator L -- y and choose the constant y large 
enough, there exists a Green's function G of M in ~o. Then u is a solution of (6.1) 
if and only if M n = f - - ~ u  in ~o and u = 0  on 0~o, which is equivalent to 

u(x) = y f S(x, y)u(y)dy -- f S(x, y)f(y)dy. (6.3) 
J J 

o )  

Similarly, v solves (6.2) if and only if 

v ( y ) ~ - ,  f a (x ,y )v (x )dx- -  f a(x, 
( o  o )  

f a G ( x ,  y) q)(x)dS~. (6.4) y)g(x)dx -- 0~ 

Ore 

To this pair of integral equations, Fredholm's theory is applicable (see Miranda [6]). 
Hence, the equations are either both uniquely solvable, or else the corresponding 
homogeneous equations have the same finite number of linearly independent 
solutions us and v~, i = 1 , . . . ,  m. These functions are then also solutions of 
the homogeneous problems (6.1) and (6.2). Moreover, in the second case (6.3) is 
solvable if  and only if 
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f v,(x)dx f.(x, y ) f ( y ) d y  = O, i =- 1 , . . . ,  m ,  

w h i c h  is e q u i v a l e n t  to  

f fv~dx = O, i = 1 . . . .  , m.  

t~or (6.4) t h e  c o n d i t i o n  o f  s o l v a b i l i t y  is 

f f  Ix, l Ixl x + 
o) o~ 

f s OG(x, y) 

o) 0 ( o  

(6.5) 

U s i n g  t h e  m e t h o d s  of  W i d m a n  [7 o r  8], one  s h o w s  t h a t  OG(x, y)/~v,  = O(Ix - -  y 11-~) 

for  x E 0(o, y C o9. I t  fo l lows  t h a t  (6.5) is e q u i v a l e n t  to  

f gu~dx + j ~ -~v  dS  = O, i == 1, . . . , m, 

o) 0 o )  

a n d  t h e  p r o o f  o f  T h e o r e m  4 is c o m p l e t e .  
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