Invariant Subspaces and
Weighted Polynomial Approximation
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1. Introduetion

Let pu be a finite positive Borel measure defined and having compact support
in the complex plane €. Assume that g is not a point mass. Let z denote the
complex identity function and let & stand for the polynomials in z. For each
p,1 <p< oo, set HP(du) equal to the closure of @ in LP(du). In this paper
we ask: Does HP(du) have at least one closed subspace, other than itself and {0},
which is invariant under multiplication by z? The answer is known to be yes when
p > 2 and yes in certain cases when p << 2. When p = 2 the question is especially
intriguing, since then it is equivalent to the invariant subspace problem for sub-
normal operators on Hilbert space. Our main objective here is to answer it for
certain measures ydA which are absolutely continuous with respect to planar
Lebesgue measure A.

We begin with a few simple observations. If HP(ydA) = LP(pydA) and W is
any measureable set with 0 <C f pvid < f wdA then S = {f€ HP(pdA):.f=0
a.e. —wdd on W} is a nontrivial closed subspace invariant under multiplication
by z. If HP(pdA) = LP(pdA) (and only then) it may happen that there is a point
{ € C such that the map f-f({) can be extended from < to a bounded linear
functional on HP(ypdA). A linear functional on HP(ypdA) associated to a point {
in this way is called a bounded evaluation for HP(ydA4). By taking S({) to be
the closure in HP(pdA) of the polynomials vanishing at {, we obtain a closed
subspace which is invariant under multiplication by 2z and, since (z — {) € 8({)
and 1€ 8({), it is nontrivial. In some cases it can be shown that either HP(pdA)
has a bounded evaluation or else HP(pydA) = LP(ydA), thereby assuring the
existence of a z-invariant subspace in HP(ypdA4).
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Invariant subspaces can be shown to exist in this way whenever v is the
characteristic function of a compact set. This was done for p # 2 in [2] and for
p == 2 in [3]. The theorem we now state was announced in [4] and includes both
of these as special cases.

THEOREM 1. Let ¢ be a non-negative function having compact support K and
satisfying

(1) p € L'**(H,dA) for some &> 0;

(2) fElogzpdA > — o0.
Then, for each p, either HP(wdA) has a bounded evaluation or else HP(pdA) =
Lr(pdA). In particular, HP(pydA) has a nontrivial closed z-invariant subspace.

In the course of this investigation it will become apparent that the hypothesis
f plogwdd > — oo assures that every »function» in HP(E, ydA) has a repre-

sentative which is analytic in the interior of E. It further implies that the collection
of all functions in LP(E, pdA) which admit such a representative constitutes a closed
subspace of LP(E,wdA). We denote that subspace by LE(E,ydA). Wheunever
Hr(E, wdA) and LE(E,ypdA) coincide the polynomials are said to be complete in
LEE, ydA). A major portion of this paper, Section 3, is devoted to the problem
of finding conditions under which completeness occurs. In this connection we
obtain several results concerning bounded point evaluations and weighted polynomial
approximation but no additional information on the existence of invariant subspaces.
The weight  is assumed to satisfy (1) and (2) of Theorem 1 throughout.

Section 3 is comprised of three theorems. Of these, Theorem 4 is perhaps the most
significant. It originates from the following question: Given a compact set X with
connected complement and a simply connected Jordan domain £ lying in X,
when is HP(X\ 2, dA) = LE(X\ £, d4)? Subject to certain regularity restrictions
on 0f£, we obtain a metric condition which is both necessary and sufficient for
completeness in this setting. We put no restrictions on 8X. This problem has been
studied extensively by a number of mathematicians, notably from the Soviet school.
Progress was due initially to Keldysh and later to Dzrbasyan and Saginjan (see [20]).
More recently, Havin and Mazja [14] have contributed in this area. The relationship
between bounded point evaluations and completeness is best portrayed in Theorem
2. Although Theorem 1 is included as a special case, the proof essentially makes
use of the earlier result. In Theorem 3 we consider the problem of completeness for
measures wdA, where y is the modulus of a nonvanishing analytic function on
the interior of K. Under suitable conditions we are able to verify that the poly-
nomials are complete in LI(H, wdA) if and only if they are complete in LE(E, dA4).
Theorems 2 and 3 both include prior results of Hedberg [15] and serve to put that
work in its proper setting.
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2. Invariant subspaces and approximation on nowhere dense sets

To prove Theorem 1 we shall assume that HF(ydA) has no bounded evaluations
and deduce that HP(ydAd) = LP(pdA). The argument will run as follows: Let ¢
be any function in Li(ydA4), 1/p + 1/¢ = 1, with the property that f fopdA = 0
for every f € HP(ypdA). We shall use the nonpresence of bounded evaluations on
Hr(pydA) to prove that the Cauchy transform f (gw)(E)(& — 2" dA(L), denoted
@(z), is zero almost everywhere dA4. This will force gy to vanish almost every-
where, since gy = — n*lagﬁ\p/ 0z in the sense of distribution theory. That in turn
will imply Hr(pdA) = LP(pdA) as asserted.

We are thus left with the task of proving gqu = 0 almost everywhere. For this
we will need two lemmas concerning the behavior of the Cauchy transform. The
first can be found in Deny [8] (see also [7], pp. 756—76) and is restated here for
the convenience of the reader. The second is a variation of a lemma of Carleson
[6, Lemma 1].

Lemwma 1. Let u be any positive measure in the plane of total mass 1 (i.e. f du = 1).
If 1<q<2 and p=q(q — 1) then

du(2) } { du(?) }
Cf{fIC—ZI dd < K sup /Ic—le ’

where K is some constant depending only on q.

Lemma 2. Let E be a compact subset of the plane and let k € LI(E, dA) for some
q > 1. Assume that for each z, € E and each 1y > 0 the set

{rzogrgro,(]z~z0|:r)ﬂ(C\E);éqS}

has linear measure equal to ry. If F=0 in C\E then k=0 almost everywhere
d4.

Proof. For ¢ > 2 the Cauchy transform ks everywhere continuous and the
lemma is a simple consequence of the fact that E has no interior. For smaller
values of ¢ it is less obvious. We shall prove that if 1 < ¢ <C 2 then Z(zo) =0
at every point 2z, € & where f |k(z)|?]z — 75| dA < co. Since this integral is
finite almost everywhere, regardless of the value of ¢, that will establish the lemma.

Fix ¢ with 1 <q¢ <2 and let 2z, be as above. To simplify notation assume
that z, = 0. Thus, f{k(z)}‘llzl“ldA and f |k(z)]1z]"'d4 are both finite. We shall

construct, for each ¢ > 0, a probability measure », in such a way that
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(a) w, is carried by (jz] < 6) N (C\E);
(b) lim [ E(Z)dvy(£) = k(0).

80

Since &= 0 in C\E and v, has no mass outside C\Z, it will follow from (b)

that 1/3(0) = 0 as asserted.
In order to obtain the »ss put y equal to the characteristic function of C\E
and let I(r) be the linear measure of ([z] = r) N (C\E). Note that

27
I(r) = rfﬂm‘")d@, 0<r < .
[

Define a measure ¢ by setting

o) = [ ez

X

for every Lebesgue measureable set X. This measure was brought to my attention
by James Wells in connection with Carleson’s work [6, Lemma 1]. It is evidently
carried by CN\Z and, because I(r) > 0 for almost every r, one can use polar
coordinates and Fubini’s theorem to verify that o({z: |z] < d}) = 6. We claim
that », can be taken to be the restriction of d—Y¢ to |z| < 4.

Assume, therefore, that v, has been chosen in this way. By interchanging the
order of integration,

[rowa= [+ [ { / M}k(z)om(z), 1)

z—C
s} <20 z]=>24

provided this operation is permissable. We shall not mention it again, but the
validity of (1) is actually a consequence of the estimates obtained below. Our plan
is to show that, as ¢ — 0, the first integral on the right side of (1) converges to

zero and the second converges to IE\(O).
It is an easy matter to check that
(e) f (z — &) 'dvy(8) — 1/2 for every z# 0 as §—0;
(d) f |2 — ¢ 'dws(8) < 2/)2] for [z] > 26.

Then, since k(z)/z € L}(dA) by hypothesis, it follows from the Lebesgue dominated
convergence theorem that

d—>0
228

lim { f & — :)—1@5(5)} k(z)dA(2) = f k(z)/zdA = %(0).

By applying Holder’s inequality and Lemma 1, in that order, to the remaining
integral in (1), we see that
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‘f{[(z—— C)*ldva(é‘)} k(z)dA(z) SK{suEf]z— Ciq"zdva(f)}
1 <26
/g
[waraal”,
=<2

where 1/p 4 1/¢ =1 and K is a constant that depends only on ¢. If z is fixed
and ¢ = re®,
& 2r

f e — E]=dny(2) < f el — 12112 my(0) = 67 f {rl(r)—l f x(re"ﬂ)de} 2] — r[s=%dr

)

5
=01 [ |lzg| — r[T7%r <2671 | #17%r = 2677%(q — 1).
/ /

Thus,

] Il { [e- C)—ldma} k()AG) | < K’ {64—2 f ;k<2)1qu}”’,

2| <28 7] <28

where K’ depends only on ¢. As soon as 8 << 1 the right side is dominated by

QUK { f Ik(2)[9/ 2|0 A }llq
s <26

and this tends to zero as § — 0, since |k(z)|7/|z] was assumed to be summable.
This establishes the assertion that lim,_, f @(C)dva(é‘ )= 72(0) = 0. Q.E.D.

In addition to Lemmas 1 and 2, we shall have recourse to a theorem of Szegd
which is basic to the invariant subspace theory for the spaces HP(du) associated
to measures supported on the unit circle. For a more thorough discussion of this
and related topics the reader can consult either [12] or [17]. The theorem to which
we have alluded is the following:

Szra0O’s THEOREM. Let df be one-dimensional Lebesque measure on the unit circle
2| =1 and let h € L)(d0[27), b > 0. Denote by P, the set of all polynomials that
vanish at the origin. Then, the distance from P to the constant function 1 in LP(hdf/27)
18 given by the formula

inf [ |1 — fIPhd6/2n = exp {(27’5)—1 / log hdO } (IT)

fep

This allows us to estimate the norm of evaluation at the origin when the latter
is regarded as a linear functional on the polynomials in the LP(Ad6/27) norm. For
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example, if flog hdf > — oo and we set it equal to 2mlog 1/K, K > 0, then
(11) says 1 <K f |1 — fIPhd0/2z for all f€ P, This is the same as saying
1<K f |fiPhdB/27t for every polynomial f having value 1 at the origin. Therefore,

for <& [ o
for all polynomials f. This observation will be important in the proof of Theorem 1.

Proof of Theorem 1. We wish to prove that HP(ydA) = L*(ydA) provided
Hr(ypdA) has no bounded evaluations, y has compact support H, vy € L'**(dA)
and, f g log pdd > — oo. To accomplish this we need only prove that 61\/; =0
almost everywhere dA4, whenever g € Li(yd4), 1/p + 1/g =1, and f fopdAd = 0
for each f € HP(ydA). Assume, therefore, that g is any such function.

The first step is to show that @ = 0 everywhere in the complement of E.
So fix C€CNE. If f is a polynomial then [f(z) — f({)](z — ()t is also a
polynomial and f (fz) — f(O)z — &) g)w(z)dA(z) = 0.  Consequently, if
Ji(0) # 0 we can write f(0) = [gW(O) [ fE)9E)E — O p()AAR) for every
polynomial f. But, this is impossible, since g(z)(z — ()™ € Li(ydA) by choice of
¢ and HP(wydA) has no bounded evaluations by hypothesis. Therefore, 5;1\/) () =0
and hence él\p =0 in C\E, since { was arbitrary.

Step two consists in using Lemma 2 to conclude that @ == 0 almost everywhere
on E. Before that lemma can be applied, however, we must check that
gy € L't*(dA) for some » > 0. For that purpose fix ¢’ with 1 <¢ <g¢q and
put p’ = ¢'/(¢’ — 1)~%. By applying Holder’s inequality to the measure yd4,

1/q’ p’
f g " ypdA < { f \gl(””‘*'wdA} { f w””'wdA} : (III)

Since y € L'**(dA) and ¢ € Li(ydA), the right side of (III) will be finite and
gy € L'**(dA) if » is chosen small enough to make (1 + »)g’ <q and »p’ <e.

Fix » in this way and let , € E. Assume for convenience that {, = 0. Let
E, denote the union of all those circles |z| = r that lie entirely in E. We claim
that A(E,) = 0, whence |z| =r meets C\E for almost every r with respect
to linear measure. To prove this let us assume that A(Ey) > 0. Then, since
f 5, log ydA > — oo, it follows from Fubini’s theorem that there is a constant

K > 0 and a set of non-negative real numbers X, having positive linear measure,
such that for every r € X, the circle [z| = is in K, w(re®) € LY(dB/27x) and

27

f log y(re®)df > 27 log 1/K.

0
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Hence, Szegd’s theorem implies that

2r

o) < K f |F(re®) Pyp(re®)d0 2m av)

for every polynomial f and every r € X. Integrating both sides of (IV) with respect
to rdr, we get

27

If(0yp frdrgK(Zn)—lf/ |f(re®) [Py (re®)rdrdf SK(ZJI)”lflf;Pq)dA,
X 0 X E

which is tantamount to saying that HP(pdA) has a bounded evaluation at the origin.
Since this possibility has been ruled out by hypothesis, we must conclude that
A(Ey)) = 0 as claimed.

We have thus shown that gz\p =0 off E and that the assumptions of

Lemma 2 are satisfied. It follows that éz\p = 0 almost everywhere and hence
Hr(pdA) = LP(ypdA). Q.E.D.

Consider now Lebesgue measure restricted to a compact set K. Denote the set
of continuous functions on B by C(E). Let P(¥) and R(E) consist of those
functions in C(¥) which on K are the uniform limits of polynomials and rational
functions, respectively. If E has no interior and C\Z is connected a theorem
of Lavrentieff (see [12, p. 48] or [19, p. 297]) says that P(E) = C(X), and so
HP(E,dA) = LP(E, dA) for every p. On the other hand, if C\E is disconnected
P(E) # C(E). This raises the question: If C\ZE is disconnected, must
HP(E,dA) + LP(E,dA4), at least for some value of p? Of course, one excludes
the trivial case where E contains a closed subset E’ of full measure with C\E’
connected. The following example was suggested by John Wermer and answers
the question negatively.

A set X will be called thick if every disk centered at a point of X meets X
in a set of positive measure.

Example. There exists a compact set £ such that

(i) £ is thick;

(ii) C\E is disconnected;

(ii) HP(E,dA) = LP(E,dA) for every p.
Proof. Take a sequence of disjoint rectangules

Ro={x+iy8-27'""<aeg<2'™ —1<y<1}, n=12 ...,
Y Y

accumulating to the line segment I = {iy: — 1 <y < 1}. Join the ends of I by
a thick arc E, having measure no greater than 1 and lying in the half plane
Rez << 0. Such an arc can be constructed by modifying the argument in [21].
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Fix a point £, in the region bounded by E,U I. In R, join the top and bottom
faces by a thick arc E;. Choose a polynomial P; so that Py({;) =1 and |P;| <1
on E,U E,. Note, we do not mind if |P,| is large on I. Assume that thick arcs
E; have been constructed joining the top and bottom faces of R;, j=1,2,...,n,
and polynomials Py, ..., P, chosen with

(1) Pi(G) =J
(2) {fE " |P,~|fdA}1/f <1/2% k=0,1,...,5 and j=1,2,...,m

Construct a thick arc E,,, in R,,, joining the top and bottom faces such that

3) {[g, Bl <12, j=1,2,.

Choose a polynomial P,., such that

(4) Pn+1(C0) =n-++1
(5) (P, " igAV < 1y2%) kB =0,1,...,n+ 1.
Ey, + /

Thus, we obtain, inductively, sequences {E;}?, and {P;}jZ,. Dsfine
E =Ur,E,UI Then E is compact, C\E is disconnected and, since each
E, was thick, F is thick.

Now Pi({,) =j for every j and for each r, 1 <7 < o0,

{f ]P,-]’dA} < Z {f |P; ]'dA} ' éol/z"z 2,

provided j > r. Therefore, {, is not a bounded evaluation for any HP(E,dA).
If g€yl d4), ¢q> 1, and ffg dA = 0 for all polynomials f it follows as
in the proof of Theorem 1 that / g(z)(z — §)'dA = 0. Thus, (z — )™ belongs
to every HP(E,dA). Similarly, R(E) is contained in every HF(I,dA). But,
C\Z has only two components and so R(E) = C(E) by a theorem of Mergeljan
[19, p.317] (see also [12, p. 51]). It follows that HP(E,dA) = LP(E,dA) for
every p. Q.E.D.

Some time ago, Sinanjan [24, Th. 2.4] constructed a compact set K, with the
property that R(E,) is dense in LP(E,, dA) for every p but, E(E,) #% C(&,).
This example was obtained by removing from the closed unit disk a sequence of
open disks A; = {z: |z — a;] <7}, j=1,2,..., such that the 4; have mutually
disjoint closures and > ,7; < co. However, for sets E of this type it is known
that HP(E,dA) is never equal to LP(H,dA4) (see [2, p. 305]). It would be interesting
to know if there exists a compact K with HP(E,dA) = LP(E,dA) for every p,
but R(E) # C(E).



INVARIANT SUBSPACES AND WEIGHTED POLYNOMIAL APPROXIMATION 175

3. Approximation on sets with interior points

Let E be an arbitrary compact set in the plane and let 9 be a non-negative
function defined on E with / 10g ydA > — oo. Suppose that ¢, € E° and let
0 be its distance from 0E. (Here E° and 0E denote the interior and boundary of
E respectively.) We have seen in the proof of Theorem 1 that {, is a bounded
evaluation for the space HP(W,wdA) associated to the measure obtained by
restricting wdA to the annulus W = {{: 38 < |{ — & < 8}. We can therefore
choose a function g € LYW, pdA), 1/p + 1/g = 1, such that f(G) = fogzpdA
for every polynomial f. Let us assume that ¢ has been defined to be zero outside
W and let k(z) = (z — o9 (z)p(z). Then, f fkdA = 0 for all polynomials f and
k(CO) — 1. Since % is continuous in C\ W, there is a neighborhood U of {,

on which Ikl >1/2. If ¢€U, [{— | <4/4, and f is a polynomial then

10 =k [ f@k)e — £ydde)
' 4

and we have the estimate

1/ 1/p
FO)] < 46 { f |g|wdA} ' { f Ifl”wdA}
w w

Thus, in order for a sequence of polynomials to converge in the LP(E, pdA) norm,
convergence must be uniform on every compact subset of E°. Hence, HP(E, ydA)
is contained in L2(E, ydA), the subspace of LP(E,ydA) consisting of those functions
which are analytic in E°. We are thus led to ask: Given I and p as above, which
functions in LE(E, pdA) belong to HP(E, pdA)?

Questions of this nature have a long history dating back to the late 1800’s and
the work of Runge on uniform approximation. The first results relating specifically
to approximation in the mean were obtained by T. Carleman in 1922. He proved
that HP(D,dA) = LE(D,dA) if D is a simply connected Jordan domain. Later
Markusevic and Farrell (see [20], p. 112] proved the corresponding theorem for
Caratheodory domains and Sinanjan [24] subsequently extended it to closed Cara-
theodory sets. (A Caratheodory set is a set whose boundary coincides with the
boundary of the unbounded component of its complement.) In the mean
time, it was discovered that there exist non-Caratheodory sets E for which
HP(E,dA) = LX(E, dA) (see [20], p. 116). In an attempt to explain this phenomenon,
Sinanjan [25] recently conjectured that HP(E,dA) = Li(H,dA) if and only if
Hr(E,dA) has no bounded evaluations arising from points outside E° We shall
see in Theorem 2 that this is indeed the case. In addition, Theorem 2 applies to
a more general setting than that envisioned by Sinanjan and it extends a result of
Hedberg [15, Corollary 1] on weighted polynomial approximation.
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THEOREM 2. Let E be compact and let v be a non-negative function defined on
E. Assume that

(1) € L'"5(E,dA);
2) fElogquA > — .

If Hr(E,wdA) has no bounded evaluations outside E° then every function F in
LR, pdA) N LPOT5E dA) belongs to HP(E, pdA).

Remark. Theorem 2 is valid for &= oo if (1 4 &)/e is interpreted as being
equal to 1. When v =1 on E this proves the sufficiency of Sinanjan’s conjecture.
The proof of necessity is not difficult and we omit it.

To deal with questions concerning approximation on sets with interior points
we need the following estimate which is implied by Hedberg’s work [16, Lemma 6].
Although the results in [16] are stated in terms of capacity, that notion can be
avoided here by making use of the measure o introduced in the proof of Lemma 2.
We leave it to the reader to supply the details.

LevmvA 3. Let E be compact and let k € LYE, dA4), 1 < q < 2. Assume that for
each z, € OE and each ry > 0 the set {r: 0 <r <1y, (]2 — 2| =7r) N (C\E) # ¢}
has full linear measure. If k=0 in C\E and Lo is a point of E° at a distance
8 < lle from OE then

k(Zy) < © {k* (Lo)dlog 170 + (L4(d) f ik(Z)Jqu)l/q}
lz— 0o} <45
where k¥ (£) = sup, (nr?)~ f - cl<r 2)|dA is the Hardy-Lattlewood maximal

Sfunction, I'y(d) 1is equal to log 1/0 or 6“ % according fo whether q = 2 or q << 2
and, C is a constant depending only on q and the diameter of E.

Proof of Theorem 2. Fix F in LE(E,wdA) N LPU+9(F dA). Let g be any
function in Lf(ypdd), 1/p + 1/¢ = 1, with the property that f Sfopdd =0 for
every f€ HP(pdA). To prove that F € HP(pydA) it is sufficient to show
f FgypdA = 0. We shall see that gy = 0 almost everywhere on 9E and so the
problem reduces to showing f o Fgpdd = 0.

Since HP(ydA) has no bounded evaluations outside E°, we can argue as in
Theorem 1 to conclude that gzp 0 everywhere in C\E and almost everywhere
on 9E. Now, gy € L'*"(dA), » > 0, and so it follows from the theory of singular
integrals [5] that @ is absolutely continuous on almost every line parallel to each

of the coordinate axes and that a(@)/ or and 8(@)/ dy exist almost everywhere
(dA) in the usual sense. By a lemma of Schwartz [22, Theorem V, p. 57], these
derivatives coincide with the corresponding distribution derivatives and so
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18 2\ -
g 2“2;( +%§y> (gy)

almost everywhere in the usual sense. If X = {{ € 0K @(C ) = 0} then, by Fubini’s
theorem, almost every point of X is a point of linear density (and hence a point
of accumulation) for X in the direction of both coordinate axes and so
6(@)/895 = a(@)/ oy = 0 almost everywhere on X. It follows that gy = 0 almost
everywhere on X and hence almost everywhere on oK.

To prove that f o Fgpdd =0 we chall regard F as an element of

1P+ dA) and we shall require that gy belong to the dual space. Recall,
therefore, that gy € L'*"(E,dA) if 1 <q' <q, (14-9)¢ <gq, and, v¢'(¢’ — 1)1 <e.
Equivalently, v <<min ((g/¢") — 1, &(1 — 1/¢’)). As a function of ¢’, it is easy to see
that (g/q’) — 1 is decreasing and takes values between 0 and ¢ — 1, while (1 —1/g’)
is increasing and takes values between 0 and &/p. Thus, to obtain the largest possible
v with gy € L'*"(E, d4) we must pick ¢’ so that (¢/g¢') — 1 = (1 — 1/q’) andset »
equal to that common value. When this is done we find that 1+ v = ¢q(1 + ¢)/(g + ),
which is the index conjugate to p(1 + &)/e. Assuming that » has been chosen in
this way, we will construct a sequence of functions g¢., » = 1,2, ..., such that
each o, has support in E° and 09./0Z —gy in the L'*"(H,dA4) norm. Then
by our choice of ¥,

o 8' / FgypdA.

On the other hand, integrating by parts
/ or £
33 o4 = 0

7y

for all n, since F is analytic in £° Hence f o FgpdA = 0 as claimed.
In order to construct the o, there are two cases to be considered. First is the
case where gy € L'*E,dA4), 1 + v > 2. Here gﬂ) is econtinuous and can therefore

be written in the form 61\/) = (ky — ky) + i(ky — k,), where the functions k; are
continuous, non-negative and, zero on 0K. In addition, each k; and its first
order partial derivatives belong to L'""(E,dA) (see [9, p. 316]). Setting

o) = — atsup (k; — 1/n, 0), we obtain functions whose supports are obviously in
E° and which satisfy

lim /

n—>
®© 0

a@n 3k

1+4+»
dA =0, j=1,2,3,4.

For a proof of the latter assertion we again refer the reader to [9, p. 317]. The desired
sequence ., m = 1,2,... is obtained by taking o, = (o} — 02) + i(0} — o}).

w«n
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When gy € L'**(E,dA), 1 <14y <2, construction of the g, is a more
delicate matter. The simplest and most direct procedure is due to Bers [1, p. 3]
and Hedberg [16, lemma 10] and is based on an idea of Ahlfors. It runs as follows:
Let k be the piecewise linear function k() =0 for ¢t <1, k(@) =1 for t > 2
and, k() =t —1 for 1 <t <2. For each z€C let d(z) denote the distance
from z to C\E°. Put ka(t) = k(nflog log 1/t), wa(z) = kn(6(z)) and gn = — n—l.@)wn.
Evidently, p. has support in E° and ’

00 1 . Owa
oz YO T L0V 52

These derivatives exist almost everywhere because 0(z) satisfies a Lipschitz con-
dition of order one. Since 0 < w, <1 and w,— 1 almost everywhere (as #» — o0),
it follows from Lebesgue’s dominated convergence theorem that gyw.—>gy in
the norm of L'**(E,dA). Thus, the sequence g, # = 1,2,..., will have the
required properties provided

limf’

This is where lemma 3 comes in. One verifies that,

f () grad wa2) A4 <

c lgrad wn(2)]
f o {(gw)* @+ f lgw(D)"*'dA, [ dA,.
w d(z)
Ee e—sl<4(2)
(see [16, lemma 10]). According to the Hardy maximal theorem (see [26, p. 5]),
the first term on the right side of (V) is dominated by f 2 O lgp|'td4, for
some constant €’ independent of . Since |grad w.(z)| = k,(8(z)) almost every-
where in E° and since k, is a decreasing function on its support, a similar estimate

is valid for the second term:

¢ [ lerad ono) »
—;‘[TCZA, f lgw(0)"T"d4,

|6—=]<43(z)

S0 fan [
|u|<45(2)

——f "“u] dd., fuu +dA,

< n—f f gy ()[4,
E*

lim f lgy grad wa|'*’dA = 0.

n—oo o

2l+v

(V)

g A,
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where C and Cj, j=1,2,3, are constants independent of n. It follows that
lim, f o |79 grad w.|"""dA = 0 and this completes the proof. Q.E.D.

Ideally, one would like the conclusion of Theorem 2 to be: HP(E, ydAd) =
L2(E, ydAd). Unfortunately, that need not be true. Take, for example,
E = {zlz] <1} and p(z) = |exp (z + 1)/(z — 1)|. Then,

p € L*(E,dA), f log wdd > — oo and HP(E, pdA)
E

has no bounded evaluations off E° Nevertheless, Keldysh was able to show,
[20, p. 134], that H2(E,ydA) # L(H, wdA) and his proof extends to all p. In
cases like this where o is the modulus of a non-vanishing analytic function on
E° it is possible to obtain, with slightly stronger hypothesis on v, results which
assert that HP(E, ydA) = LE(E, pdA) for all p. Of course one must assume that
Hr(E, pdA) has no bounded evaluations off E° for any p. If this assumption is
made for a fixed p, only, we are unable to prove that HP(E, ydA) = LY(E, yd4),
even for that p. The next theorem is typical of this situation. It was partially
anticipated by Hedberg [15, p. 117] in the case of a Caratheodory domain.

TuEOREM 3. Let E be compact. Let o be a function defined on E with the property
that o is analytic and nowhere zero in E° and

[ o+ a4 < oo

E -
for some &> 0. Then HP(E, |x|dA) = LE(H, |x|dA) for every p if and only if
Hr(E,dA) = LX(E, dA) for every p.

Remark. We have already noted the existence of non-Caratheodory sets H
such that HP(E,dA) = I2(E,dA) for all p. We shall discuss this phenomenon
in greater detail following the proof of Theorem 3. )

Proof of Theorem 3. Assume first that HP(E,dA)= Li(H,dA) for all
p, 1 <p< 0. Then E° is simply connected and HP(E,dA) has no bounded
evaluations associated to points outside KE® Likewise, HP(E, |x|d4) has no
bounded evaluations outside E°. Indeed, if HP(E, |x|d4) has a bounded evaluation
at ¢ then, taking ' =14 ¢ and s=s'/(s’ — 1),

11p
IfOI <k [flfIP]ocIolA}

<k { { f |f|PsclA}1/s{ f | |"d4 }I/S’}I/P
< [ f Ifl”‘dAT/Ps
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for every polynomial f. Hence, { € E°. We shall prove that the absence of bounded
evaluations in €\ E® for every HP(E, |x|dA) implies HP(E, |x|dA) = LE(E, |x|dA)
for all p.

Since the weight |x| satisfies the appropriate hypothesis, we can argue as in
the proof of Theorem 2 that every function ¢ € I3(E, |x|dA) which annihilates
He(E, |x|dA), 1/p + 1/g = 1, vanishes almost everywhere on 0E. Thus, to prove
that HP(E, |x|d4) = LE(E, |x|dA) it is enough to show that HP(E®, |x|dA) =
L2(E° \x|dA). Now, in view of the fact that E° is simply connected and « has
no zeros there, it is possible to define in E° an analytic branch of «* for each
real number A If we show that «~'P € HP(E®, |x|d4) it will follow that
HP(BS, (x|dA) = LE(H®, |[x|dA) (see [20, p. 132], [15, p. 117]). For suppose
f € LA(E®, |x|dA). Then o«'Ff € LF(E° dA) and by hypothesis there is a sequence
of polynomials ¢; satisfying

0 =lim [ |a'Pf — @Q;PdA4

j>oo

=lim [ |f — Qo PPlx|dA.
)—>ooEo

Assuming that «='P € HP(E°, |x|dA), each @;x'* also belongs to HP(EC, |x|dA)
and so f € HP(EC, |x|dA4).

To prove that «~'P € HP(EY, |x|dA) we shall argue inductively. The idea is
due to H. S. Shapiro [23, p. 327] and was adopted by Hedberg in [15, p. 118]. The
initial step is to observe that «~°? belongs to LE(E®, |x|dd) N LPU+=(EO, dA)
for some J, 0 < 6 < 1. Hence, by Theorem 2, «x~°7 € HP(H9, |x[dA). Next, set
d=1— 1 and consider the weight |x|*. Since HP(E, |x|d4) has no bounded
evaluations outside E° it follows from Holder’s inequality that the same is true
of HP(E, |x’dA). Furthermore, |x|*€ L'**(H,dA) and

w0 =De € [R(B, |x'dA) 0 LPAH (B, dA),

where 1 + &' = (L 4 &)/A. Therefore, theorem 2 applies to the measure |x*d4 and
guarantees the existence of polynomials @, such that

0=lim [ o= — QP|x|'d4
Jj—>o
Ee

—lim [ a0 Qo CDP Py |dA.
J>e0
Thus, &~ ¢~ belongs to HP(EO, |x|d4), since a~*~P does. Repeating this
argument with «~0~P playing the same role as before and |x|* replaced
successively by laf”, |x[*,..., we find that a—C=lp € HP(EO, |x|dA) for
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ke . .
k=1,2,... Then because «~1~*pr _ x~lp pointwise on E° as k— oo and

l(xl'(l_’lk)/” <1+ |7 for all k, the dominated convergence theorem implies

lim [ a0 _ 4~ |py]dd = 0.
k>0
EO

Therefore, «~' € HP(E®, |x|dA) and so HP(E®, |x|dA) = LE(E°, |x|dA). This
establishes the theorem in one direction.

To obtain the other half of the theorem assume that HP(H, |x|d4) = LE(E, |x|dA)
for all p. Note that HP(E, [x|[d4) can have no bounded evaluations outside E°
for any p. Then, if HP(E, dA) has a bounded evaluation at the point ¢ (p fixed)
we see, by applying Holder’s inequality to the measure |x|dA4, that

ip 1/s s 11/p
O <k { [ e {oeldAJ <n H f Ifl”‘locIdA} { f locll_s'dA} }

<K [ i !flP‘locIdA]”Ps

for every polynomial f, provided s <1+ ¢ and 1/s 4 1/s’ = 1. Hence, { € EO.
That is, HP(E,dA) has no bounded evaluations outside E°® It follows from
Theorem 2 that HP(E, dA) = LE(E, dA) for every p. Q.E.D.

We remarked in the proof of Theorem 3 that a requiremeut for HP(E,dA) =
LE(E,dA) is that the interior of E be simply connected. The simplest non-
Caratheodory sets with this property are crescents. A crescent is any set K topo-
logically equivalent to the closed region bounded by two internally tangent circles.
Such a set may or may not have the property that HF(E,dA) = LE(E,dA) (see
[20, p. 116]). The »thickness» of H mnear the multiple boundary point is the
determining factor. This was discovered by Keldysh in 1939. Only ten years later
and with additional restrictions on the set E was a condition found that is both
necessary and sufficient for equality to occur. That was due to the efforts of M. M.
Dzrbasyan, who established sufficiency, and A. L. Saginyan, who established
necessity. The theorem they obtained is this (see [20, p. 158]):

TEEOREM. Let E be a crescent with multiple boundary point af the origin Denote
by lr) the linear measure of (]z| =7r)NE. Assume that lr) = e " qgnd
rh'(r) 1 oo as r{ 0. Then in order for H?(E,dA) = L2(E,dA) for all p it is
necessary and sufficient that

flog (r)dr = — oo. VI)

0

Recently, V. P. Havin and V. G. Mazja, [14], have considered the question
of polynomial completeness in LE(E,dA) for sets more general than crescents.
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The setting is as follows: Let X be a compact sct with connected complement
and let 2 be a Jordan domain with class O? boundary whose closure is contained
in X. Assume that 90 passes through the origin. In order that H?(X \.£2, dA4) =
LP(X\ 2, dA) Havin and Mazja prove that (VI) is again sufficient. They do not
require that I(r) be monotone or that X\ 2 be a crescent. It appears, however,
that the completeness of the polynomials in LE(X\ 2, dA) depends in a more
essential way on the function 6(z) = dist (z, C\.X) than on I(r). More specifically,
the following is true:

THEOREM 4. Let X and 0 be as above with one exception. Assume only that 082
s class O and that n(z), the unit exterior normal lo 02 at z, saiisfies a Lipschitz
condition |N(z;) — N(zy)| < Cley — 25|, Let 6(z) = dist (2, C\X). Then, in order
that HP(X\Q, dA) = LE(X\ 2, dA), for any p, it is necessary and sufficient that

flog 8(z)|dz| = — 0.
2o

Remark 1. The regularity conditions imposed on 02 are precisely what is needed
to ensure that when z is sufficiently close to 9£2 there is a unique point of 90
nearest to x. We shall designate by Unp (02) the set of all points x having a
unique nearest point in 92. The supremum of all numbers r such that
{x: [x — a| <r}c Unp (022) whenever « € 92 is called the reach of 9£2. This
terminology is due to Federer, [11, p. 432]. We shall adhere to it in the ensuing
discussion.

Remark 2. As an immediate consequence of Theorem 4 there is the interesting
fact: If HY(X\.Q, dA) — LAX\R2, d4) then H/(X\Q,dA) = LZ(X\Q,dA) for
every p. It is conceivable that this is the case without any restrictions on 9£.
But, for the present, that remains an unsettled question.

Proof of Theorem 4 — Necessity. The proof of necessity is based on an idea of
Saginjan [20, p. 121]. Under the assumption that f o 108 0(2)|dz] > — o0, we will
construct a Jordan curve [™* lying in XN\ 2 and having the following properties:

(1) £ lies inside I'*

(ii) Any sequence of polynomials bounded in the LP(X\£,d4) norm forms

a normal family inside [™.
Should HP(X'\Q, dA) = LX(X\Q2, dA) this has the implication that every function
in L2(X\2,dA) admits an analytic extension to £. Of course, that cannot
happen and one must therefore conclude that HP(X'\ 22, d4) = LA(X\ L, d4).

For our purpose it will be convenient to replace d(z) by a regularized distance
function A(z) which has essentially the same profile as d(z) but is smooth in X0
The existence of such a function is guaranteed by a theorem of Calderon and
Zygmund (see Stein [26, Th. 2, p. 171]). It is defined at all points of the plane and
has the properties:
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(a) C;0(z) < A(z) < Cyd(z) for all z € C;

(b) A(z) is C® in X° and P (=)

< B_6(z)' 1.

Here C,, 0, and B, are positive constants. In (b) the letter « signifies an ordered
pair of positive integers (o, ) and 8%/0x* is the corresponding partial derivative
of order |x| = oy + . For any integer m > 3 one can easily verify that 4™(2)
is an (m — 2)-smooth function throughout the plane. The construction of I*
relies heavily on this fact.

In order to carry out that construction choose a parametric representation
vit), 0<t<1, for 92 whose first derivative 9'(f) is nowhere zero and
Lipschitz in ¢. Let p(z2) = dist (z, 82). Extend n(z) outside 92 by setting
n(z) = — grad p(z) if 2 € 2 and n(z) = grad o(z) if z2¢€ Q U 8Q. Thus extended,
the function n is defined almost everywhere, has unit modulus and, since 92
has positive reach, it is Lipschitz and everywhere defined in the vicinity thereof.
Verification of the last assertion will be made in the couse of proving sufficiency.
By convolving n with a suitable real valued C® function 7 and setting
N =n = 7/|n = 7|, we obtain a field of unit vectors N(z) which, in a neighborhood
of 982, is C® and has the property n(z)- N(z) > 1/2. The notation here denotes
the usual dot product and the bound on n(z) - N(z) implies that, at each z € 992,
the vectors n(z) and N(z) make an angle of not more than #/6 radians. Since the
field N is Lipschitz and transverse along 0%, the vectors eN(z), attached to
02 at z, fill out a tubular neighborhood 7' around 9£ in a one-to-one manner,
provided ¢ is sufficiently small (see Whitehead [30, Theorem 1.5, p. 157]). Likewise,
for small e, the normal field en(z), z € 290, {ills out a tube 7" in similar fashion.
I am indebted to Dennis Pepe for bringing the theorem of Whitehead to my attention
and for suggesting that it could be used in this context. By choosing & properly,
we can arrange that, for each z € 00,

(¢) The vectors ed%(z)N(z) and eA%z)n(z) lie entirely within 7' N 7T";
(d) ediz) < 6(=)/2.
Thus, the curve I™ parameterized by
Y5O = ¥(0) + A O)Np(®), 0 <t <1,

is a simple closed Jordan curve lying in X\ 2 and satisfying property (i). As
defined, I'* isclass O and, by taking & smaller if necessary, it has a nonvanishing
Lipschitz normal.

To complete the proof of necessity it remains to verify that I'* has property
(ii). Assume, therefore, that f;, j =1, 2,..., is a sequence of polynomials which
is bounded in the LP(X'\£2,dA) norm. By virtue of (¢) and (d) the disk with
center at y*(f) and radius eA%(yp(t))/3 is contained in X\ 2 for all £. Thus, by
the area mean value theorem,
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K 1 K
@) gm {,;[QW dA} < ) j=1,2... (VIT)

and the constants K and K’ depend only on p. We shall use the hypothesis
f o0 108 6(2)[dz| > — oo to construct a bounded, nowhere vanishing, analytic
function % in the domain £* bounded by I™ having the following property:
For almost all ¢, |h| takes the boundary value A*P(y(f)) at p*(#). Then, according
to (VII), |fik] <K', j=1,2,..., almost everywhere with respect to arc length
along I'*. It follows that |fijh] < K’ everywhere in £* and that the sequence
Sik, 9=1,2,..., is a normal family there. Hence f;, j=1,2,..., is also a
normal family in £* and so I'™* has property (ii).

The function % is obtained as follows: Set A(y*(t)) = A*P(p(t)) along I'*.
Because |y*'(t)| < Kly'(t)], there is a constant K; such that

1 1

f log A(2)|dz| = f log 2y *(t) [y* ()1t = K, f log 8(p(t) ' (1)|dt =
I 0

0

=K, /log 8(z)|dz| > — co.

r

Suppose now that ¢ is the Riemann map from |w] <1 onto Q% Since I'*
has a Lipschitz normal, it is known (see Kellogg [18, p. 123]) that ¢ extends to a
continuously differentiable function on |w| <1 and that there are positive con-
stants C; and C, for which 0 << C; < |¢'(w)| < U, <X o everywhere on |w| = 1.
In view of this, it follows that

[ 108 atgp ] > — .
] =1

Hence, by a theorem of Szegd (see [17, p. 53]), there exists a bounded, nowhere

vanishing, analytic function % on |w]| <1 whose boundary values are almost

everywhere equal in modulus to the composite function 10¢ on |w] = 1. Setting
h = ho¢=' we obtain the required function on 2% and the proof of necessity is
complete. Q.ED.

Proof of Theorem 4 — sufficiency. Assume that f o 108 0(2)|dz| = — 0. Fix

p and let k € LYX'\Q, d4), 1/p -+ 1/g = 1, have the property that fﬂch =0
for every f€ HP(X\Q,dA). Thus, =0 in C\X. To prove that
HP(X\Q, dA) = L2(X\ R, dA) it suffices, by the argument in Theorem 2, to
show that k=0 in £. Furthermore, since the polynomials are complete in
LiXN2,dA) for s <s, whenever they are complete in L(X\2, dA), we can
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assume that p islarge,say p > 2. On the other hand, the proof can be significantly
shortened when 1 <p << 2 and for that reason this case is treated separately.

Suppose, therefore, that 1 < p < 2. Then k EL‘I(X\Q, d4), ¢ > 2, and %
satisfies a Holder condition

B(zy) — Bag)] < Cley — 2,

where 0 << u <1 and 2z, 2, are any two complex numbers. If ¢ = © any u <1

will work; otherwise, we take w = (¢ — 2)/q (see [28,p. 38]). Hence ],I(\:(z)f < O8(z)*
and

[rog li@idzl < ¢+ u [ 1og dteyigs| = — e
a0 o002

If ¢ is the Riemann map from |w| <1 onto QU 9Q the composite function
ko ¢ is continuous on |w] <1, analytic in |w] <1 and

fmwmm-f@ B 0)]dw] = — .
w]=1
The analyticity of o ¢ on |w] <1 is a consequence of the analyticity of k

on £. As previously noted, there are constants C; and O, such that
0<C < ¢’ (w)] <0y < o on |w| =1, since 92 has a Lipschitz normal. Hence

[ 108 liegonidw] = — .

jwi=1

It follows from a well known theorem of Jensen, [17, p. 52], that Lo ¢ =20 in

lw] << 1. Therefore, £=0 in Q. This completes the argument when 1 <<p < 2.

Suppose now that 2 <p < w. Then ke€Ly(X\02,d4), 1<q=<2,
and % mneed not satisfy a Holder condition. It is not even clear whether
f op 108 lﬁ(z)[]dzl exists or not. To avoid these difficulties we do the following: Fix
o, O < ty << reach (082). Let p(2) = dist (z, 6.0) and let £ = {z € 2: p(z) = t}.
Since % is analytic in £, the integral f o, 108 lk(z)l[dz] exists. We shall rely upon
Lemma 3, in lieu of a Holder condition, to prove that / ag, log Vc( 2)ldz] — — o
as t—>0. From this we will deduce that % = 0 in £ and thereby establish the

/\

theorem. The first step is to multiply and divide |k(z)|? by 6(z)*, where &> 0
has yet to be specified. This yields the identity
) |dz].

flog |k(2)|2|dz| = /log 8(z)|dz] + f (

a2,
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As t— 0, we shall see that the first integral on the right approaches — co and
that, for suitable ¢, the second is uniformly bounded above for 0 <<t <Cf,. The

result is lim, f 20, 10g )|ldz| = — o as claimed.
In order to obtain the bound alluded to let us extend n(z) from 002 to Q\Qta,
by setting n(z) = — grad p(z). Note that for 2z € 082, t <f{, the vector n(z)

is the unit normal pointing outward from £,. Since

f log ( ) \dz| < ke
sy PARCE

we can direct our efforts toward finding a bound for the larger integral. Furthermore,
by the divergence theorem

|k(z)e (z) e (@)t
[ s v n@= + [ 5o ne) - (— e = [ dw(a(z)s n(z)) a4

aQ‘ agte .Q‘\Q"
(VIII)

# B
_ f la((:;l f grad (‘68‘) n(z)d 4

e\, L AN

and it therefore suffices to estimate the size of the latter two integrals in (VIII).
The divergence theorem is valid in this situation because the vector field
]@(‘z) [#6(z)"°n(z) is Lipschitz on Q,\Q,o. To verify this it is sufficient to prove
that n is Lipschitz and that is best understood by considering the map
& O\ L, — 02 which associates to a point x € Q\Q,ﬂ the unique point of 90
nearest to x. By a theorem of Federer, [11, p. 434], |&(z) — &(y)] < Clx — y| when-
ever x,y € ,Q\Q,.. Coupled with the assumption that n is Lipschitz on 08,
this implies

In(z) — n{)| = In(§)) — nE@)| < C1EE@) — &) < 'z —yl

provided wx,y € 2\ &,. This has the added implication that |divn(z)] < 2C"
almost everywhere in O\ Q,. It follows from (VIII), the chain rule and these
remarks that there exist constants C; and C, for which

| S —
‘ . (k)] {Ic(z )W lk( )t ~
| f div ( 5o n(z)) dA' < 01 ke S 44+ G f sy erad 1R 4.

De\82,

If 1+ &< q itis easily seen, with the aid of Lemma 3, that the first term on the
right is bounded by a constant which does not depend on ¢, 0 <t < #,. The com-
putation is similar to a corresponding one in the proof of Theorem 2. By Hélder’s
inequality the second term does not exceed
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],c\ /g
02{ Ié(f))pl } {f [grad]k |i‘1dA} . (IX)

2N\, 2.\,

If pe << g it follows once again from Lemma 3 that the first factor in (IX) admits
a bound which is independent of ¢. Likewise, by the Calderon-Zygmund theory
for singular integrals, [5] (see also [28, p.p. 68—70]), the second factor is less than
03{f &7 A}, Thus, if ¢ is chosen so that £ << g — 1 = g/p then

flﬁwq
o2\ G ) 18l < 2,
[ile}

t

where M is a constant which does not depend on ¢, 0 <<t <C#, Because
& 08, — 00 is a bi-Lipschitzian map for each ¢ <{, and since the Lipschitz con-
stants are independent of ¢, it is easy to see that lim,_, f 02, log 8(z)°|dz] = — co.
Therefore, it follows as asserted earlier that 11111,_)0 f an, 10g 1k(z)|]dz| = — o0.

At this point we would like to conclude that % vanishes identically in Q. To
see that this is indeed the case fix a point =z, € £,. Note that x, € Q, for all
t <t,. For each ¢ let . be the conformal map of Q,U 02, onto the closed
unit disk |w] <1 such that (z,) = 0 and v,(x,) > 0. Since 092, has a Lipschitz
normal, it is possible to find constants g, and u, with the property that
0 <y < lw@) <py<< oo for all 2z €00, A priori, g, and u, will depend on
t. But, once again since &: 00, — 92 is bi-Lipschitzian for ¢ <{¢, and since the
Lipschitz constants are independent of #, we can arrange that u; and u, are also
independent of f. This follows from a theorem of Warschawski [29, Theorem III*,

p. 327] (see also {29, Theorem V, p. 336]). Because fag log ik( )|ldz| - — oo and
f ag, Jogt [lc 2)ldz| is bounded as {— 0, we can conclude that

tim [ log E(z) i (2)]|d2] = — oo.
a0,

Now, log ]l/c\(z)] is subharmonic in 2 and (27)~1}y,(z)||dz| is the harmonic measure
on 0£, which represents x, and so, as a function of ¢, f aq, log [k(2) ||y (2) | dz]
is monotone nondecreasing as ¢ 0 (see [10, p.p. 9 & 172]). Hence

flog ]l?(z)Hzp,(z)Hdz{ = -— oo for every ¢ <1,

20,
Consequently, f aa, log lll:c(z)lldz{ = — oo and we can argue as in part one of this
proof that T=0 in Q. Q.E.D.

Remark. It has been called to our attention by J.-P. Ferrier that a compact X
satisfying the conditions of Wermer’s example (see Section 2) can also be obtained
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by taking X to be a thick Jordan arc lying in a »thin» crescent £ with the property
that the bounded component of C\.X contains the bounded component of G\ E.
A crescent FE is said to be thin if HP(E,dA) == LP(E,dA) for all p. The
easiest way to obtain such a crescent, however, is to remove from the annulus
W = {2:1/2 < |z] < 1} a sequence of wedges

W; ={2:1/2 < 2] <1 <1, |arg z| < 7/27}

such that if B = W\U;2; W; then HP(E, dA) fails to have a bounded evaluation
at the origin (see [20, p. 116]). This construction is similar to and of the same order
of difficulty as the one employed by Wermer.
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