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1. Introduction 

Let  /~ be a finite positive Borel measure defined and having compact support  
in the complex plane C. Assume tha t  # is not a point mass. Let  z denote the 
complex ident i ty  function and let ~ stand for the polynomials in z. For  each 
~, 1 _~ p < ~ ,  set HP(d#) equal to the closure of ~ in LP(cl/~). In  this paper 
we ask: Does HP(cl, u) have at  least one closed subspace, other than itself and {0}, 
which is invariant  under multiplication by  z? The answer is known to be yes when 
p > 2 and yes in certain cases when p _~ 2. When p ~-- 2 the question is especially 
intriguing, since then it is equivalent to the invariant  subspace problem for sub- 
normal operators on Hilbert  space. Our main objective here is to answer it for 
certain measures FdA which are absolutely continuous with respect to planar  
Lebesgue measure A. 

We begin with a few simple observations. I f  HP(~pclA) -= LP(y~dA) and W is 
any measureable set with 0 < f < f then S = {f e HP(~dA): f -~ 0 
a.e. -- y~dA on W} is a nontrivial closed subspace invariant  under multiplication 
by  z. I f  He(~dA) # Le(y,dA) (and only then) it may happen tha t  there is a point  

E C such tha t  the map f--->f(~) can be extended from ~ to a bounded linear 
functional on HP(~,dA). A linear functional on He(y~dA) associated to a point  
in this way is called a bounded evaluation for He(y~dA). By taking S($) to be 
the closure in He(~pclA) of the polynomials vanishing at ~, we obtain a closed 
subspace which is invariant  under multiplication by  z and, since (z --  $) E S(~) 
and 1 ~ S(~), it is nontrivial. In  some cases it can be shown tha t  either He(y~dA) 
has a bounded evaluation or else HP(y~dA) ~--Le(y~dA), thereby assuring the 
existence of a z-invariant subspace in Hl'(yJdA). 

* This work was partially supported by NSF Grant No. G.P. 19533. 
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Invariant  subspaces can be shown to exist in this way whenever ~ is the 
characteristic function of a compact set. This was done for p r 2 in [2] and for 
p -- 2 in [3]. The theorem we now state was announced in [4] and includes both 
of these as special cases. 

THEOREM 1. Let ~ be a non-negative function having compact support E and 
satisfying 

(1) ~ELI+~(E,  dA) ]br some s ~  0; 

(2) fE  log ~fdA ~ -- ~ .  
Then, for each p, either HP(yJdA) has a bounded evaluation or else HP(yjd=4)--~ 
LP(FdA ). In particular, HP(~dA ) has a nontrivial closed z-invariant subspacc. 

In the course of this investigation it will become apparent that  the hypothesis 
rE log wdA > - ~ assures tha t  every >>function~> in He(E, ~dA) has a repre- 

sentative which is analytic in the interior of E. I t  further implies that  the collection 
of all functions in LP(E, yJdA) which admit such a representative constitutes a closed 
subspace of LP(E, yJdA). We denote tha t  subspace by L~(E, ~vdA). Whenever 
He(E, yJdA) and L~(E, yJdA) coincide the polynomials are said to be complete in 
LPa(E, FdA). A major portion of this paper, Section 3, is devoted to the problem 
of finding conditions under which completeness occurs. In this connection we 
obtain several results concerning bounded point evaluations and weighted polynomial 
approximation but no additional information on the existence of invariant subspaces. 
The weight ~0 is assumed to satisfy (1) and (2) of Theorem 1 throughout. 

Section 3 is comprised of three theorems. Of these, Theorem 4 is perhaps the most 
significant. I t  originates from the following question: Given a compact set X with 
connected complement and a simply connected Jordan domain t9 lying in X, 
when is He(X~f2,  dA) ~-- L ~ ( X ~ 9 ,  dA) ? Subject to certain regularity restrictions 
on 0f2, we obtain a metric condition which is both necessary and sufficient for 
completeness in this setting. We put no restrictions on 0X. This problem has been 
studied extensively by a number of mathematicians, notably from the Soviet school. 
Progress was due initially to Xeldysh and later to Dzrbasyan and Saginjan (see [20]). 
More recently, I-Iavin and Mazja [14] have contributed in this area. The relationship 
between bounded point evaluations and completeness is best portrayed in Theorem 
2. Although Theorem 1 is included as a special case, the proof essentially makes 
use of the earlier result. In Theorem 3 we consider the problem of completeness for 
measures ~fdA, where ~ is the modulus of a nonva~tishing analytic function on 
the interior of E. Under suitable conditions we are able to verify tha t  the poly- 
nomials are complete in L~(E, yJdA) if and only if they are complete in L~(E, dA). 
Theorems 2 and 3 both include prior results of I~edberg [15] and serve to put tha t  
work in its proper setting. 
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2. Invariant subspaees and approximation on nowhere dense sets 

To p rove  T h e o r e m  1 we shall  assume t h a t  HP(~fdA) has  no bounded  eva lua t ions  
and  deduce t h a t  HP(yJdA) = Lp(y~dA). The  a r g u m e n t  will run  as follows: L e t  g 
be a n y  funct ion  in Lq(yJdA), l ip  -~ 1/q ---- 1, wi th  the p r o p e r t y  t h a t  f f g ~ d A  = o 

for eve ry  f E HP(y~dA). We shall  use the  nonpresence  of  bounded  eva lua t ions  on 
HP(yJdA) to  p rove  t h a t  the  Cauchy  t r a n s f o r m  f ( g y ) ) ( ~ ) ( ~  - -  z)-ldA(~), denoted  

g/~(z), is zero a lmos t  eve rywhere  dA. This will force g~ to van i sh  a lmos t  every-  

where,  since gy, = -- n-~Ogy, la5 in the  sense of  d i s t r ibu t ion  theory .  T h a t  in t u rn  

will imp ly  HP(y~dA) ~ Lv(y,dA) as asserted.  
A 

We are thus  left  w i th  the  t a sk  of p rov ing  g~ --~ 0 a lmos t  everywhere .  Fo r  this 
we will need two l em m as  concerning the  behav io r  of  the  Cauchy  t r ans fo rm.  The 
f i r s t  can be found  in D e n y  [8] (see also [7], pp.  75- -76)  and  is r e s t a t ed  here for 
the  convenience of  the  reader .  The  second is a va r i a t i on  of a l e m m a  of Carleson 
[6, L e m m a  1]. 

LEMMA 1. Let # be any positive measure in the plane of total mass 1 (i.e. f d# = l). 
I f  1 ~ q ~ 2 and p -- q(q -- 1) -~ then 

C 

dA < K  

where K is some constant depending only on q. 

LEMMA 2. Let E be a compact subset of the plane and let # E Lq(E, dA) for some 
q ~ 1. Assume that for each z D E E  and each r o ~ 0 the set 

{r: 0 < r < ro, (]z - -  Zo] = r) N ( C ~ E )  :~ r 

has linear measure equal to %. I f  k ~ 0 in C ~ E  then # = 0 almost everywhere 
dA. 

Proof. F o r  q ~ 2 the  Cauchy  t r a n s f o r m  ~c is eve rywhere  cont inuous  and  the  
l e m m a  is a s imple  consequence of the  fac t  t h a t  E has  no interior,  f o r  smal ler  

va lues  of  q i t  is less obvious.  We  shall  p rove  t h a t  i f  1 ~ q ~ 2 t hen  k(Zo) ~ 0 
a t  eve ry  po in t  z o C E where  f [ # ( z ) F i z -  Zol-ldA ~ co. Since this in tegra l  is 

f ini te  a lmos t  everywhere ,  regardless  of  the  va lue  of  q, t h a t  will es tabl ish the  l emma.  
F ix  q wi th  1 ~ q ~ 2 and  let  z 0 be as above.  To s impl i fy  no t a t i on  assume 

t h a t  z 0 = 0. Thus,  f [k(z)lqlzI-ldA and  f I (z)l ]Zi - ldA are b o t h  f ini te.  We  shall  

const ruct ,  for each 5 ~ 0, a p robab i l i t y  measure  v~ in such a w a y  t h a t  



170  JAMES E. BRENI~'AI~" 

(a) v~ is carried by  (jz] </~) gl (C~E);  

(b) lira f = 
&+0 

Since ~ = 0 in C ~ E  a n d  % has no mass outside C ~ E ,  it will follow from (b) 
-% 

that  k ( 0 ) =  0 as asserted. 
In  order to obtain the v~'s put  Z equal to the characteristic function of C ~ E  

and let l(r) be the linear measure of ([z I = r) 13 (C~E) .  :Note that  

2zr 

l(r) : r f z(re~~ 0 < r < co. 
0 

Define a measure ~ by setting 

= f z(z)l( ]z[)-ldA 
X 

for every Lebesgue measureable set X. This measure was brought to my attention 
by James Wells in connection with Carleson's work [6, Lemma 1]. I t  is evidently 
carried by C ~ E  and, because l(r) > 0 for almost every r, one can use polar 
coordinates and Fubini's theorem to verify tha t  a({z: ]z] < 3}) = 6. We claim 
that  v~ can be taken to be the restriction of 3-1~ to ]z]G 6. 

Assume, therefore, that  v~ has been chosen in this way. By interchanging the 
order of integration, 

d%(~) 
% 

k(z)dA(z), (1) 
Izi<2~ Iz]>_2~ 

provided this operation is permissable. We shall not mention it again, but  the 
validity of (1) is actually a consequence of the estimates obtained below. Our plan 
is to show that,  as ~ -+  O, the first integral on the right side of (1) converges to 

zero and the second converges to k(O). 
I t  is an easy mat ter  to check that  

(c) f ( z - -  r162 for every z # O  as ~ -+0 ;  

(d) f ]z - -  ~1-1d%($) < 2/lz t for lzl >_ 2~. 

Then, since k(z)/z E LI(dA) by hypothesis, it follows from the Lebesgue dominated 
convergence theorem that  

lim f { f (z -- } k(z)dA(z) = f k(z)/zdA = 
l,t>_2~ 

:By applying I{Slder's inequality and Lemma 1, in that  order, to the remaining 
integral in (1), we see that  
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p--1 

f K Isup Iz - ~'I~-%'~(~ ") 
( z E C  

Lif { f (~ -- ;)-l~v~(~.) } k(z)dA(z)[ < 

{ f l (z)f'dA }'", 
Izl~2~] 

where l ip  + llq = 1 and  K is a cons tan t  t h a t  depends only  on q. I f  z is f ixed  
and  ~ = re '~ 

2~ 

= x(re )dO I lzl - -  rli-2dr 
0 0 

= &x f iiz] -- rlq-2dr < 2d-l f 
o o 

rq-2dr = 2dq-21(q -- 1). 

I - ~ 1 : 1 - < 2 ~  

Thus,  

where K '  depends only  on q. As soon as 5 < 1 the  r ight  side is domina ted  b y  

21/'K'{fIk(z)l,/lzldA} 1/' 

and  this tends  to zero as d - +  0, since tk(z)lq/iz] was assumed to  be summable .  

This  establishes the  assert ion t h a t  lime+0 f ---- = o. Q.E.D. 

I n  addi t ion  to  :Lemmas 1 and  2, we shall have  recourse to  a t heo rem of  Szeg5 
which is basic to the  invar ian t  subspace t h e o r y  for the  spaces He(d[~) associated 
to  measures suppor ted  on the  uni t  circle. :For a more  thorough  discussion of  this 
and  re la ted  topics the  reader  can consult  e i ther  [12] or [17]. The  theo rem to which 
we have  a l luded is the  following: 

SznGb's T~EOREM. Let dO be one-dimensional Lebesgue measure on the unit circle 
[z] -= 1 and let h E Ll(dO/2z), h > O. Denote by ~o the set of all polynomials that 
vanish at the origin. Then, the distance from 9 o to the constant function 1 in Le(hdO/2u) 
is given by the formula 

i n f f  ll--flPhdO/2~=exp{(2z)-lfloghdO}. (II) 
fe2o 

This allows us to  es t imate  the  no rm of eva lua t ion  a t  the  origin when  the  la t te r  
is regarded  as a l inear funct ional  on the  polynomials  in the  LP(hdO/2~) norm.  F o r  
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example, if f log hdO > -- oo and we set it equal to 2:r log l /K ,  K > 0, then 

(l l)  says 1 < K f  ll--f]~hdO/2a for all f E g ~  0. This is the same as saying 

l < K f lftehdOt2z~ for every polynomial f having value 1 at  the origin. Therefore, 

If(O)l ~ ~ K f ]f]~hdO/2n 

for all polynomials f. This observation will be important in the proof of Theorem 1. 

Proof of Theorem 1. We wish to prove tha t  tlP(~dA) = Lv(wdA) provided 
Hp(y)dA) has no hounded evaluations, W has compact support E, ~p C LI+~(dA) 

and, fE  log yJdA > -  oo. To accomplish this we need only prove that  ~ -- 0 

almost everywhere dA, whenever g E Lq(y~dA), l ip  4- 1/q = 1, and f fgwdA = 0 
for each f c HP(~odA). Assume, therefore, tha t  g is any such function. 

The first step is to show tha t  ~ = 0 everywhere in the complement of E. 
So fix ~ E C ~ E .  I f  f is a polynomial then [ f ( z ) - - f ( ~ ) ] ( z -  ~)-1 is also a 
polynomial and f (f(z) --f(~))(z -- ~)-~g(z)yJ(z)dA(z) : O. Consequently, if 

g~(~) =fi 0 we can write f($) --~ [g~(~)]- ff(z)g(z)(z - $)-ly~(z)dA(z) for every 

polynomial f. But, this is impossible, since g(z)(z -- ~)-1 E L~OfdA ) by choice of 

and HP(y~dA) has no bounded evaluations by hypothesis. Therefore, ~ (~) : 0 

and hence g~ ~ 0 in C ~ E ,  since ~ was arbitrary. 

Step two consists in using Lemma 2 to conclude tha t  gyJ -- 0 almost everywhere 
on E. Before that  lemma can be applied, however, we must check that  
g~ELI+~(dA) for some v >  0. For that  purpose fix q' with 1 < q ' < q  and 
put p' = q'/(q' -- 1)-L By applying KSlder's inequality to the measure y,dA, 

/ ~/~" }~/~'. 

Since ~0 E Ll+~(dA) and g C Lq(yJdA), the right side of (III) will be finite and 
:g~p ~. LI+~(dA) if v is chosen small enough to make (1 4- v)q' ~ q and vp' _~ a. 

Fix v in this way and let ~0 E E. Assume for convenience that  $0 = 0. Let  
E 0 denote the union of all those circles [z I --~ r that  lie entirely in E. We claim 
tha t  A ( E o ) =  O, whence lzl = r meets C ~ E  for almost every r with respect 
to linear measure. To prove this let us assume that  A(Eo) ~ O. Then, since 
fEo log y~dA > -- ~ ,  it follows from Yubini's theorem tha t  there is a constant 

K > 0 and a set of non-negative real numbers X, having positive linear measure, 
such that  for every r E X ,  the circle [z I : r is in E o, y~(re ~~ ELI(dO/2zQ and 

2a 

f log y~(rei~)dO _~ 2u log 1/K. 

0 
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Hence,  Szeg6's t heo rem implies t ha t  

rf(O) [P < K / If(re '~ ?F(re'~ (IV) 

o 

for eve ry  polynomia l  f and eve ry  r E X. In tegra t ing  bo th  sides of (IV) with respect  
to  rdr, we get 

2~ 

If(o)? f rdr ~ K(2~)-l f f ]f(re'+)?~(rei~ ~ K(2~)-l f JfP~dA, 
X 0 X E 

which is t a n t a m o u n t  to saying t ha t  HP(FdA) has a bounded  evaluat ion  at  the  origin. 
Since this possibil i ty has been ruled out  b y  hypothesis ,  we must  conclude tha t  
A(Eo) z 0 as claimed. 

We have  thus  shown tha t  g~ = 0 off  E and  tha t  the  assumptions  of 

L e m m a  2 are satisfied. I t  follows t h a t  ~ = 0 a lmost  everywhere  and hence 
Hv (yJdA ) = LP(wdA ). Q.E.D. 

Consider now Lebesgue measure  res t r ic ted  to  a compact  set E.  Denote  the set 
of  cont inuous funct ions on E by  C(E). Let  P(E) and  R(E) consist of those 
funct ions in C(E) which on E are the  un i form limits of  polynomials  and  ra t ional  
functions,  respect ively.  I f  E has no inter ior  and  C ~ E  is connected a theorem 
of Lav ren t i e f f  (see [12, p. 48] or [19, p. 297]) says t h a t  P(E)--C(E), and so 
HP(E, dA) = LP(E, clA) for eve ry  p.  On the  o ther  hand,  if  C ~ E  is d isconnected 
P(E) ~= C(E). This raises the  question: I f  ( ~ E  is disconnected,  mus t  
HP(E, dA) ~ LP(E, dA), at  least for some value of p? Of course, one excludes 
the  trivial ease where E contains a closed subset E '  of full measure  wi th  G ~ E '  
connected.  The following example  was suggested b y  J o h n  Wermer  and answers 
the  quest ion negat ively .  

A set X will be called th ick  if  eve ry  disk centered at  a poin t  of X meets  X 
in a set of posi t ive measure.  

Example. There  exists a compact  set E such t h a t  

(i) E is thick; 
(ii) C ~ E  is disconnected;  

(iii) HP(E, dA) -- Lv(E, dA) for eve ry  p. 

Proof. Take  a sequence of  disjoint  reetangules  

R,~-- -{x-4- iy:3 .2-1-"<x~2~-~, - -  ] ~ y ~ l ) ,  n =  1 ,2  . . . .  , 

accumula t ing  to  the  line segment  I -- {iy: -- 1 <_ y <_ 1}. Jo in  the  ends of I by  
a th ick are E 0 having measure  no grea ter  t h an  1 and  lying in the  ha l f  plane 
Re z < 0. Such an arc can be cons t ruc ted  b y  modify ing  the a rgumen t  in [21]. 
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Fix  a point  $0 in the  region bounded by  E 0 O I .  I n  /~1 join the  top and  bo t tom 
faces b y  a th ick  arc El. Choose a polynomial  P1 so t h a t  P1($0) = 1 and [Px] --< 1 
on E 0 tJ E r Note,  we do not  mind  if  IP~I is large on I .  Assume t h a t  th ick  arcs 
Ej have been constructed joining the top and  bo t tom faces of Rj, j = 1, 2 . . . .  , n, 
and polynomials  P 1 , . . . ,  P -  chosen with  

(1) Pi(r = J 

(2) {fEn+, I-PjIidA} '/1 <~ 112D k = o, 1 , . . . , j  and j = 1, 2 , . . . ,  n. 

Construct  a th ick  arc E=+~ in /~,+1 joining the  top and  bo t tom faces such t h a t  

(3) {f~o§ <_ 1/2", j = 1,2 . . . .  ,n. 

Choose a polynomial P.+~ such that 

(4) P,~+~(~'o) = n + 1 

<51 {fE  _< k = o, 1 , . . . ,  + 1. 

E ~ p ~  Thus, we obtain,  induct ively,  sequences { i}i=o and { j'}j=o. Define 
E = [.J~~ o E k 0 I .  Then E is compact,  C ~ E  is disconnected and,  since each 
Ek was thick,  E is thick. 

Now PJ(~o)=J for every j and  for each r, 1 < r < oo, 

IPsI'dAJ --<~=0 ~ IPjI'dA _<k=0 ~ 1/2~= 2, 
v.  E k 

provided j > r. Therefore, ~0 
I f  gELq(E, dA), q >  1, and  

is not  a bounded evaluat ion for any  He(E, dA). 
f i g  dA = 0 for all polynomials  f i t  follows as 

in the proof  of Theorem 1 t h a t  f a(z)(z - $0)-ldA ---- o. Thus,  (z --  $0) -1 belongs 

to every  He(E, dA). Similarly, _R(E) is contained in every He(E, dA). But ,  
C ~ E  has only two components  and  so /~(E) = C(E) by  a theorem of Mergeljan 
[19, p. 317] (see also [12, p. 51]). I t  follows tha~ He(E, dA)----Le(E, dA) for 
every p. Q.E.D. 

Some t ime ago, Sinanjan [24, Th. 2.4] constructed a compact  set E o wi th  the 
proper ty  t h a t  /~(E0) is dense in Ze(Eo, dA ) for every  p but,  / ? ( E 0 ) #  C(Eo). 
This example was obtained by  removing from the closed uni t  disk a sequence of  
open disks A i = {z: Iz -- aj] < ri}, j -=-- 1, 2, . . . ,  such tha t  the A i have m u t u a l l y  
disjoint closures and  ~i~1 r i < o9. t{owever, for sets E of this type  i t  is known 
t h a t  Hv(E, dA) is never equal to Lv(E, dA) (see [2, p. 305]). I t  would be interest ing 
to know if  there exists a compact  E with Hv(E, dA) = Lv(E, dA) for every p,  
bu t  R(E) =/= C(E). 
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3. Approximation on sets with interior points 

Let  E be an arbitrary compact set in the plane and let to be a non-negative 
function defined on E with f E  log ~dA ~ -- co. Suppose that  ~o E E ~ and let 

be its distance from aE. (Here E ~ and aE denote the interior and boundary of 
E respectively.) We have seen in the proof of Theorem 1 that  $0 is a bounded 
evaluation for the space HP(W, y~dA) associated to the measure obtained by  
restricting ~fdA to the annulus W ---- {$: �89162 < ]~ -- t0[ ~ r We can therefore 
choose a function g e Lq(W, ~dA), lip + 1/q = 1, such that  f(r = fjgwdA 
for every polynomial f. Let  us assume that  g has been defined to be zero outside 
W and let k(z) = (z -- $o)g(z)yJ(z). Then, fwfkclA = 0 for all polynomials f and 

k(~0) = 1. Since ~ is continuous in C ~ W ,  there is a neighborhood U of r 

on which 1~1~_1/2. I f  $ e U ,  [~--  $ol--<d/4, and f is a polynomial then 

f(~) = ]~(r  f(Z)]~(Z)(Z -- r 
IF 

and we have the estimate 

[f($)l- 4(~-l{flglq~ clA }~/, {flfiev, g A }ZIp. 
Iv Iv 

Thus, in order for a sequence of polynomials to converge in the Le(E, ~dA) norm, 
convergence must be uniform on every compact subset of E ~ Hence, He(E, ~dA) 
is contained in L~(E, ~0dA), the subspace of Le(E, ~dA) consisting of those flmctions 
which are analytic in E ~ We are thus led to ask: Given E and ~ as above, which 
functions in L~(E, ~dA) belong to He(E, ~dA)? 

Questions of this nature have a long history dating back to the late 1800's and 
the work of Runge on uniform approximation. The first results relating specifically 
to approximation in the mean were obtained by  T. Carleman in 1922. He  proved 
that  He(D, dA) : L~(D, c~A) if D is a simply connected Jordan domain. Later  
Markusevic and Farrell (see [20], p. 112] proved the corresponding theorem for 
Caratheodory domains and Sinanjan [24] subsequently extended it to closed Cara- 
theodory sets. (A Caratheodory set is a set whose boundary coincides with the 
boundary of the unbounded component of its complement.) In  the mean 
time, it was discovered that  there exist non-Caratheodory sets E for which 
He(E, dA) = L~(E, dA) (see [20], p. 116). In  an a t tempt  to explain this phenomenon, 
Sinanjan [25] recently conjectured that  He(E, dA) -~ L~(E, dA) if  and only if 
He(E, dA) has no bounded evaluations arising from points outside E ~ We shall 
see in Theorem 2 that  this is indeed the case. In  addition, Theorem 2 applies to 
a more general setting than that  envisioned by  Sinanjan and it extends a result of 
Hedberg [15, Corollary 1] on weighted polynomial approximation. 



176 J A n g l E S  E .  B R E N 1 N A N  

THEORESI 2. Let E be compact and let yJ be a non-negative function defined on 
E. Assume that 

(1) t~ E L~+~(E, dA); 

(2) f log wdA > - 

]if He(E, wdA ) has no bounded evaluations outside E ~ then every function F in 
L~(E, wdA) N LP(~+~)/~(E, dA) belongs to HP(E, wdA). 

Remark. Theorem 2 is val id for e = oo if  (1 -~ ~)/e is in te rp re ted  as being 
equal  to  1. W he n  ~ ~ 1 on E this proves  the suff ic iency of Sinanjan 's  conjecture.  
The proof  of necessi ty is not  diff icul t  and we omit  it. 

To deal with questions concerning approx imat ion  on sets wi th  inter ior  points  
we need the  following es t imate  which is implied b y  t t edbe rg ' s  work [16, L e m m a  6]. 
Al though the  results  in [16] are s ta ted  in t e rms  of capaci ty ,  t h a t  no t ion  can be 
avoided  here  by  making  use of  the  measure  ~ in t roduced  in the  p roof  of  L e m m a  2. 
We leave it  to  the  reader  to supply  the  details. 

LEMMA 3. Let E be compact and let k E Lq(E, dA ), 1 < q <_ 2. Assume that for 
each z o r  and each r o >  0 the set {r :0  < r  < r  o, (1 z - z o [  = r ) [ 3  ( C ~ E )  :A~} 

has full  linear measure. I f  k ~ 0 i~ C ~ E  and ~o is a point of E ~ at a distance 
5 < lie from OE then 

:~k(~~ <~C { k* ($o)~ l~  (l"q(6) f 'k(z)]'dA)~/q} 

lz-~o[<_4~ 
2 - -1  where k* (~) = sup~ ( r ) flz-Cl<~ lk(z)ldA is the Hardy-Littlewood maximal 

function, l~(b) is equal to log 1/6 or  (~q-2 according to whether q = 2 or q < 2 
and, C is a constant depending only on q and the diameter of E. 

Proof of Theorem 2. F ix  F in L~(E, ~fdA) [3 LP(1+~)/~(E, dA). Let  g be an y  
funct ion  in Lq(y~dA), l ip  q- 1/q = 1, wi th  the  p ro p e r ty  t h a t  ffgv, dA = 0 for 

eve ry  f EHP(1pdA). To prove  t ha t  F E ttP(~fdA) it  is suff icient  to show 
f Fgy~dA = 0. We shall see t ha t  g~ = 0 almost  everywhere  on OE and  so the  

problem reduces to  showing f Eo Fgy~dA = O. 
Since Hr(y~dA) has no bounded  evaluat ions  outs ide  E ~ we can argue as in 

Theorem 1 to conclude t h a t  ~ = 0 everywhere  in C ~ E  and  almost  everywhere  
on 0E. Now, gTa E L~+'(dA), ~ > 0, and so it  follows f rom the  t h eo ry  of singular 

A 
integrals  [5] t ha t  gto is absolute ly  cont inuous on a lmost  eve ry  line paral lel  to each 

of the  coordinate  axes and  t h a t  O(~)/Ox and  a(~)/Oy exist  a lmost  everywhere  
(dA) in the  usual  sense. B y  a l emma of Schwartz  [22, Theorem V, p. 57], these 
der iva t ives  coincide wi th  the  corresponding dis t r ibut ion  der ivat ives  and so 
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+ i  

a lmos t  eve rywhere  in the  usual  sense. I f  X = {~ E ~E: gyJ(~) ~ 0} then,  b y  Fub in i ' s  
theorem,  a lmos t  every  po in t  of  X is a po in t  of  l inear  dens i ty  (~nd hence a po in t  
of  accumula t ion)  for X in the  d i rec t ion of b o t h  coordinate  axes  and  so 

~(~) /ax  - O(~)/Oy = 0 a lmos t  eve rywhere  on X.  I t  follows t h a t  gv = 0 a lmos t  
eve rywhere  on X and  hence a lmos t  eve rywhere  on 0E. 

To p rove  t h a t  fEoFgWdA--~ 0 we sh~ll regard  F as an  e lement  o f  

LPO+O/~(E, dA) and  we shall  require  t h a t  g~ belong to the  dual  space. Recall ,  
therefore,  t h a t  g~f ELI+'(E,  dA)  i f  1 < q' < q, (1 + v)q' _< q, ~nd, vg'(q' - -  l) -~ --< s. 
Equ iva len t ly ,  v < rain ((q/q') - -  1, s(1 - -  1/q')). As a func t ion  of  q', i t  is easy to see 
t h a t  (q/q') - -  1 is decreasing and  t akes  v~lues be tween  0 and  q -  1, while s(1 - -  1/q') 
is increasing and  t akes  values  be tween  0 and  sip. Thus,  to  ob ta in  the  largest  possible 
v wi th  gy~ ~ L~+~(E, dA) w e m u s t p i c k  q' so t h a t  (q/q') - -  1 ~ ~(1 - -  1/q') a n d s e t  
equal  to t h a t  c o m m o n  value.  W h e n  this is done we f ind  t h a t  1 -[- v = q(1 + e)/(q -~- ~), 
which is the  index con juga te  to  p(1 ~ s)/s. Assuming  t h a t  v h~s been chosen in 
this way ,  we will cons t ruc t  a sequence of  funct ions  ~n, n ~ 1, 2, . . . ,  such t h a t  
each p~ has  suppor t  in E ~ and  O~n/O5---~gy~ in the  LI+'(E, dA)  norm.  Then  

b y  our  choice of  ~,, 

f f l im F ~ z  dA = Fg~fdA. 
E o E o 

On the o ther  hand ,  in t eg ra t ing  b y  pa r t s  

f 
E 0 E0 

for all n, since F is ana ly t i c  in E ~ ]Xence FgFdA z 0 as claimed.  

I n  order  to cons t ruc t  the  ~n there  are two  cases to  be considered.  F i r s t  is the  

case where  gF E LI+V(E, dA),  1 -~- ~ > 2. ~ e r e  g~0 is cont inuous  and  can the re fo re  

be wr i t t en  in the  fo rm gy~ = (k I --  Ic2) -~- i(k 3 --  k~), where  the  funct ions  kj are 
cont inuous,  non-nega t ive  and,  zero on OE. I n  addi t ion ,  each kj and  i ts  f i r s t  
order  pa r t i a l  de r iva t ives  belong to  LI+~(E, dA) (see [9, p. 316]). Se t t ing  
~ = _ ~-1 sup (kj --  1In, 0), we ob ta in  funct ions  whose suppor t s  are obvious ly  in 
E ~ and  which sa t i s fy  

l im _ OkJ" 1+~ dA = 0, j =  1 , 2 , 3 , 4 ~  

E0 

F o r  a p roof  of  the  l a t t e r  asser t ion we aga in  refer  the  reader  to [9, p. 317]. The  desi red 
sequence e-, n --~ 1, 2 . . . .  is ob ta ined  b y  t ak ing  5, = (~o~ - -  el) + i(q3. - q~). 



178 JAZWES E. BRElgNAlg 

When g~o EL~+'(E, dA), 1 < 1 -k- ~' ~ 2, construction of the qn is a more 
delicate matter.  The simplest and most direct procedure is due to Bers [1, p. 3] 
and I-Iedberg [16, lemma 10] and is based on an idea of Ahlfors. I t  runs as follows: 
Let  k be the piecewise linear function k ( t ) = 0  for t < 1 ,  k ( t ) =  1 for t>__2 
and, k ( t ) = t - - 1  for 1 < t  < 2 .  For each z E C  let ~(z) denote the distance 

from z to C ~ E  ~ Pu t  k,(t) k(n/log log I/t), o.(z) k,(6(z)) and 0n _ ~-1 A 
Evidently,  0n has support in E ~ and 

OOn 1 ~ .  0 o .  
- -  ~ 

These derivatives exist almost everywhere because 6(z) satisfies a Lipschitz con- 
dition of order one. Since 0 < on < 1 and con --> 1 almost everywhere (as n --* oo), 
it follows from Lebesgue's dominated convergence theorem that  g~0~on-* g~0 in 
the norm of LI+'(E, cIA). Thus, the sequence Q,, n = 1, 2 , . . . ,  will have the 
required properties provided 

f Oo~n 1+" 1 fA ~+. lim "~ -~z dA - -  21+v lim [g~o grad con[ dA : O. 
No E o 

This is where lemma 3 comes in. One verifies that,  

f l~(z) grad w,(z)[l+'dA < 

~~ (V) 
fo{ lgrad~n(z)] f } n ~ (g~P)* (z)l+" + 6(0 ]gy~($)[~+'dA~ dA,. 
Eo I r 

(see [16, lemma 10]). According to the Ha rdy  maximal theorem (see [26, p. 5]), 
the first term on the right side of (V) is dominated by  fso C'n-" [ggJll+'dA, for 

some constant C' independent of n. Since Igrad con(z)l ----- k'n(6(z)) almost every- 
where in E ~ and since k'n is a decreasing function on its support, a similar estimate 
is valid for the second term: 

f ]grad w~(z)[ dA. f n-; ~(z) [g~'(C) ll+~dAr 
~o [~-~1<4~0) 

/ < - -  dA. [g~v(z -b u)[~+~dA,, 
- n "  1~1 

~o 1~1<4~(0 

< - -  - -  dA~ [g~o(z) l~+~dA~ 
- r e  l u l  

go go 

< - -  IgV,(z) [~+~dA., 
- -  ~ b v  

g o  
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where C and Ci, j = 1, 2, 3, are constants independent of n. I t  follows tha t  

limn++ rE0 I ~  grad oon]~+~dA ---- 0 and this completes the proof. Q.E.D. 

Ideally, one would  like the conclusion of Theorem 2 to be: He(E, y~dA) = 
I2aa(E, wdA ). Unfortunately, that  need not be true. Take, for example, 
E = { z :  ]z[ ~ 1} and y~(z)= ] e x p ( z +  1)/(z-- 1)[. Then, 

E L~~ dA), f log ydA > -- 0o and He(E, ~vdA) tP 
~tJ  

E 

has no bounded evaluations off E ~ Nevertheless, Keldysh was able to show, 
[20, p. 134], tha t  He(E, ~pdA) =/= L=a(E, ~#dA) and his proof extends to all p. In 
cases like this where ~ is the modulus of a non-vanishing analytic function on 
E ~ it is possible to obtain, with slightly stronger hypothesis on W, results which 
assert that  HP(E, vodA) = L~(E, y~dA) for all p. Of course one must assume that  
He(E, wdA) has no bounded evaluations off E ~ for any p. I f  this assumption is 
made for a fixed /0, only, we are unable to prove that  He(E, wdA) = L~(E, ~pcIA), 
even for tha t  p. The next theorem is typical of this situation. I t  was partially 
anticipated by Kedberg [15, p. 117] in the case of a Caratheodory domain. 

T I t E O l ~  3. Let E be comloact. Let or be afunctiondefinedon E with theproperty 
that o~ is analytic and nowhere zero in E ~ and 

f (l~l -~ + [o,[~+~)dA < oo 

E 

for some e > O. Then HP(E, io~[dA) = L~(E, Io~ldA) for every p i f  and only i f  
HP(E, dA) = I2:~(E, dA) for every p. 

t~emarlc. We have already noted the existence of non-Caratheodory sets E 
such tha t  HP(E, dA) = L~(E, dA) for all p. We shall discuss this phenomenon 
in greater detail following the proof of Theorem 3. 

Proof of Theorem 3. Assume first tha t  He(E, dA) = LPa(E, dA) for all 
p, 1 _<p ~ oo. Then E ~ is simply connected and He(E, dA) has no bounded 
evaluations associated to points outside E ~ Likewise, HP(E, [or has no 
bounded evaluations outside E ~ Indeed, if HP(E, la IdA) has a bounded evaluation 
at  ~ then, taking s'=--1 q-e  and s ~ s ' / ( s ' - -1) ,  
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for every polynomial f. Hence, ~ E E ~ We shall prove that  the absence of bounded 
evaluations in C ~ E  ~ for every He(E, ]~xlclA ) implies He(E, Io~ldA) = 1-12,(E, ]~xlclA ) 
for all p. 

Since the weight Ic~l satisfies the appropriate hypothesis, we can argue as in 
the proof of Theorem 2 that  every function g ~ L~(E, l~[dA) which annihilates 
He(E, [o~IdA), lip + 1/q = 1, vanishes almost everywhere on OE. Thus, to prove 
that  He(E, lo~ldA)= L~(E, I~x]dA) it  is enough to show that  He(E ~ I~x[dA)= 
L~,(E ~ I~IdA). Now, in view of the fact tha t  E ~ is simply connected and cr has 
no zeros there, it is possible to define in E ~ an analytic branch of ~ for each 
real number 2. I f  we show that  ~-l/e E H~,(E o, ]c~ldA ) it will follow that  
He(E~ [~IdA)=L~(E ~ [o~]dA) (see [20, p. 132], [15, p. 117]). For  suppose 
f ~ L~(E ~ [c~IclA). Then o;~/ef ~ It~(E ~ dA) and by  hypothesis there is a sequence 
of polynomials Qj satisfying 

0 = lim f ]~/ef _ QjledA 
j-->- oo d 

Eo 

= lira f If -- Qo~-l/elelcr 
./--+ ~ 

Eo 

Assuming that  ~-l/p E HP(E ~ [a[dA), each Qi~ -lIp also belongs to He(E ~ {~xlclA ) 
and so f E He(E ~ l~x]dA). 

To prove that  cr -1/e E He(E ~ Ic~[dA) we shall argue inductively. The idea is 
due to tI.  S. Shapiro [23, p. 327] and was adopted by  Hedberg in [15, p. 118]. The 
initial step is to observe that  ~-~/e belongs to LPa(E ~ ]c~]dA)Cl Le(l+~)/*(E~ dA) 
for some d, 0 < d < 1. Hence, by  Theorem 2, c~ -*/e E He(E ~ [o~[dA). Next,  set 

= 1 -- ;t and consider the weight [a]~'. Since He(E, Io~]dA) has no bounded 
evaluations outside E ~ it follows from H61der's inequality that  the same is true 
of He(E, Io~lZdA). Furthermore,  lal ~ E LI+*'(E, dA) and 

~-~.0-0/e C L~,(E, [~]~dA) 13 LP(I++)/J(E, dA), 

where 1 + e' = (1 + e)/2. Therefore, theorem 2 applies to the measure [a[;~dA and 
guarantees the existence of polynomials Qj such that  

0 = lim f 10~ - j ' ( 1 - j ' ) / e  - -  Qjlel~xl~dA 
j -+oo d 

E~ 

= l i m  f [0r - ( 1 - ) ' ) / p  - -  QjO(, -(1-i)/e 1 e [~ IdA. 
]-~o0 J 

Eo 

Thus, ~-(l-~+)/e belongs to HP(E ~ [~ldA), since ~-(l-~)/e does. l~epeating this 
argument with ~-0-~)/v playing the same role as before and [~]~" replaced 

successively by  I~[ ~+, I~1)+,..., we find that  ~-0-zk)/eEHP(E ~ I~IdA) for 
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k =  1 , 2 , . . .  Then because c~-(1-;'k)/P-~ -X/P pointwise on E ~ as k--> co and 

[~] -(1-~k)/p < 1 q- Ia] -1/e for all k, the dominated convergence theorem implies 

lira f I~-('-~k)/P _ ~-  1,,p le [a IdA = O. 
k-~oo J 

E0 

Therefore, o~ -lIe e He(E c, I~[dA) and so He(E ~ ]~[dA)= L~,(E ~ laldA ). This 
establishes the theorem in one direction. 

To obtain the other half of the theorem assume that  He(E, ]or IdA) = L~(E, [o~ IdA) 
for all 1o. Note that  He(E, [o~[dA) can have no bounded evaluations outside E ~ 
for any to. Then, if He(E, dA) has a bounded evaluation at the point ~ (i0 fixed) 
we see, by  applying I-I61der's inequality to the measure [~]dA, that  

'f(r < k [ f lfleIo, l-l " [o~ldA]'e < k [ { f lfie'io, ldA}~/~ [ f i~l~-"dA}~:"l'e 

< k' [ f Kl"l~IdAl'/e" 
for every polynomial f, provided s' < 1 + e and 1/s + 1/s' = 1. Hence, ~ E E ~ 
That is, He(E, dA) has no bounded evaluations outside E ~ I t  follows from 
Theorem 2 that  He(E, d A ) =  I~,(E, dA) for every p. Q.E.D. 

We remarked in the proof of Theorem 3 that  a requirement for He(E, dA) = 
LP,(E, dA) is that  the interior of E be simply connected. The simplest non- 
Caratheodory sets with this property are crescents. A crescent is any set E topo- 
logically equivalent to the closed region bounded by two internally tangent circles. 
Such a set may  or may not have the property that  HP(E, dA) = LP,(E, dA) (see 
[20, p. 116]). The ~>thickness~> of E near the multiple boundary point is the 
determining factor. This was discovered by  Keldysh in 1939. Only ten years later 
and with additional restrictions on the set E was a condition found that  is both 
necessary and sufficient for equality to occur. That  was due to the efforts of M. M. 
Dzrbasyan, who established sufficiency, and A. L. Saginyan, who established 
necessity. The theorem they obtained is this (see [20, p. 158]): 

THEorem1. Let E be a crescent with multiple boundary point at the origin Denote 
by l(r) the linear measure of (Izl = r) fl E. Assume that l(r) = e -h(~) and 
rh'(r) ~ co as r ~ O. Then in order for HP(E, d A ) =  L~(E, dA) for all I~ it is 
necessary and sufficient that 

f l o g  l(r)dr = -- co. (vI) 
0 

Recently, V. P. I-Iavin and V. G. Mazja, [14], have considered the question 
of polynomial completeness in I_d,(E, dA) for sets more general than crescents. 
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The setting is as follows: Let X be a compact set with connected complement 
and let 22 be a Jordan domain with class C ~ boundary whose closure is contained 
in X. Assume tha t  022 passes through the origin. In order tha t  HP(X~t?,  dA) = 
L~,(X~t2, dA) I tavin and Mazja prove that  (VI) is again sufficient. They do not 
require that  l(r) be monotone or tha t  X~22 be a crescent. I t  appears, however, 
that  the completeness of the polynomials in L~(X~t2 ,  dA) depends in a more 
essential way on the function 5(z) ---- dist (z, C ~ X )  than on l(r). iVIore specifically, 
the following is true: 

THE01~r 4. Let X and 22 be as above with one exception. Assume only that 022 
is class C ~ and that n(z), the unit exterior normal to as at z, satisfies a Lipschitz 
condition In(z1) -- n(z2) [ < C[z 1 -- z21. Let d(z) = dist (z, C~,X). Then, in order 
that He(X~Y2, dA) = LPa(X~t2, dA), for any p, it is necessary and sufficient that 

f log 6(z)[dz] = -- oo. 

0t? 

Remark 1. The regularity conditions imposed on aQ are precisely what is needed 
to ensure tha t  when x is sufficiently close to 0t2 there is a unique point of 022 
nearest to x. We shall designate by Unp (0t2) the set of all points x having a 
unique nearest point in 0.(2. The suprem~m of all numbers r such that  
{x: [x -- a[ < r} C Unp (0t9) whenever a E at2 is called the reach of 0t2. This 
terminology is due to Federer, [11, p. 432]. We shall adhere to it in the ensuing 
discussion. 

Remark 2. As an immediate consequence of Theorem 4 there is the interesting 
fact: I f  Hl(X~22,  dA) = L~,(X~D, dA) then HP(X~Y2, dA) = L~(X~12, dA) for 
every p. I t  is conceivable tha t  this is the case without any restrictions on 0t2. 
But, for the present, tha t  remains an unsettled question. 

Proof of Theorem 4 -- Necessity. The proof of necessity is based on an idea of 
Saginjan [20, p. 121]. Under the assumption that  foQ log 5(z)[dz I > -- 0% we will 

construct a Jordan curve /~* lying in X ~ 2  and having the following properties: 
(i) 22 lies inside / '* 

(ii) Any sequence of polynomials bounded in the LP(X~22, dA) norm forms 
a normal family inside 1"% 

Should H~(X~,22, dA) = L~,(X~22, dA) this has the implication that  every function 
in L~,(X~22, dA) admits an analytic extension to 22. Of course, that  cannot 
happen and one must therefore conclude tha t  HP(X~D,  dA) =/= L ~ ( X ~ D ,  dA). 

For our purpose it will be convenient to replace 5(z) by a regularized distance 
function A(z) which has essentially the same profile as d(z) but is smooth in X ~ 
The existence of such a function is guaranteed by a theorem of Calderon and 
Zygmund (see Stein [26, Th. 2, p. 171]). I t  is defined at all points of the plane and 
has the properties: 



I N V A R I A N T  S U B S P A C E S  A N D  ~WEIGI{TED P O L Y N O M I A L  A P P R O X I M s  183 

(a) C~d(z) < A(z) < C2~3(z ) for all z E t3; 

O~A (z) 
(b) A(z) is C ~ in X ~ and ~ <B~d(z) 1-1~1. 

I-Iere C1, C~ and B~ are positive constants. In (b) the letter ~ signifies an ordered 
pair of positive integers (~1, ~2) and O~/Ox ~ is the corresponding partial derivative 
of order levi = c~ 1 -k ~2. For any integer m >__ 3 one can easily verify tha t  AM(z) 
is an  ( m -  2)-smooth function throughout the plane. The construction of F* 
relies heavily on this fact. 

In order to carry out that  construction choose a parametric representation 
?,(t), 0 < t  < 1, for aX2 whose first  derivative y'(t) is nowhere zero and 
Lipsehitz in t. Let  0(z) = dist (z, OD). Extend n(z) outside 0~2 by setting 
n(z) = -- grad 0(z) if  z E D and n(z) = grad 0(z) if z e Y2 tJ aX2. Thus extended, 
the function n is defined almost everywhere, has unit  modulus and, since az9 
has positive reach, it is Lipschitz and everywhere defined in the vicinity thereof. 
Verification of the last assertion will be made in the couse of proving sufficiency. 
By eonvolving n with a suitable real valued G ~ function T and setting 
N = n �9 ~/]n �9 T[, we obtain a field of unit vectors lY(z) which, in a neighborhood 
of 0D, is C ~ and has the property n(z) �9 N(z) > 1/2. The notation here denotes 
the usual dot product and the bound on n(z) �9 N(z) implies that ,  at  each z E 0tg, 
the vectors n(z) and N(z) make an angle of not more than ~]6 radians. Since the 
field N is Lipschitz and transverse along a[2, the vectors eN(z), at tached to 
3t9 at z, fill out a tubular neighborhood T around OX2 in a one-to-one manner, 
provided s is sufficiently small (see Whitehead [30, Theorem 1.5, p. 157]). Likewise, 
for small s, the normal field en(z), z E Otg, fills out a tube T'  in similar fashion. 
I am indebted to Dennis Pepe for bringing the theorem of Whitehead to my attention 
and for suggesting that  it could be used in this context. By choosing e properly, 
we can arrange that ,  for each z Easg, 

(c) The vectors eA4(z)N(z) and eA4(z)n(z) lie entirely within T fl T'; 

(d) ezl'(z) < O(z)/2. 

Thus, the curve P* parameterized by 

y*(t) = r(t) + ezl4(r(t))g(y(t)) ,  0 < t < 1, 

is a simple closed Jordan curve lying in X ~ D  and satisfying property (i). As 
defined, /~* is class C a and, by taking s smaller if necessary, it has a nonvanishing 
Lipsehitz normal. 

To complete the proof of necessity it remains to verify tha t  F* has property 
(ii). Assume, therefore, tha t  fi, j = 1, 2 , . . . ,  is a sequence of polynomials which 
is bounded in the Le(X~t2 ,  dA) norm. By  virtue of (c) and (d) the disk with 
center at ~,*(t) and radius sA4(7(t))/3 is contained in X ~ D  for all t. Thus, by 
the area mean value theorem, 
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Ifj(7*(t))l ~ As/p(~(t)) f }l/p K'  
Ifil pdA < As/v(y(t)) , j = 1, 2 , . . . ,  

x \ 9  

(vii) 

and the constants K and K '  depend only on p. We shall use the hypothesis 
f0a log  O(z)ldz 1 > -  Go to construct a bounded, nowhere vanishing, analytic 

function h in the domain s bounded by  F* having the following property: 
l~or almost all t, [hi takes the boundary value AS/V(?(t)) at y*(t). Then, according 
to (VII), tfih I < K',  j -~ 1, 2, . . . ,  almost everywhere with respect to are length 
along F*. I t  follows that  lfihI < K'  everywhere in tg* and that  the sequence 
fih, j =  1 , 2 , . . . ,  is a normal family there. Hence j~, j =  1 , 2 , . . . ,  is also a 
normal family in tg* and so F* has property (ii). 

The function h is obtained as follows: Set 2 (?*( t ) )=  ASlV(?(t)) along /'*. 
Because t~*'(t)t _< K]~'(t)I, there is a constant K 1 such that  

f log z(z) lazl 
F *  

1 1 

= f l o g  z(7*(t))]y*'(t)]dt ~ K~ f l o g   (7r = 
0 0 

= f l o g   (zllazi > - 
/ -  

Suppose now that  r is the Riemann map from lw] < 1 onto s Since / '* 
has a Lipschitz normal, it is known (see Kellogg [18, p. 123]) that  r extends to a 
continuously differentiable function on ]w] < 1 and that  there are positive con- 
stants C 1 and C~ forwhich 0 < C 1 < ]r < C 2 < o~ everywhere on ]w[ ~ 1. 
In view o f  this, it follows that  

f l o g  2(r I -- ~ .  > 

Iwl = 1  

I-Ienee, b y  a theorem of Szeg5 (see [17, p. 53]), there exists a bounded, nowhere 

vanishing, analytic function h on Ew] < 1 whose boundary values are almost 
everywhere equal in modulus to the composite function 2 o r on ]w] ~ 1. Setting 

h ~ h o r we obtain the required function on ~2" and the proof of necessity is 
complete. Q.E.D. 

Proof of Theorem 4 -- sufficiency. Assume that  f o~ log ~(z)]dz] = -- ~ .  Fix 

p and let k E Lq(X~s dA), l ip  + 1/q ----- 1, have the property that  f f k d A  = o 

for every f e Hv (X~ t2 ,  dA). Thus, ~c ~- 0 in G ~ X .  To prove that  
Hv(X~Y2,  d A ) ~  L~(X~Y2,  dA) it suffices, by  the argument in Theorem 2, to 

show that  k ~ -0  in ~2. ~'urthermore, since the polynomials are complete in 
s s 0 La(X~12, dA) for s < s o whenever they are complete in La(X~Y2  , dA), we can 
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assume that  i0 is large, say p > 2. On the other hand, the proof can be significantly 
shortened when 1 G p < 2 and for tha t  reason this case is treated separately. 

Suppose, therefore, tha t  1 G i9 < 2. Then k q . .L~(X~f2 ,  dA) ,  q > 2, and 
satisfies a. H61der condition 

[~(Zl )  - -  ~(Z2) l ~ ~ l Z l  - -  Z2I ' t ,  

where 0 < / z  < 1 and zl, z~ are any two complex numbers. I f  q = oo any # < 1 

will work; otherwise, we take [z = (q - -  2)/q (see [28, p. 38]). ~enee ]k(z) l I< C3(z)" 
and 

f log [k(z)l[dz I < C' + # log O(z)ldzl = - -  ~ .  

059 0Q 

I f  r is the I~iemann map from Iwl < 1 onto K2 O 3D the composite funct ion 

]co~b is continuous on ]w] < 1, analytic in ]w] < 1 and 

f f log ik(z)ll&l = log l ~ ( r  = - <~. 

09 l~l=~ 

The analytici ty of k o r on Iw] < 1 is a consequence of the analyt ici ty of 
on f2. As previously noted, there are constants Ux and Cz such that  
0 < G -< Ir < G < ~ on Iwl = 1, since 0K2 has aGipschitz normal. Hence 

f l o g  = - ~ .  t~(C(tv))l law1 
Iwl=i 

I t  follows from a well known theorem of Jensen, [17, p. 52], that  o r : 0 in 

[w[ < 1. Therefore, k ~ 0 in f2. This completes the argument when 1 __< p < 2. 
Suppose now tha t  2 < p < oo. Then k E L q ( X ~ f 2 ,  dA) ,  1 < q << 2, 

and k need not satisfy a HSlder condition. I t  is not even clear whether 

fo,~ log tk(z)]ldzl exists or not. To avoid these difficulties we do the following: Fix 

t o , 0 < t  0<reach(3~Q). Let O ( z ) - = d i s t ( z ,  3f2) and let f 2 t = { z C f 2 : ~ ( z )  > t } .  

Since k is analytic in ~Q, the integral fo~, log ]k(z)[ Idz] exists. We shall rely upon 

Lemma 3, in lieu of a ]t61der condition, to prove tha t  foe ,  log lk(z)![dzT----> - -  

as t - +  0. From this we will deduce tha t  k ~ 0 in K2 and thereby establish the 

theorem. The first step is to multiply and divide Ik(z)l ~ by d(z) ", where e > 0 
has yet to be specified. This yields the ident i ty 

log Ik(z)lqldzl = log O(z)~ldzl -[- log \ ~(z)~/ 

0.% o~ o~ t 
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As t --> 0, we shall see t ha t  the  f irst  integral  on the r ight  approaches -- ~ and 
tha t ,  for suitable s, the second is un i formly  bounded above for 0 < t < t 0. The 

result is lim,_~0 fo., log ]k(z)l ldzl = - oo as claimed. 

In  order to obta in  the bound alluded to let us extend n(z) f rom 012 to 12~12,o, 
by  sett ing n ( z ) - - - - -  grad~(z).  Note t h a t  for z ~ 012, t < t  o , the vector n(z) 
is the uni t  normal  point ing ou tward  from 12,. Since 

~(z) ~ 
0~21 O~ l 

- -  [ d z [ ,  

we can direct our efforts toward  f inding a bound for the larger integral.  Fur thermore ,  
by  the divergence theorem 

�9 n( )ld l + ( - -  n( ))ld i = div ( ~-z)~ n(z)) dA 

O~i OQt, ~t\~to 
~ ( v i i i )  

~(z) ~ div n(z)dA + f grad \ 5(z) * ] 

and i t  therefore suffices to es t imate  the size of the la t ter  two integrals in (VIII).  
The divergence theorem is valid in this s i tuat ion because the  vector field 

]kiz)tq~(z)-~n(z) is Lipschitz on 12,~12,. To verify this it. is sufficient to prove 
tha t  n is Lipschitz and  t h a t  is best unders tood by  considering the map 
~: 12~t9,0 --> 012 which associates to a point  x E 12~9,0 the unique point  of  012 
nearest  to x. B y  a theorem of Federer,  [11, p. 434], [~(x) --  ~(Y) I --~ C]x -- Yl when- 
ever x, y E 12~12,. Coupled with  the assumpt ion t h a t  n is Lipschitz on 012, 
this implies 

in(x) --  n(y)l = ]n(~(x)) --  n(~(y))[ < C'l~(x) --  ~(Y)l ~ C"[x -- Yl 

provided x, y E 12~9, . .  This has the added  implication t h a t  ]div n(z)] < 2C" 
almost  everywhere in 12~Y2,.. I t  follows f rom (VIII),  the chain rule and  these 
remarks t ha t  there exist constants  C 1 and C~ for which 

~t\~t, ~ t \  ~to Qt\ ~to 

I f  1 + s < ff i t  is easily seen, wi th  the aid of L e m m a  3, t h a t  the f irst  t e rm on the 
r ight  is bounded by  a constant  which does not  depend on t, 0 < t < t o. The com- 
pu ta t ion  is similar to a corresponding one in the proof  of Theorem 2. By  t th lder ' s  
inequal i ty  the second te rm does not  exceed 



INVAt:~IANT SUBS1)ACES AND W E I G H T E D  I~OLYNOlVIIAL APPROXIIvIATIOI~ ] 8 7  

- -  Igra.d]k(z) l[qdA ~ . 

s ~ t \ o t  o s?t\S?to 

I f  toe < q i t  follows once again f rom L e m m a  3 t h a t  the f i rs t  fac tor  in (IX) admits  
a bound  which is independen t  of  t. Likewise, b y  the  Calderon-Zygmund t h eo ry  
for singular integrals,  [5] (see also [28, p.p. 68--70]) ,  the  second fac tor  is less t han  
ca{f l k l q d A }  1/q. Thus,  if  e is chosen so t h a t  e < q - -  1 = q / p  then  

log \ ~(z)* ] - -  
O~ t 

where M is a cons tant  which does no t  depend on t, 0 < t < t o . Because 
~: OD, -~  a12 is a bi-Lipschitzian map for each t < t o and since the  Lipschi tz  con- 
s tants  are independent  of t, it, is easy  to see t h a t  limt_.0 fo ,, [og d(z)~iclzl  = - -  oo. 

Therefore,  it  follows as asser ted earlier t h a t  lim,_.0 t o ,  l o g  lk(z)l Ida[ = - -  oo. 

At this point  we would like to conclude t h a t  k vanishes ident ical ly  in /2. To 
see t ha t  this is indeed the  case f ix  a poin t  x 0 E 12,. Note  t h a t  x 0 E 12t for  all 
t < t o . Fo r  each t let  ~v, be the conformal  map  of  12, U 012, onto  the  closed 
uni t  disk [w] __< 1 such t ha t  V),(x0) = 0 and  1o;(x0) > 0. Since 0/2, has a Lipschi tz  
normal ,  i t  is possible to f ind  constants  /*x and  /z 2 wi th  the  p r o p e r t y  tha t  
0 </~1 ---< [W~(z)[ ~ /*2  < oo for all z E 012, A priori,  /z 1 and  /z 2 will depend on 
t. But ,  once again since $: 012, -+  012 is bi -Lipschi tz ian for t _< t o and since the  
Lipschi tz  constants  are independen t  of  t, we can ar range  t h a t  /h and & are also 
independen t  of  t. This follows f rom a theorem of  Warschawski  [29, Theorem I I I* ,  

p. 327] (see also [29, Theorem V, p. 336]). Because f 0 ,  log t ~ ( z ) l l d z [ - +  - -  oo and 

f 0 ,  log+ l~c(z) l ldzl  is bounded  as t - + 0 ,  we can conclude t h a t  

lira f l o g  f c ( z ) l t W f f ( z ) l l d z l  = - -  oo. 
t-+0 J 

OO t 

Now, log [~c(z)l is subharmonic  in 12 and  (2zO-1l~p~(z) l [dz l  is the  harmonic  measure 

on 012, which represents  x o and  so, as a func t ion  of  t, f0o,  log ( k ( z ) l l v A ( z ) l l d z l  

is monotone  nondecreasing as t 4 0 (see [10, p.p. 9 & 172]). Kence  

f l o g  Ik(z)llw,(z)ll&[ = - m for t < eve ry  t o �9 

0r2t 

Consequently,  for~, log tk(z)] Idz I = - -  oo and  we can argue as in pa r t  one of this 

p roof  t ha t  k = 0 in 12. Q.E.D. 
R e m a r k .  I t  has been called to  our a t t en t i on  b y  J . -P .  Fer r ie r  t h a t  a compac t  X 

sat isfying the  condit ions of  Wermer ' s  example  (see Sect ion 2) can also be ob ta ined  
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by  tak ing  X to be a th ick  J o r d a n  arc lying in a ~)thin)) crescent E with the p rope r ty  
t h a t  the  bounded  componen t  of C ~ X  contains the bounded  componen t  of  C ~ E .  
A crescent E is said to be th in  if  HP(E,  d A ) - - L ~ ( E ,  d A )  for all p.  The 

easiest w a y  to obta in  such a crescent, however,  is to remove f rom the annulus  
W = { z :  1/2 ~ IzI ~ 1} ~ sequence of wedges 

Wj = {z: 1/2 < Iz] < rj < 1, ]argz  i -~ ~/2 j} 

such t h a t  if  E = W ~ U j ~  1 Wj  then  H*'(E, d A )  fails to have a bounded  evaluat ion 
at the origin (see [20, p. 116]). This const ruct ion is similar to and of the same order 
of d i f f icul ty  as the one employed  b y  Wermer .  
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