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w 1. When the real line R acts on a space X there arises a natural  notion of 
analyticity for bounded functions on X. Specifically, we shall say tha t  a bounded 
function 96 on X is analytic in case the restriction of r to each orbit is a function 
in H~(R), the space of boundary functions of functions which are bounded and 
analytic in the upper half plane. Without  some global assumptions about the space 
and the functions, it does not seem possible to say much about the analytic functions. 
In  this paper, which is a sequel to [11], we shall assume tha t  X is a separable 
compact Hausdorff  space and tha t  the action of R on X is continuous. The pair 
(X, R) will be referred to as a flow and for x in X and t in R, the translate of 
x by t will be denoted by x q- t. The analytic functions on X considered here 
are assumed to come from C(X), the space of all continuous complex-valued 
functions on X, and the algebra which the analytic functions form will be denoted 
by 9J. 

Theorem I I  of [11] asserts tha t  if the flow (X, R) is strictly ergodic, meaning 
tha t  there is a unique probability measure on X which is invariant under the 
action of R, then 9~ is a ])irichlet aIgebra on X. While the notion of strict 
ergodieity seems rather special, there is a vague sense in which the strictly ergodic 
flows are generic among all flows. For example, all minimal almost periodic flows 
are strictly ergodic; all nfl flows are too; and surprisingly it happens tha t  if R 
acts measurably on a (standard Borel) measure space Y, if the action preserves 
a finite measure on Y, and if the action is weakly mixing, then there is a strictly 
ergodie flow (X, R) which is Borel isomorphic to the action of R on Y [8]. Our 
objective in this paper is to identify the maximal ideal space ~ of ~ when the 
flow (X, R) is strictly ergodic. We shall show in Theorem I I  tha t  if the unique 
invariant measure is not a point mass then ~Hoa is homeomorphie to the quotient 
space obtained from X • [0, 1] by identifying the slice X •  {0} to a point. This 
result generalizes the well known theorem of Arens and Singer [1] which describes 
the maximal ideal spaces for the algebras of analytic almost periodic functions on 
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the line, i.e., the algebras of analytic functions associated with minimal almost 
periodic flows. We shall also handle the case when the unique invariant measure 
is a point mass, although the description is a bit more complicated, and we shall 
identify the Gleason parts of 9]l~. 

While the reasons for assuming that  X is separable in this investigation are 
technical, they appear compelling because of the tools used in our proofs. However, 
experimental evidence seems to indicate tha t  our results are correct in the non- 
separable case as well. 

In Section 2 we establish some notation, terminology, and elementary facts 
which will be used throughout,  while in Section 3 we develop some properties of 
"Poisson integrals" of measures. The result of Section 4 (Theorem I) establishes 
conditions under which the representing measures for certain points in c]//~l are 
concentrated on orbits. I t  is there that  the assumption that  X is separable is 
really used. The characterization of C)ll,,a is presented in Section 5, and Section 6 
is devoted to concluding remarks. 

w 2. We begin by  reminding the reader of our standing assumptions: We shall 
always assume that  X is compact and separable and that  the flow (X, R) is 
strictly ergodic. Although at times one or the other of these assumptions will not, 
be needed, we shall leave it to the reader to decide for himself on questions of 
generality. 

The space of all bounded complex Borel measures on X will be denoted by  
M(X) and it will often be convenient to denote the integral f r of a function 

r in C(X) with respect to a measure ). in M(X) by (,r 2}. 
The action of R on X induces a strongly continuous one-parameter group 

{T,},e R of automorphisms of C(X) defined by the formula (T, r  r  t), 
r C C(X). The group of adjoints of {T,},e a acting on M(X) will be denoted by  
{T*},ea. Observe that  for each t in R and for each 2 in M(X), T*2 is the 
measure which assigns to each Borel set E the value 2(E -~ t). Observe also that  
in general {T*},eR is not strongly continuous but  is merely weak-* continuous. 

Using {Tt},e R it is possible to convert C(X) and M(X) into LI(R) modules 
as follows: I f  r is a function in C(X) and if f is in LI(R), then r * f is defined 
to be the Bochner integral f~_+ (T,r On the other hand, if 2 is in M(X) 
and if f is in LI(R), then 2 . f  is defined to be the measure such that  

(r ~ * f}  = I r  *]i 2)  

for all r in C(X) where f is the function whose value at t is f ( - -  t). Equivalently, 
�9 f may be expressed as the weak- ,  convergent integral fT (T*,ag(t)dt. Observe 

that  with respect to these operations of convolution C(X) and M(X) are indeed 
converted into LI(R) modules and, moreover, the following inequalities hold for 
all r in C(X), .,1 in M(X), and f in LI(R): 
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I[r *fll ~ I1r [Ifl! and  l])~ *fii ~ iE2]] iifil. 

Because of these inequalities the annihilator of a function in C(X)  or of a measure 
in M ( X )  is a closed ideal in LI(R). The spectrum of a function r in C(X)  or of a 
measure 2 in M ( X ) ,  in the sense of spectral synthesis, is then defined to be the 
hull of its annihilator and will be denoted by sp (r or s p  (2). Equivalently, 
sp (r (resp., sp (2)) may be regarded as the closed support of the distributional 
Fourier transform of the C(X)-valued function T~r (resp., the M(X)-valued 
function T*2). We note that  a function r in C(X)  is analytic if and only if sp (r 
is nonnegative (see [11, Proposition 2.1]). Our reference for the basic facts about  
spectra is [5]. 

Recall tha t  a measure is said to be quasi-invariant in case every translate of each 
null set is also a null set. We note tha t  if /~ is a positive quasi-invariant measure 
on X ,  then by  Proposition 1 of [6] {T,}teR can be extended uniquely in the 
obvious fashion to be a weak- ,  continuous one parameter group of automorphisms 
of L~(#). Recall also that  a quasi-invariant measure is said to be ergodic in case 
each invariant measurable subset of X is either negligible or has negligible comple- 
meat. 

I f  m is a representing measure for a point in ~)tl~, then LP(m) and H~(m) 
will denote the Lebesgue and Hardy  spaces associated with m. The usual Lebesgue 
and Hardy  spaces on the unit circle T will be denoted by  LP(T) and He(T). 

w 3. For  the remainder of this paper P~ will denote the Poisson kernel for 
evaluation at z in the upper half plane; tha t  is, P~(t) = y/(zc(y 2 ~. (x - -  t) 2) where 
z = x + iy with y > 0. Our objective in this section is to establish certain facts 
about  Poisson integrals of measures on X which will be used later, 

PROPOSITION 3.1. (i) Let {m.}$=l be a sequence of measures in M ( X )  which 
converges to a measure m in the weak- ,  topology on M ( X )  and let {y.}n~=l be a 
convergent sequence of positive real numbers with f ini te  l imit y. Then in the weak-* 
topology on M ( X ) ,  limn_~ m n *  P~yn -~ m �9 P~y i f  y ~ 0 and lim~_~ m. �9 P:xn = m 
i f y : O .  

(ii) Let {m~}~=l be a sequence in M ( X )  and let {Y~}~=I be a sequence of positive 
numbers such that l i m . ~  y~ = ~ .  I f  l i m ~  m~ �9 P~y. exists in the weak- ,  topology 
on M ( X ) ,  then the l imit  is invariant. 

(iii) A measure m in M ( X )  is invariant i f  and only i f  m * Pi~ = m for some 
y ~ O .  

Proof. (i) Since lim,_~ m, exists in the weak- ,  topology on M(X),  the principle 
of uniform boundedness implies that  there is a K such that  llmnll _~ K for all n. 
Suppose y is positive and let r be in C(X) .  Then since limn+~ ]]P~xn -- P~xl] = 0 

in LI(R) and since r  P~x is also in C(X), the conclusion follows from the 
inequality 
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1<r mn * P'~n> - -  <r m �9 P'y>I 

- -  1(r m n *  P , , .>  " <r m .  * P, ,>[  + 1(r m .  * P , ,>  - -  <r m * P ' ,>I  

_< KIIr IlP~a., P,yll + ]<~b �9 m, - m>[. 

To handle the case when y = 0, let r be in C(X)  as before and observe tha t  

since {P~x}x>0 is an approximate identi ty for Lx(R), lim._~ I]r */5~x, -- r ---- 0 
by Lemma 1 of [5]. Consequently the following inequality yields the result. 

I<r m.* P , , . > -  <r m>I _< 1<r ~ , , . -4 , ,  m.>I + 1<r m . > -  <r m>I 

--< K]Ir */5~x. - -  r + t<r m.> - -  <r m>J. 

(ii) Let  m be the limit in question. Then for each t in R, 

T * m  = l im._~ T * ( m ,  �9 P~y,) ~ lim,_~ m, * P-,+e," 

But  an easy calculation reveals tha t  for t fixed l im , .~  [EP,+~x~- P~x~H = 0 

in Lx(R). Consequently, l i m . ~  m, �9 P-,+~x. = m also, and this shows tha t  m 
is invariant. 

(iii) I f  m is invariant, then a calculation shows tha t  

cO 

�9 P l y  ~-- m f Pix(t)dt - ~  m m 

- - o 0  

for all y > 0. The converse follows from (ii) and the observation tha t  if y > 0, 
then (m �9 Ply) * P~y ~-- m �9 (Ply * P~y) ~ m * Pi~y. 

P~OI"OSITION 3.2. I f  m is a representing measure for a point  in c]/Hu and i f  z 
is a point  in  the upper half  plane, then m �9 P~ is also a representing measure for a 
point  in  ~ I~  a. 

Proof. First note tha t  if r is in 9/ and if F(t) ---- (T_,r m),  then by the 
analysis presented on page 50 of [5], the spectrum of F as a bounded continuous 
function on R is contahled in sp (r f] sp (m) which in turn  is contained in [0, co). 
That  is, E lies in H~{R). I f  r and %0 lie in 9/, then the following equation 
yields the result. 

oO 

(6%0, m �9 P=) ---- f <T_,(r m >P,(t)dt (3.1) 

- - o o  

oO 

f <T_,r m > < T  W, m>P~(t)dt (3.2) 
- - o o  
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If [ f 1 
m o o  m o  o 

: (r m �9 P=> (~, m �9 P=>. 
(3.3) 

The passage from (3.1) to (3.2) is justified by the fact tha t  m is multiplicative on 
9~ and tha t  {T,},e R leaves 9~ invariant (see Lemma 3 of [5]). The passage from 
(3.2) to (3.3) is justified by the fact just mentioned tha t  the expressions inside the 
angular brackets are functions in H~(1R) and by the fact tha t  the measure P~dt 
is multiplicative on H~(R). 

As a consequence of Propositions 3.1 and 3.2, we obtain 

COrOLLArY 3.3. I f  m represents a point  in ~)'~'l~l and i f  m is neither a point  
mass nor the unique invariant measure, then the Gleason part  containing the point  
represented by m is nontrivial. 

Proof. I t  suffices to produce a representing measure for another point in ~/l~ a 
which is absolutely continuous with respect to m (see [7, p. 144]). Choose y ~ 0 
and consider m �9 P~y. By Proposition 3.2, m * P~x is a representing measure and 
it is distinct from m by the hypothesis tha t  m is not invariant and Proposition 
3.1 (iii). On the other hand, since m is quasi-invariant by Theorem I I I  of [11], it 
follows tha t  m * P~r is absolutely continuous with respect to m. With this the 
proof is complete. 

w 4. Let x be a point in X which is not fixed by the action of 1~ and let y 
be positive. Then by Proposition 3.2, (~x * Pix is a representing measure for a point 
in ~3~/l~ and, by Proposition 3.1 and the hypothesis on x, ~ �9 P~y is not a point 
mass. Our objective in this section is to show tha t  the representing measure for 
almost every point in ~//~ can be written in this form. 

T~EO~EM I. Let m represent a point  in 9t l~ and assume that m is neither the 
unique invariant probability measure on X nor a point  mass on X .  Then there is a 
unique x in  X and a unique positive y such that m = ~ ,  Piy. 

Proof. The proof is divided into two steps. First  we show tha t  each representing 
measure m satisfying the hypotheses of the theorem is concentrated on an orbit. 
Once this is done, then we show tha t  m has the indicated representation. 

Step I. By Corollary 3.3 the Gleason part  containing the point represented by 
m is nontrivial. Also, by Theorem VI and Corollary 3.1 of [11], Hoe(m) is a maximal 
weak-* closed subalgebra of L~(m) .  Therefore, by a theorem of Merrill [10], which 
is a sharpening of the Wermer imbedding theorem, we may find a Hilbert space 
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isomorphism W from L2(m) onto L2(T) such tha t  WH2(m) :- H2(T), 
W L ~ ( m ) W - I =  L*(T) and such tha t  WH~ As was noted in 
Section 2, the fact that  m is quasi-invariant allows us to extend {Tt}te R to a 
weak-* continuous one-parameter group of automorphisms of L*(m). This we shall 
do, but  we shall keep the same notation for the extended group. Since {Tt}ee R 
leaves 9A invariant by Lemma 3 of [5], {Tt}te R leaves H~(m) invariant also. 

For each t in R and each r in L*(T), define ~'tr to be T,(W-Ir Then 

{Tt}ieR is a weak-,  continuous one-parameter group of automorphisms of L+(T) 
which leaves H~(T) invariant. Appealing to a theorem of de Leeuw, Rudin, and 
Wermer [2], we find tha t  there is a continuous one-parameter group {c~e},ea of 
conformal maps of the open unit disc "4 onto itself such tha t  for r in H~(T) 
and t in R 

(~er =r a.e. ~ (4.1) 

where # is a normalized Lebesgue measure on T. Since H + ( T ) ~ - H ~ ( T )  is 
weak-,  dense in L~(T) equation (4.1) holds for all r in L+(T) as well. That  is, 

{T,}eeR is implemented by the transformation group {a,},eR restricted to T. 
The hypothesis tha t  X is separable now allows us to apply a theorem of Maekey 

[9, Theorem 2] (see [12] also) to conclude tha t  there are invariant null sets N~ 
and N~ in T and X respectively and a Borel isomorphism q~ from T ~ N  1 
onto X ~ N ~  which carries /~ to a measure equivalent to m such tha t  for all z 
in T ~ N  1 and for all t in R, q~(ae(z)) = q)(z) -- t. Thus to show tha t  m is carried 
on an orbit (which must be X ~ N 2 ) ,  it suffices to show tha t  {ae},eR restricted to 
T acts transitively on T~N~. There are two cases to consider. 

Case I. Some point in .4 is fixed by {~,}eem 
After a confbrmal change of variables, if necessary, we need only consider the 

case when the fixed point is the origin. But, then, it is readily verified tha t  there is 
a real 0 such tha t  ~e(z) ~- e~e+z for all t in R and all z. Whence, in this case, 
N1 is actually the empty set, {~e},eR acts transitively on T, and X ~ N e  is a 
periodic orbit. 

Case II .  No point in d is fixed by {a,}~e ~. 
First note tha t  since {ae}eeR is a commutative group of fractional linear trans- 

formations, the set ~ of common fixed points for {~e}~eR coincides with the 
set of fixed points for any particular ~ which is not the identi ty transformation. 
I t  follows tha t  ~ is nonempty and consists of at  most two points; moreover, the 
hypothesis implies tha t  ~ is a subset of T. Select a point from ~) and let T 
be the fractional linear transformation which maps "4 to the upper half plane and 
carries the selected point to ~ .  Then if ~e = ~e~ -1, {~e}eeR is a continuous one- 
parameter group of fractional linear transformations of the upper half plane onto 
itself which fixes ~ .  Therefore, for each t in R, there is an ae > 0 and a be 
in R such tha t  ~e(z)= aez-~ be for all z; i.e., {~}eeR is a one-parameter sub- 
group of the well known "ax + b group". A moment's reflection directed toward 
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the  exponent ia l  map  on the  Lie algebra of  the  "ax ~ b group"  reveals t h a t  y and  
fi exist  in R such t h a t  ~t(z)~-e'Sz+fl((d ~ -  1)/y) for  all t in R and  all z, 
where  the  expression in parentheses  is to be in te rp re ted  as t i f  y = 0. We assert  
t h a t  7 = 0. F o r  i f  not ,  t h en  (~,},eR fixes the  point  - -  fl/y on the real axis and 
so leaves invar ian t  each of  the  infini te  rays  on ei ther  side of  - -  ~/?. Back  on the  
disc this implies t h a t  /~ is not. ergodic under  {at}~eR which in t u rn  implies t h a t  
m is no t  ergodic and  this  is con t r a ry  to  Theorem VI  of  [11]. Hence  ? = 0, and  so 
fi # 0 for otherwise each ~, would be the  ident i ty .  Thus  we f ind  in this case, t h a t  
N 1 = ~ ) ~  {T-l(oo)}, and  t h a t  {~}tea acts t rans i t ive ly  and  f reely  on  T ~ N ~ ;  
i.e., no as, t #  0, f ixes any  poin t  in T ~ N  1. 

Step I I .  L e t  ~ be the  orbi t  upon  which m is concen t ra ted  and  assume firs t  
t h a t  ~ is no t  periodic. Then  there  is a one to  one cont inuous  func t ion  ~ f rom R 
onto  �9 such t h a t  ~ ( s + t ) = ~ ( s ) + t  for  all s and  t in R. Since m is quasi- 
invar ian t  [11, Theorem I I I ] ,  m is equiva len t  to  Lebesgue measure  on R trans-  
p lan ted  to ~ via ~ because, as is well known,  eve ry  non-zero quas i - invar iant  
measure  on R is equiva len t  to Lebesgue measure.  F r o m  this  i t  follows t h a t  there  
is a ~ in ~ and  a posi t ive nonvanishing funct ion  h in LI(R) such t h a t  m ~-- b~ �9 h. 
Whe n  H ~ ( R )  is t r ansp lan ted  to �9 via V, we m a y  regard  i t  as a p roper  weak- ,  
closed subalgebra  of L~(m) which contains 9~. On the  other  hand,  as we poin ted  
out  earlier, H*(m) is a maximal  w e a k - ,  closed subalgebra  of  L*(m) and  so it  
mus t  coincide wi th  the  t r ansp lan t  of  H ~ ( R )  to  ~ .  Hence  i t  follows t h a t  the  
measure  hdt, where dt is Lebesgue measure  on R, is mul t ip l ica t ive  on H * ( R ) .  
B u t  i t  is well known t h a t  this implies t h a t  there  is a z in the  uppe r  hal f  p lane such 
t h a t  h(t)=P,(t). Therefore,  if  v = R e ( z ) ,  y = I m ( z ) ,  and  if  x~--~-~- v, then  
~, * P~ ~ (T*_fl~) �9 P,.x = b~ * P~y as was to  be shown. 

If ,  on the  other  hand,  ~ is a periodic orbit ,  t h en  since the  hypothes is  of  the  
theorem excludes the  possibil i ty t ha t  ~ reduces to  a point ,  we m a y  f ind  a 
homeomorph i sm ~' f rom T onto  ~ such t h a t  f o r  t in R and  z in T~ 
~'(e%) ---- V'(z) + t. I t  follows t h a t  ~' implements  an isomorphism be tween the  
algebra 9~le ob ta ined  by  restr ic t ing the  funct ions  in 91 to ~) and  the  disc algebra 
on T. Because of  this, the well known  expression for  the  represent ing  measures 
for  the  points  in the  maximal  ideal space of  the  disc algebra,  and  the  hypothes is  
t h a t  m is not invar iant ,  we m a y  assert  t h a t  there  is an  ~ in ~ and  a z in the  
uppe r  hal f  p lane such t h a t  m = ~, �9 P~. Trans la t ing  ~ b y  the  real pa r t  of  z i f  
necessary,  we arr ive again a t  the  desired conclusion. 

As for the  uniqueness of  the represen ta t ion  of  m as $~,P~y, suppose 
5~ �9 Ply ~ ~$~: � 9  Then  these two measures mus t  be concen t ra ted  on the  same 
orbit .  Consequent ly ,  there  exists a t in R such t h a t  x~ = x + t. B u t  t hen  i t  
follows easily t h a t  the  two measures  P~ydt and  P,+~xdt on R are equal  and  
so t = 0 and  y -~//1. This shows t h a t  x = x x  as well and we m a y  conclude t h a t  
the proof  of  Theorem I is complete .  
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w 5. In  this section we present our characterization of the maximal ideal space 
of 9~. As we noted in the introduction we must consider two cases. The first is 
when the unique invariant measure # on X is not a point mass on X. In  this 
case we let D denote the quotient space obtained from X • [0, 1] by identifying 
the slice X • {0} to a point. The point in D which is the image of X • (0} under 
the quotient map will be denoted by $ and the points in X • (0, 1] will be identified 
with their images under the quotient map. The space D may be regarded as a big 
disc with boundary X and origin ~ and it is possible to think of a pair (x, r) in 
X • (0, 1] as the polar coordinates for the point in D~{0} to which it corresponds 
under the quotient map. In  the second ease, which is when # is a point mass 8~, 
on X (so tha t  x 0 is fixed under the action of R on X), we let H denote the 
quotient space obtained from X•  1] by identifying the closed set 
(X• tJ ({xo}• , 1]) to a point. We shall identify the points (x, r) in 
(X~{xo}) • (0, 1] with their images in H under the quotient map and we shall 

denote the image of (X• U ({x0}X[0 , 1]) in H by ~ .  The choice of the 

symbols H and ~ is motivated by the observation tha t  if X is the one point 
compactification of the real line then H is homeomorphic to the (closed) upper half 

/ x .  

plane with ~ corresponding to the point at infinity. Of course in this case H is 
conformally equivalent to the closed unit  disc but in general it is not possible to 
make such an identification between H and D. 

Recall tha t  if C o denotes the closure in C(X) of the space of functions with 
positive spectra, then because the flow (X, R) is strictly ergodic, C o is a maximal 
ideal in 9~ and # is its representing measure (see [11, Theorem V]). I f  # is not a 
point mass on X, then we define a map /" from D into %~'l~ as follows: 

i) 

ii) 

iii) 

/ '(x, 1)----x for all x in X; and 

if 0 ~ r ~ 1, then /'(x, r) is the point represented by the measure ~, �9 Piz 
where y ---- -- log r. 

then we On the other hand, if # is a point mass ~.  on X, so tha t  C 0 : x 0 ,  
define a map /~' from t t  to ~ as follows: 

i) r , ( ~ )  = x0; 

ii) /"(x,  1)----x, if xV:x0; 

iii) if 0 ~ r ~  1, and if x C x  0, then / " (x , r )  is the point represented by 
the measure ~ . P i  x where y ---- -- log r. 

Observe tha t  the maps /" and /~' are well defined on all of D and H, respectively. 

T}IEORE~ II.  A. I f  tt is not a point mass on X ,  then the map 1" defined above 
is a homeomorphism from D onto c ~ .  Moreover, for each r, 0 ~ r ~ 1, the point 
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2"(x, r) lies in a nontrivial Gleason part and the Gleason part containing C O is non- 
trivial i f  and only i f  # is concentrated on an orbit. 

B. I f  # is a point mass 6~ on X,  then the map 2"" defined above is a homeo- 
morphism from H onto c~,~ and foreachpoint  (x,r) in H, x ~= x o, O ~ r ~ 1, 
2"'(x, r) lies in a nontrivial Gleason part. 

Proof. We prove A; the proof of B is similar and so will be omitted. Proposition 
3.1 and Theorem I imply tha t  N is bijective and continuous at each point in 
D~{0}. Since D is compact and ~1/~ is Hausdorff  it suffices to check the con- 
t inui ty  of 2" at  0 in order to show tha t  2" is a homeomorphism. To this end let 

{(x,, rn)},~=l be a sequence converging to ~) in D and let yn = -- log rn so tha t  
limn_~ yn = oo. (Note tha t  it suffices to consider sequences since X is separable.) 

p Then since any weak-,  cluster point of the sequence {6xn* ~Xn}n=l is # 
by Proposition 3.1 (ii) and the strict ergodicity of the flow, it follows tha t  

limn_~ 2"(x~, rn) = C O ~ 2"((~). Whence 2" is continuous at 0 and the first part  
of the proof is complete. 

The fact tha t  each 2"(x, r), 0 < r < 1, lies in a nontrivial Gleason part  follows 
from Corollary 3.3. Suppose tha t  C O also lies in a nontrivial Gleason part  and 
suppose m represents some other point in the part  containing C o. Then since m 
is not invariant, because m v~ #, and since m is not a point mass, m is con- 
centrated on an orbit by Theorem I. Since m and # are mutual ly absolutely 
continuous [7, p. 143] we may conclude tha t  # is also concentrated on an orbit. 
Conversely, if # is concentrated on an orbit ~,  then it is easy to see tha t  for each 
x in ~ and each y > 0, the measures 6x * P~x and /~ are mutually absolutely 
continuous. Consequently the Gleason part  containing C O is nontrivial [7, p. 144] 
and we may conclude the proof is complete. 

One noteworthy corollary to Theorem I I  is the fact tha t  c14/~ is contractible 
and consequently the invertible elements in 9~ have logarithms [7, p. 91]. This 
certainly is not obvious a priori. 

w 6. In this section we discuss possibilities of extending the analysis presented 
above to more general situations. In  one rather special ease it is possible to apply 
the above arguments to characterize the maximal ideal space of 9/ when the flow 
(X, R) is not strictly ergodic. This is the case when it is possible to fiber X smoothly 
over a space Y whose points are closed invariant subsets Xy of X, y E Y, such 
that  on each X x the flow is strictly ergodic. I t  develops tha t  cB~?t may be fibered 
similarly where the fibers are the maximal ideal spaces for the algebras 9~ associated 
with the flows (Xx, R). In  general, of course, no such fibering of X exists. 

One of the principal obstacles which we have encountered in trying to extend 
our results is the problem of deciding when 9/ belongs to any of the well known 
classes of abstract function algebras. In  particular we would like to know con- 
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ditions other than the strict ergodicity of the flow under which every point in ct]~ 
has a unique representing measure. In this direction we are able to prove the fol- 
lowing curious fact: Suppose (X, R) is arbitrary and tha t  a is a point in ~)#~,~X. 
I f  each representing measure for a is singular with respect to every finite invariant 
measure on X, then, in fact, a has a unique representing measure and, assuming 
tha t  X is separable, it may be written as 6x * P~y for some x in X and y > 0. 
What  the situation is regarding the other points in ~2~ remains a mystery to us. 
0 f  course the nature of the flow has some bearing on this problem and one class 
of flows for which this problem seems tractible is the class of distal flows. As a test 
question we ask: I f  the flow (X, R) is distal, is 9~ a Dirichlet algebra on X? 
One reason for suspecting that  the answer is yes is tha t  all distal flows can be built  
up in a very explicit manner from almost periodic flows (see [4]) and the algebra of 
analytic functions associated with an almost periodic flow is, after all, a Diriehlet 
algebra. On the other hand, distal flows, even minimal ones, need not be strictly 
ergodic (see [3]) and consequently there is reason to suspect tha t  the answer to the 
question is no. Nonetheless, because of the way distal flows are constructed, it 
should be possible, if the answer is no, to decide precisely why ~ fails to be a 
Dirichlet algebra. 

We conclude by indicating another proof of part  of Theorem I I  which is valid 
even when the space X is not separable and which may indicate a way of removing 
all considerations of separability from our arguments. We assert tha t  if the flow 
(X, R) is strictly ergodie where X need not be separable, and if the Gleason part  
containing C o is nontrivial, then the unique invariant probability measure # is 
concentrated on an orbit. For if Z is the Wermer imbedding function (see [7, 
p. 133]), then it is possible to show tha t  the sequence {Z"}~=_~ constitutes an 
orthonormal basis for L2(#) such that  for some nonzero real ~, 

Z"(x § t) = e~'Z"(x) a.e. 

for each integer n and each t in R. This means tha t  the uni tary representation 
of R on L~(~) induced by the action of R on X has pure point spectrum con- 
sisting of integral multiples of A. The proof is completed by appealing to an 
argument of Rohlin [13, p. 227] which he used to obtain a sharpened form of a 
well known theorem of yon Neumann concerning ergodic R-actions with pure point 
spectrum. 
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